Вехтерсхойзер предложил новую химическую схему происхождения жизни. Энергии, выделяемой при образовании пирита, недостаточно для переработки углекислого газа (диоксида углерода) в органические вещества. Поэтому, по мысли Вехтерсхойзера, они синтезировались из угарного газа (оксида углерода) — химически более активного посредника (этот газ и в самом деле присутствует в кислых гидротермальных источниках). При этом шли и другие медленные органические реакции с содержащими серу и железо минералами, по-видимому, обладающими особыми каталитическими свойствами. Кроме того, Вехтерсхойзер и его коллеги продемонстрировали протекание многих из теоретически предполагаемых реакций в лаборатории, доказав, что их версия — нечто большее, чем правдоподобные умозрительные построения. Это был настоящий прорыв, перевернувший сложившиеся за десятки лет представления о том, как могла возникнуть жизнь. Теперь ученые заговорили о том, что она вышла из поистине адской среды и была “сварена” из неожиданных ингредиентов, из которых принципиально важными были сероводород, угарный газ и пирит — два ядовитых газа и “золото дураков”. Один ученый, прочитав статью Вехтерсхойзера, заметил: у него возникло ощущение, будто он наткнулся на научную работу, провалившуюся к нам из конца XXI века через дыру во времени.
Вехтерсхойзер не только снискал похвалу, но и подвергся резкой критике: отчасти потому, что, будучи настоящим революционером, перевернул давно привычные представления, отчасти из-за своей заносчивости, отчасти в связи с тем, что нарисованная им картина дает повод для серьезных сомнений. Самое важное из них касается так называемой проблемы концентрации и относится в том числе и к идее первичного бульона. Любые органические молекулы должны рассеиваться в океанской воде, поэтому весьма маловероятно, что они вообще смогут встретиться, чтобы образовать полимеры вроде ДНК или РНК. Их нечему удержать. Вехтерсхойзер возражает: все предполагаемые им реакции могут протекать на поверхности минералов, таких как пирит. Но и здесь есть трудность: подобные реакции не могут идти до конца, если их конечные продукты будут оставаться на поверхности катализатора. Либо засорение, либо рассеяние все испортят3.
В середине 8о-х годов Майк Рассел (в настоящее время работает в Лаборатории реактивного движения в Пасадене) предложил решение всех этих проблем. У Рассела есть склонность к витиеватому языку “геопоэзии”, а его представления о жизни строятся на термодинамическом и геохимическом фундаменте, знакомом, судя по всему, мало кому из биохимиков. Но в последние три десятилетия у него находится все больше сторонников, видящих в его версии единственное убедительное решение загадки происхождения жизни.
Вехтерсхойзер и Рассел соглашаются друг с другом в том, что гидротермальные источники сыграли в происхождении жизни ключевую роль. В остальном же их взгляды диаметрально противоположны: первый предполагает здесь участие вулканической активности, второй — совсем других процессов, первый — кислых источников, второй — щелочных. Для идей, которые иногда путают, их гипотезы имеют на удивление мало общего. Сейчас я все объясню.
В океанических хребтах, на которых растут “черные курильщики”, образуется новый материал морского дна. Поднимающаяся к поверхности в этих центрах вулканической активности магма медленно раздвигает литосферные плиты, и они расползаются примерно с той же скоростью, с какой растут ногти у нас на ногах. Вдали от хребтов, где расходящиеся плиты сталкиваются, одной плите приходится подныривать под другую, вызывая у той жестокие конвульсии. Из-за столкновений литосферных плит появились и Гималаи, и Анды, и Альпы. Но медленное движение молодой земной коры по морскому дну приводит и к выходу на поверхность новых горных пород из мантии — слоя, расположенного непосредственно под земной корой. В местах выхода этих пород возникают гидротермальные источники второго типа, сильно отличающиеся от “черных курильщиков”. Именно их Рассел считает колыбелью жизни.
Гидротермальные источники этого типа имеют не вулканическое происхождение, и магма в их работе не участвует. Они функционируют за счет реакции обнажившихся пород с морской водой. Вода не просто просачивается вглубь них: она реагирует с этими породами, включается в их состав, меняя их строение и образуя минералы класса гидроксидов, как серпентин (змеевик), названный так за сходство с крапчатой шкурой змеи. Реакция с морской водой приводит к расширению породы, и в ней образуются разломы и трещины, которые, в свою очередь, тоже пропускают морскую воду, способствуя поддержанию процесса. Масштабы таких реакций поразительны. Полагают, что объем воды, связанной подобным образом в породах, равен объему всех океанов вместе взятых. При расползании океанического дна эти раздутые гидратированные породы рано или поздно подныривают под другую плиту и вновь оказываются в мантии, где опять перегреваются. Вода из них при этом выходит, изливаясь в недра планеты. Это “загрязнение” морской водой служит движущей силой конвекционных потоков в глубине мантии, выталкивающих магму на поверхность в срединно-океанических хребтах и вулканах. Так что бурная вулканическая активность нашей планеты многим обязана непрерывному потоку морской воды, просачивающейся сквозь земную мантию. Именно это поддерживает Землю в неравновесном состоянии. Вот за счет чего вертится мир4.
Реакция морской воды с породами мантии не только служит движущей силой непрерывной вулканической активности. Она также приводит к выделению тепловой энергии и немалого количества газов, особенно водорода. Эта реакция, по сути, преображает все растворенное в морской воде, отражая, подобно кривому зеркалу, причудливо раздувшиеся образы, где все реагенты “восстановлены”, то есть нагружены электронами. Главный получающийся в ходе этой реакции газ — водород, просто потому, что морская вода по большей части состоит из воды. В небольших количествах выделяются и другие газы. Так образуется смесь, похожая на ту, которую использовал Стэнли Миллер и которая столь удачно подошла для получения предшественников сложных молекул, таких как белки и ДНК. Так, углекислый газ в ходе этой реакции превращается в метан, азот — в аммиак, а сульфаты — обратно в сероводород.
Тепло и газы прорываются на поверхность, образуя гидротермальные источники второго типа. Эти источники отличаются от “черных курильщиков” едва ли не по всем параметрам. Они не кислые, а щелочные. Они теплые или горячие, но гораздо холоднее адского жара “черных курильщиков”. Обычно они встречаются на некотором расстоянии от срединно-океанических хребтов — источников расползающегося нового материала морского дна. Кроме того, обычно они образуют не вертикальные черные трубы с единственным отверстием наверху, сквозь которое вырываются клубы черного дыма, а сложные структуры, испещренные крошечными полостями, которые надстраиваются за счет осадка, выпадающего из нагретого щелочного раствора по мере того, как он просачивается в толщу холодной океанской воды. Я подозреваю, что причина, по которой лишь немногим доводилось слышать о гидротермальных источниках этого типа, связана с обозначающим процесс их работы невразумительным термином “серпентинизация” (от названия минерала серпентина). Для наших целей предлагаю называть их просто щелочными источниками, хотя это и звучит не так выразительно по сравнению с “черными курильщиками”. Нам еще предстоит оценить важность слова “щелочные” в этом наименовании.
Как ни странно, до недавнего времени существование щелочных источников предсказывалось исключительно теорией, а знали их только благодаря нескольким отложениям ископаемых остатков. Самым известным, обнаруженным в окрестностях деревни Тина в Ирландии, около 350 миллионов лет. Именно они заставили Майка Рассела еще в 8о-х годах задуматься о возможности происхождения жизни в щелочных источниках. Исследовав под электронным микроскопом тонкие срезы пузырчатой породы, залегавшей неподалеку от ископаемого источника, он обнаружил, что некогда образовавшиеся в ней крошечные полости сходны по размеру с органическими клетками. Эти полости диаметром в одну десятую миллиметра или меньше оказались связаны друг с другом в сложную, похожую на лабиринт сеть. Рассел предположил, что такие минеральные клетки могут формироваться, когда жидкость из щелочного источника смешивается с кислой водой океана. Вскоре он успешно получил в лаборатории аналоги исследованной им пористой породы посредством смешивания щелочного и кислого растворов. В письме, опубликованном в 1988 году в журнале “Нейчур”, Рассел отмечал, что условия щелочных источников, судя по всему, делали их идеальными инкубаторами для жизни. В полостях откладываемых там пород естественным путем могли накапливаться органические вещества, а стенки этих полостей, сложенные из минералов, содержащих железо и серу (таких, как макинавит), придавали оболочкам неорганических клеток каталитические свойства, предугаданные Гюнтером Вехтерсхойзером. В статье 1994 года Рассел и его коллеги выдвинули следующее предположение:
Жизнь возникла в растущих скоплениях пузырьков сульфида железа, заполненных щелочным и высоковосстановленным гидротермальным раствором. Эти пузырьки формировались гидростатически у горячих сульфидных подводных источников, располагавшихся на некотором расстоянии от центров океанического спрединга четыре миллиарда лет назад.
Эти слова оказались пророческими: в то время работающие глубоководные щелочные источники еще не были известны. Затем, на рубеже тысячелетий, ученые, работавшие на борту глубоководного аппарата “Атлантис” (“Атлантида”), обнаружили именно такие источники километрах в пятнадцати от Срединно-Атлантического хребта, на подводном горном массиве, который, как ни странно, тоже назывался Атлантис. Учитывая эти обстоятельства, исследователи, конечно, могли назвать открытое ими поле гидротермальных источников только Затерянным городом (Лост-Сити) — в честь легендарной Атлантиды. Изящные белые колонны и карбонатные “пальцы”, тянущиеся в непроглядную тьму океана, делали это зловещее название особенно уместным. Обнаруженное гидротермальное поле не было похоже ни на одно уже известное. Некоторые из труб были не ниже “черных курильщиков”: самая высокая, получившая название “Посейдон”, вздымалась над морским дном на шестьдесят метров. Но эти сооружения отнюдь не выглядели мощными и тяжелыми: их тонкие пальцы напоминали готические украшения в стиле “каракулей”, по выражению историка Джона Норвича. “Дыхание” этих источников было бесцветным, из-за чего складывалось ощущение, будто город, навеки застывший в своем суровом великолепии, и вправду был внезапно оставлен его жителями. В отличие от “черных курильщиков” с их адским дымом, эти источники не курили, а лишь тянули вверх свои белые пальцы.
Хотя “дыхание” щелочных источников невидимо, оно вполне реально и его хватает для поддержания жизни в подводном “городе”. Их трубы сложены не из содержащих железо и серу минералов (в богатой кислородом воде современных океанов железо почти не растворяется, но предположения Рассела относятся к очень давним временам), однако их стенки тоже имеют пористое строение и пронизаны лабиринтами микроскопических полостей со стенками из рыхлого арагонита. Как ни странно, древние, замолкшие структуры подобных источников, уже давно не испускающие клубы гидротермальной жидкости, гораздо тверже, потому что поры в стенках забиты кальцитом. Действующие же источники действительно живы: в их порах обитает множество трудолюбивых бактерий, вовсю использующих химическую неуравновешенность системы. Есть там и животные, сравнимые по разнообразию с населением “черных курильщиков”, хотя и сильно уступающие в размерах. Причины тому, по-видимому, экологические. Серные бактерии, процветающие в “черных курильщиках”, легко приспосабливаются к жизни внутри животных-хозяев, а бактерии (строго говоря — археи), обитающие в Затерянном городе, не образуют подобных совместных предприятий с животными5. Не имея внутренних бактериальных “ферм”, животные, населяющие поля щелочных источников, развиваются не столь успешно.
Башня Природы — щелочной источник тридцатиметровой высоты, возвышающийся над океанским дном, сложенным из змеевика (поле гидротермальных источников Лост-Сити в центре Атлантического океана). Участки, где расположены действующие жерла, ярко-белого цвета.
Микроскопическое строение щелочного источника, показанное на срезе шириной 1 см и толщиной 30 мкм. Видны связанные друг с другом полости, образующие идеальный инкубатор для возникновения жизни.
Жизнь в Затерянном городе зависит от реакции водорода с углекислым газом, лежащей в основе всей жизни на Земле. Необычно в Затерянном городе то, что эта реакция там идет прямо, а почти во всех других случаях она осуществляется опосредованно. На нашей планете выходящий из-под земли в форме газа чистый водород — редкий подарок, и живым существам обычно приходится добывать его там, где он соединен крепкой молекулярной связкой с другими атомами, например из воды или сероводорода. Чтобы вырвать водород из молекул таких веществ и связать его с углекислым газом, требуются затраты энергии, которую живые организмы получают исходно от солнца посредством фотосинтеза или эксплуатируя химическую неуравновешенность мира гидротермальных источников. Лишь при участии водорода эта реакция протекает самопроизвольно, хотя и мучительно долго. Впрочем, с точки зрения термодинамики такая реакция, по меткому выражению Эверетта Шока, — бесплатный обед, за который еще и приплачивают. Иными словами, она позволяет синтезировать органические молекулы напрямую и одновременно в ощутимых количествах получать энергию, которая в принципе может быть использована для других органических реакций.
Так что щелочные источники, на которые обратил внимание Рассел, действительно вполне годятся на роль инкубатора жизни. Они составляют неотъемлемую часть системы, которая приводит в движение поверхность нашей планеты и поддерживает вулканическую активность. Они пребывают в неравновесном состоянии с океанами, непрерывно поставляя в них водород, реагирующий с углекислым газом с образованием органических веществ.
Они создают лабиринты пористых полостей, где задерживаются и концентрируются молекулы этих веществ, делая гораздо вероятнее (как мы убедимся в следующей главе) сборку полимеров, как РНК. Они долговечны: трубы Затерянного города действуют уже сорок тысяч лет — на два порядка дольше, чем большинство “черных курильщиков”. И их было куда больше в глубокой древности, когда остывающая мантия планеты чаще непосредственно контактировала с водой океанов. Кроме того, океанская вода в те времена была насыщена железом, так что стенки микроскопических полостей в щелочных источниках должны были обладать каталитическими свойствами, поскольку состояли из содержащих железо и серу минералов (как и ископаемые остатки источников из деревни Тина в Ирландии). При этом они могли работать как природные проточные реакторы, в которых термические и электрохимические градиенты обеспечивали циркуляцию жидких реагентов по системе полостей с каталитическими стенками.
Все это прекрасно, но один лишь реактор, сколь угодно замечательный, — это еще не жизнь. Каким образом жизнь развилась из таких природных реакторов в тот изумительно сложный ковер, полный неповторимых узоров, который мы видим вокруг? Точный ответ, разумеется, неизвестен, но в нашем распоряжении есть некоторые ключи. Намеки нам дает сама жизнь, в первую очередь набор фундаментальных, глубоко консервативных реакций, общих почти для всех живых организмов, обитающих сейчас на Земле. Этот набор ключевых процессов обмена веществ, живое биохимическое ископаемое в каждом из нас, позволяет услышать отголоски самого далекого прошлого, вполне созвучные представлениям о первоначальном зарождении жизни в щелочном гидротермальном источнике.
Возможны два подхода к изучению проблемы происхождения жизни: от простого к сложному и от сложного к простому. В этой главе мы, обсуждая геохимические условия и термодинамические градиенты, скорее всего, существовавшие в древнейшие времена, до сих пор следовали подходу “от простого к сложному”. Мы пришли к мысли, что колыбелью жизни были, скорее всего, теплые глубоководные источники, испускавшие водород в насыщенную углекислым газом океанскую воду. Работавшие там природные электрохимические реакторы, судя по всему, могли генерировать как органические вещества, так и энергию. Однако мы до сих пор не говорили о том, какие именно реакции там шли и как они привели к появлению жизни.
Единственный источник надежных сведений о возникновении жизни — сама жизнь. Подход “от сложного к простому” предполагает выявление именно таких сведений. Можно составить перечень свойств, общих для всех живых существ, и на его основе попытаться реконструировать гипотетические свойства Последнего всеобщего предка (Last Universal Common Ancestor), любовно называемого также ЛУКА (LUCA). Так, учитывая, что лишь малая часть бактерий способна к фотосинтезу, сам ЛУКА едва ли умел фотосинтезировать. Если предположить, что он умел это делать, значит, подавляющее большинство его потомков отказалось от этого ценного навыка. Подобное представляется маловероятным, хотя этого нельзя исключать. Но у всего живого на Земле есть и общие свойства: все существа состоят из клеток (за исключением вирусов, которые могут функционировать только в клетках), у всех есть записанные в ДНК гены, все кодируют белки с помощью универсального кода, определяющего порядок аминокислот. Все живые существа используют одну и ту же энергетическую “валюту” — АТФ (аденозинтрифосфат), играющую роль чего-то вроде десятифунтовой купюры, которой можно “расплачиваться” за любую работу, выполняемую в клетке (подробнее мы поговорим об этом позже). Исходя из этого, логично предположить, что все живые организмы унаследовали эти общие свойства от своего далекого общего предка — ЛУКА.
Все живое в наши дни обладает общим набором ключевых процессов обмена веществ, в основе которых лежит небольшой цикл реакций, называемый циклом Кребса (в честь немецкого ученого и нобелевского лауреата Ханса Кребса, открывшего этот цикл в 30-х годах в Шеффилде, где он работал после бегства от нацистов). Цикл Кребса — святая святых биохимии, хотя не одному поколению студентов он казался лишь пыльной реликвией, которую нужно вызубрить к экзаменам, а затем забыть как страшный сон.
Но цикл Кребса по праву получил свой культовый статус. В кабинетах университетских отделений биохимии — тех кабинетах, где на столах громоздятся стопки книг и статей, иногда соскальзывающих на пол и попадающих в корзину, из которой лет по десять не выбрасывают мусор, — на стене нередко можно найти приколотую булавками выцветшую, скрученную, потрепанную схему метаболических реакций. Студент, ожидающий возвращения преподавателя, смотрит на нее со смешанным чувством интереса и ужаса. Эти реакции поражают своей сложностью, напоминая нарисованную сумасшедшим схему метро, испещренную идущими во всех направлениях стрелочками, петляющими друг вокруг друга. Хотя эта схема и выцвела, на ней все-таки видно, что стрелки окрашены в разные цвета, обозначающие различные метаболические пути: красный — белковый, зеленый — липидный, и так далее. В нижней части схемы, отчего-то производя впечатление центра всей этой мешанины из стрелок, располагается кружок — может быть, единственный круг, да и вообще единственный упорядоченный элемент во всей схеме. Это и есть цикл Кребса. Разглядывая его, постепенно замечаешь, что почти все остальные стрелки на схеме так или иначе идут от цикла Кребса, как спицы смятого велосипедного колеса отходят от его оси. Он составляет центр всего, метаболическую основу клетки.
Теперь цикл Кребса не кажется такой уж пыльной реликвией. Недавние медицинские исследования показали, что он лежит в основе и физиологии, и биохимии клетки. Изменения скорости, с которой идет этот цикл, влияют на все, от энергетического уровня клетки до старения и рака. Но еще удивительнее, что цикл Кребса, как выяснилось, может идти и в обратную сторону. В норме этот цикл перерабатывает органические молекулы (поступающие в организм с пищей), образуя водород (которому предстоит сгореть в процессе дыхания, соединяясь с кислородом) и углекислый газ. Таким образом, цикл Кребса поставляет не только вещества-предшественники, с которых начинаются метаболические пути, но и небольшие порции водорода, позволяющие генерировать энергию в виде молекул АТФ. Идущий в обратном направлении цикл Кребса выполняет противоположную функцию: он поглощает углекислый газ с водородом и производит новые молекулы органических веществ, на основе которых синтезируются все основные “строительные блоки” жизни. При этом он уже не выделяет энергию, а поглощает ее, расходуя молекулы АТФ. Дайте этому циклу углекислый газ, АТФ и водород, и он как по волшебству начнет вырабатывать “строительные блоки” жизни.
Этот обратный ход цикла Кребса нечасто встречается даже у бактерий, но довольно широко распространен у тех из них, что живут в гидротермальных источниках. Ясно, что это важный, хотя и примитивный способ синтезировать из углекислого газа необходимые клетке “строительные блоки”. Гарольд Моровиц, новатор-биохимик, работавший некогда в Йельском университете, а теперь работающий в Институте перспективных исследований Красноу в Ферфаксе (штат Виргиния), посвятил не один год изучению свойств обратного цикла Кребса. В общих чертах его вывод состоит в том, что если все ингредиенты имеются в достаточном количестве, то цикл будет идти сам по себе. Механизм очень простой. Если концентрация одного промежуточного соединения возрастает, оно активнее будет превращаться в следующее промежуточное соединение цикла. Из всевозможных молекул органических веществ молекулы цикла Кребса — самые стабильные, а значит и возникающие с наибольшей вероятностью. Иными словами, цикл Кребса не был “изобретен” генами, а относится к сфере вероятностной химии и термодинамики. В результате эволюции гены научились управлять этим циклом подобно дирижеру, который отвечает за интерпретацию партитуры (музыкальный темп и различные тонкости), но не за саму музыку. Эта музыка, музыка сфер, уже давно существовала.
Когда цикл Кребса заработал и получил источник энергии, почти неизбежно должны были возникнуть и побочные реакции, породившие более сложные вещества-предшественники, такие как аминокислоты и нуклеотиды. Какая часть ключевых процессов обмена веществ возникла самопроизвольно, а какая появилась впоследствии в результате работы генов и белков — интересный вопрос, но он выходит за рамки нашего рассмотрения. Тем не менее мне хотелось бы высказать одно общее замечание. Подавляющее большинство попыток синтезировать “строительные блоки” жизни были слишком “пуристскими”. Те, кто этим занимался, начинали с простых молекул, например цианидов, не имеющих никакого отношения к жизни, как мы ее знаем (цианиды для нее вообще губительны), и пытались синтезировать из них эти базовые вещества, изменяя различные факторы, например давление, температуру и электрические разряды, причем оперировали ими в совершенно небиологических диапазонах. Но что будет, если начать с молекул цикла Кребса и небольшого количества АТФ, лучше всего — в электрохимическом реакторе вроде описанного Майком Расселом? Какая часть потрепанной схемы метаболизма возникнет самопроизвольно из этих ингредиентов, чудесным образом воспроизводясь снизу вверх, с молекул самых термодинамически вероятных веществ? Не мне одному представляется, что немалая — может, вплоть до маленьких белков (строго говоря — полипептидов) и РНК, начиная с которых эстафету мог принять естественный отбор.
Все это можно выяснить экспериментально, и большинство таких экспериментов еще предстоит провести. Чтобы из них действительно могло что-то выйти, понадобится надежный постоянный приток волшебного ингредиента — АТФ. Здесь может показаться, что мы хотим прыгнуть выше головы. Откуда нам взять этот приток АТФ? Ответ на этот вопрос, который представляется мне весьма убедительным, дал американский биохимик Билл Мартин, блестящий ученый, хотя и не самый дипломатичный полемист, уехавший из США и ставший профессором ботаники в Дюссельдорфском университете. Он непрерывно предлагает революционные идеи, касающиеся происхождения едва ли не всего, что имеет значение для биологии. Иные из этих идей, может, и ошибочны, но все они поражают воображение и почти все позволяют взглянуть на биологию под новым углом. Несколько лет назад Билл Мартин встретился с Майком Расселом и они вдвоем взялись за проблему перехода от геохимии к биохимии. Их совместные усилия породили целый поток неожиданных откровений. Давайте попробуем в него погрузиться.
Мартин и Рассел начали с основ — с притока углерода в органический мир. Они отметили, что сегодня существует лишь пять метаболических путей, позволяющих растениям и бактериям включать водород и углекислый газ в состав живой природы, синтезируя органические вещества. Один из таких путей, как мы уже убедились, — обратный цикл Кребса. Четыре из этих пяти путей (в том числе обратный цикл Кребса) требуют расхода АТФ, а значит, могут работать только при притоке энергии извне. Но пятый путь — прямая реакция водорода с углекислым газом не только производит органические вещества, но и приводит к выделению энергии. Две группы древних организмов делают именно это через ряд в целом сходных этапов. С одной из этих двух групп мы уже встречались — это археи, которые процветают в поле гидротермальных источников Лост-Сити.
Если Мартин и Рассел правы, то четыре миллиарда лет назад, на заре жизни, древние предки этих архей осуществляли тот же самый набор реакций в почти идентичных условиях. Но реакция водорода с углекислым газом не так прямолинейна, как могло бы показаться, поскольку эти два вещества не реагируют самопроизвольно. Они довольно “робкие”, и чтобы уговорить их станцевать вдвоем, нужен катализатор, а также небольшой приток энергии. Только тогда они соединятся друг с другом, выделив при этом несколько больше энергии. Требуемый катализатор довольно прост. Ферменты, катализирующие эту реакцию в наши дни, работают за счет небольших центров, где сгруппированы железо, никель и сера, образуя структуру, очень похожую на один из минералов, встречающихся в гидротермальных источниках. Это заставляет предположить, что древнейшие клетки просто включили в свой состав уже готовый катализатор, и указывает на внушительный возраст этого метаболического пути, поскольку он не предполагает эволюции сложных белков. По выражению Мартина и Рассела, этот путь ведет к минералам.
Энергию, необходимую для инициирования данного процесса, по крайней мере в мире щелочных источников, поставляют сами источники. Их участие в этом деле выдает неожиданный продукт реакции — химически активное производное уксусной кислоты ацетилтиоэфир6. Ацетилтиоэфиры образуются в связи с тем, что углекислый газ довольно устойчив и противостоит попыткам водорода взаимодействовать с ним, но уязвим для более активных углеродных или серных свободных радикалов, имеющихся в щелочных источниках. По сути, энергия, требуемая для того, чтобы “уговорить” углекислый газ реагировать с водородом, поступает из самих источников в форме химически активных свободных радикалов, которые приводят к образованию ацетилтиоэфиров.
Ацетилтиоэфиры примечательны тем, что они лежат в основе древней метаболической развилки, которую можно наблюдать и у современных организмов. Реакция углекислого газа с ацетилтиоэфиром — начало пути, ведущего к формированию молекул более сложных органических веществ. Эта реакция идет самопроизвольно и приводит к выделению энергии, а ее продуктом оказывается трехуглеродная молекула вещества пируват. Это название заставит встрепенуться любого биохимика, потому что именно с пирувата начинается цикл Кребса. Иными словами, несколько простых термодинамически вероятных реакций и несколько реакций, катализируемых ферментами, работающими за счет сходных с минералами активных центров (что заставляет предположить “минеральные корни” этих ферментов), приводят нас непосредственно к метаболическому сердцу жизни — циклу Кребса. А после того, как мы войдем в цикл Кребса, нам понадобится лишь постоянный приток энергии в виде АТФ, чтобы цикл начался, производя “строительные блоки” всего живого.
Энергию поставляет другая ветвь упомянутой развилки, где с другим ацетилтиоэфиром реагирует фосфат. Причем продуктом этой реакции оказывается не АТФ, а менее сложное вещество — ацетилфосфат. И все же он играет почти ту же роль и по-прежнему используется, наряду с АТФ, некоторыми современными бактериями. Ацетилфосфат делает в точности то же, что АТФ — передает свою активную фосфатную группу другим веществам, “навешивая” на их молекулы энергетический “ярлык”, активирующий эти вещества. Это отчасти напоминает игру в салочки. Можно считать, что водящий обладает “активностью”, которую он должен передать другому игроку. Передача фосфата от одной молекулы к другой происходит точно так же: “ярлык” активирует молекулы, которые без него не вступали бы в ту или иную реакцию. Именно так АТФ поворачивает цикл Кребса в обратную сторону. Ацетилфосфат может делать в точности то же самое. Передав другому веществу активный фосфат, ацетилфосфат превращается в обычную уксусную кислоту — распространенный продукт жизнедеятельности современных бактерий. В следующий раз, когда вы откроете бутылку вина и окажется, что оно прокисло и превратилось в уксус, подумайте о живущих в этой бутылке бактериях, в качестве отходов жизнедеятельности которых образуется этот продукт, древний, как сама жизнь. Эти отходы почтеннее, чем самое благородное вино.
Щелочные гидротермальные источники постоянно производят ацетилтиоэфиры, которые могут служить и отправной точкой для образования более сложных органических веществ, и поставщиками необходимой для их синтеза энергии (по сути, в той же упаковке, что используется в клетках современных организмов). Минеральные клетки, составляющие трубы щелочных источников, служат одновременно и местом концентрации продуктов, благоприятствующих прохождению таких реакций, и катализатором, необходимым для ускорения этого процесса, причем сложные белки на данном этапе вообще не требуются. Наконец, поступление водорода и других газов из источника в лабиринты минеральных клеток означает, что сырье для таких реакций постоянно восполняется и тщательно перемешивается. Все это было бы неиссякаемым источником жизни, если бы не мелкая деталь, имеющая далеко идущие последствия.
Проблему представляет небольшой энергетический толчок, который требуется для начала, чтобы разрядить обстановку в отношениях между водородом и углекислым газом. Я уже упоминал, что такой проблемы нет в самом источнике, поскольку гидротермальные условия приводят к образованию свободных радикалов, запускающих данный процесс. Но перед свободноживущими клетками, не обитающими в гидротермальных источниках, эта проблема стоит. Им, чтобы дело пошло, нужно тратить АТФ, играющий ту же роль, что напитки, которые нужно заказать на первом свидании, чтобы преодолеть первоначальную неловкость. В чем же проблема? В финансах. Реакция водорода с углекислым газом приводит к выделению достаточного количества энергии для синтеза одной молекулы АТФ. Но если для приобретения одной молекулы АТФ вначале нужно потратить одну молекулу АТФ, мы не получим никакой чистой прибыли. А без чистой прибыли не пойдет и обратный цикл Кребса, не будет никакого синтеза сложных органических молекул. Может, жизнь и возникла в гидротермальных источниках, но ее должна была навсегда связать с ними своего рода термодинамическая пуповина, которую никак нельзя перерезать.
Ясно, что жизнь не осталась привязанной к гидротермальным источникам. Если вся изложенная история — не выдумка, то как мы вырвались на свободу? Мартин и Рассел предложили просто изумительный ответ на этот вопрос, объясняющий, почему почти все живое в наши дни пользуется для получения энергии совсем необычным способом дыхания — возможно, самым странным и неожиданным механизмом из всех известных биологической науке.
В одной из книг серии “Автостопом по галактике” безнадежно неприспособленные к жизни предки современных людей попадают на Землю в результате кораблекрушения и вытесняют живущих на ней гоминид. Они организуют подкомитет для изобретения колеса и принимают листья в качестве платежного средства, что делает всех необычайно богатыми. Но при этом они сталкиваются с серьезной проблемой инфляции, из-за которой цена одного семечка арахиса из корабельных припасов оказывается равна листьям трех рощ. Поэтому наши предки принимают программу радикальной дефляции и решают сжечь все леса. Все это выглядит пугающе правдоподобно.
При всей несерьезности этой истории в ней, по-моему, содержится глубокая мысль о природе денег: их ценность нельзя ни к чему привязать. Одно семечко арахиса может стоить золотой слиток, один пенс или три рощи — все зависит от относительного уровня потребности в нем, его редкости и так далее. Десятифунтовая купюра может иметь какую угодно стоимость. Но в химии все не так. Я уже сравнивал молекулу АТФ с десятифунтовой купюрой, и я не случайно выбрал именно этот номинал. Энергия химических связей в молекуле АТФ такова, что на получение одной такой молекулы нужно затратить десять фунтов в энергетическом эквиваленте, а потратив ее, можно получить ровно на десять фунтов энергии. Молекулам АТФ не свойственна та относительность ценности, которой обладают наши деньги. В этом и коренится проблема любой бактерии, которая попытается покинуть гидротермальный источник. АТФ — не столько универсальная валюта вообще, сколько универсальные купюры по десять фунтов, ценность которых неизменна, а разменять их нечем. Если на первом свидании вы захотите заказать недорогой напиток, а у вас с собой только десятифунтовая купюра, то никакой сдачи вы не получите, даже если напиток стоит всего два фунта, потому что одной пятой молекулы АТФ в природе не бывает. Улавливая энергию, выделяемую в ходе реакции водорода с углекислым газом, вы тоже можете запасать ее только в виде десятифунтовых купюр. Предположим, что вы могли бы в принципе получить энергию из этой реакции на восемнадцать фунтов: этого не хватит на две молекулы АТФ, так что вы сможете получить всего одну. В итоге вы потеряете восемь фунтов просто потому, что никакого размена вообще не предусмотрено. Большинству из нас доводилось сталкиваться с той же неприятной проблемой в пунктах обмена валюты, где оперируют только купюрами, а не монетой.
Итак, если мы вынуждены пользоваться нашей универсальной десятифунтовой купюрой, то, несмотря на то, что нам нужно потратить всего два фунта, чтобы пошло дело и мы получили прибыль в восемнадцать фунтов, нам придется потратить десять фунтов на получение тех же десяти фунтов. Бактерии вынуждены подчиняться этому уравнению: ни одна не способна расти на прямой реакции водорода с углекислым газом, используя в качестве носителя энергии исключительно молекулы АТФ. И все же бактерии растут, используя остроумный способ разменивать “десятифунтовые купюры” АТФ. Этот способ (за его открытие эксцентричный британский биохимик Питер Митчелл в 1978 году получил Нобелевскую премию) известен под пугающим названием хемиосмос. Присужденная Митчеллу премия наконец подвела черту под ожесточенными спорами, продолжавшимися не одно десятилетие. Теперь, в начале нового тысячелетия, уже ясно, что открытие Митчелла должно считаться одним из главных научных достижений XX века7. Но даже тем немногим исследователям, которые давно доказывали важность хемиосмоса, трудно объяснить, почему этот странный механизм повсеместно распространен в живой природе. Ведь он, наряду с генетическим кодом, циклом Кребса и АТФ, универсален и свойствен всему живому. Судя по всему, обладал им и последний всеобщий предок — ЛУКА. Мартин и Рассел объясняют, почему.
В самых общих чертах хемиосмос представляет собой движение протонов через мембрану (отсюда сходство в названии с осмосом — движением жидкости через мембрану). В процессе дыхания происходит следующее. От молекул пищи отнимаются электроны и передаются кислороду по цепочке переносчиков. Выделяемая на нескольких этапах этого процесса энергия используется для перекачивания протонов через мембрану. В результате на мембране создается протонный градиент. Мембрана при этом действует по принципу гидроэлектростанции. Подобно тому, как на гидроэлектростанции вода из водохранилища крутит турбины, вырабатывающие электроэнергию, в клетках поток протонов через мембрану позволяет вырабатывать АТФ. Открытие этого механизма было для всех полной неожиданностью: вместо простой и понятной реакции двух веществ сюда вклинивается какой-то странный протонный градиент.
Химики привыкли работать с целыми числами: одна молекула не может реагировать с половиной другой молекулы. Наверное, самое поразительное свойство хемиосмоса состоит в том, что в нем на полную катушку используются дробные числа. Сколько электронов нужно передать по цепочке, чтобы синтезировать одну молекулу АТФ? Где-то между восемью и девятью. Сколько протонов должно пройти для этого через мембрану? Самая точная из полученных на настоящий момент оценок такова: 4,33. Откуда берутся такие числа, было совершенно непонятно, пока ученые не оценили посредническую роль протонного градиента. Ведь градиент предполагает миллионы переходных состояний, он не сводится к целым числам. А главное преимущество градиента состоит в том, что для синтеза единственной молекулы АТФ одну и ту же реакцию можно повторять неоднократно. Если в ходе некоей реакции выделяется сотая доля энергии, необходимой для получения одной молекулы АТФ, эту реакцию можно просто повторить сто раз, поэтапно наращивая градиент, пока “водохранилище” из протонов не наполнится настолько, чтобы можно было выработать одну молекулу АТФ. Этот механизм сразу дает клетке возможность экономить, словно набивая ее карманы разменной монетой.
Что это означает? Вернемся к реакции водорода с углекислым газом. На запуск этой реакции бактериям приходится тратить одну молекулу АТФ, но теперь они могут получать за ее счет больше, чем одну молекулу АТФ, потому что хемиосмос позволяет им экономить разницу, накапливая ее для приобретения следующей такой молекулы. Доход, может, и скромный, зато честный. Но самое главное — он составляет разницу между возможностью роста и отсутствием такой возможности. Если Мартин и Рассел правы и именно из данной реакции выросли древнейшие формы жизни, то единственный способ, который мог позволить жизни покинуть глубоководные гидротермальные источники, мог быть связан с хемиосмосом. Доподлинно известно, что единственные формы жизни, существующие за счет этой реакции в наши дни, пользуются хемиосмосом и не в состоянии без него расти. Также доподлинно известно, что почти всему живому на Земле свойствен этот удивительный механизм, несмотря на то, что он далеко не всегда необходим. Почему? Похоже, просто потому, что он был унаследован всеми от общего предка, который не мог без него жить.
Но главное основание считать, что Мартин и Рассел правы, связано с тем, что при хемиосмосе используются именно протоны. А почему, скажете вы, не заряженные атомы натрия, калия или кальция, используемые в нашей нервной системе? Нет никаких очевидных причин предпочесть градиент протонов градиенту каких-либо других заряженных частиц, и встречаются, хотя и редко, бактерии, создающие не протонный, а натриевый градиент. Основная причина этого предпочтения определяется, по-моему, свойствами щелочных источников. Вспомним, что эти источники изливают щелочной раствор в воды океана, кислые из-за растворенного в них углекислого газа. Определение кислотности завязано на протоны: кислоты богаты протонами, а щелочи ими бедны. Поэтому излияние щелочного раствора в кислую морскую воду создает естественный протонный градиент. Иными словами, минеральные клетки щелочных гидротермальных источников, которые, согласно гипотезе Рассела, стали колыбелью жизни, от природы обладают хемиосмотическим градиентом. Рассел сам еще много лет назад обратил на это внимание, но осознание того, что бактерии просто не могли покинуть щелочные источники без хемиосмоса, было одним из плодов его сотрудничества с Мартином, исследовавшим энергетику микробов. Так что эти электрохимические реакторы не только производят органические вещества и энергию в виде АТФ, но и сами предоставляют план эвакуации — способ обойти универсальную проблему десятифунтовой купюры.
Разумеется, природный протонный градиент мог стать полезен живым организмам лишь тогда, когда они научились использовать его, а впоследствии и создавать самостоятельно. Хотя использовать уже существующий градиент легче, чем создать с нуля собственный, и то, и другое не так-то просто. Эти механизмы развились путем естественного отбора — в этом нет сомнения. Сегодня для их работы требуется участие множества белков, кодируемых соответствующими генами, и нет никаких оснований предполагать, что столь сложная система вообще могла развиться в ходе эволюции без участия белков и записанных в ДНК генов. Получается интересный круг умозаключений. Живые организмы не могли покинуть гидротермальные источники, не научившись использовать собственный хемиосмотический градиент, но они могли научиться этому лишь с помощью генов и ДНК. Похоже, отсюда с неизбежностью следует вывод, что жизнь должна была дойти до удивительно высокого уровня сложности еще в своей минеральной колыбели.
Теперь вырисовывается интереснейший портрет последнего общего предка всего живого на Земле. Если Мартин и Рассел правы (а я думаю, что они правы), то ЛУКА был не свободноживущей клеткой, а целым лабиринтом из минеральных клеток, стенки которого были выстланы каталитическим составом из железа, серы и никеля, получавшим энергию за счет природного протонного градиента. Первыми формами жизни были пористые минералы, синтезировавшие сложные молекулы и генерировавшие энергию, в конечном счете научившиеся производить белки и даже ДНК. А значит, в этой главе мы рассказали лишь половину истории возникновения жизни, какой мы ее знаем. В следующей мы поговорим о второй половине — об изобретении вещества, не имеющего себе равных по культовому статусу, об основе наших генов — о ДНК.
Глава 2. ДНК
На стене паба “Орел” в Кембридже висит синяя мемориальная доска, установленная в 2003 году в честь пятидесятилетия одного случая, когда разговоры в этом пабе приняли не совсем обычный оборот. Во время обеда 28 февраля 1953 года два завсегдатая “Орла”, Джеймс Уотсон и Фрэнсис Крик, пришли туда и объявили, что раскрыли тайну жизни. Хотя этот эмоциональный американец и этот разговорчивый британец, отличавшийся малоприятным смехом, временами, должно быть, и напоминали дуэт комиков, на сей раз они были абсолютно серьезны — и наполовину правы. Если считать, что у жизни есть тайна, то эту тайну, несомненно, составляет именно ДНК. Впрочем, Крик и Уотсон, при всех их незаурядных способностях, раскрыли тогда лишь половину этой тайны.
В то утро они разгадали структуру ДНК — двойную спираль. Полученная ими схема стала результатом вдохновенного интеллектуального прорыва, обеспеченного гениальностью, умением строить модели, знанием химии и несколькими позаимствованными без спроса рентгенограммами, и была, по словам Уотсона, “слишком хороша, чтобы быть неправдой”. И чем больше они говорили о ней в тот обеденный перерыв, тем больше убеждались в ее правильности. Она была опубликована в номере журнала “Нейчур” от 25 апреля в письме, которое заняло всего одну страницу и немного напоминало заметку о появлении новорожденного в малотиражной местной газете. Необычайно скромная по тону (Уотсон писал в своей знаменитой книге, что “никогда не видел, чтобы Фрэнсис Крик держался скромно”, да и сам он был не намного скромнее своего партнера), та заметка завершалась намеренно уклончивым утверждением: “От нашего внимания не ускользнуло, что постулированное нами специфическое образование пар заставляет сразу предположить возможный механизм копирования генетического материала”.
ДНК, как известно, составляет основу наших генов, наследственный материал клеток. В ней зашифрованы свойства людей и амеб, грибов и бактерий — всех форм жизни на нашей планете, за исключением некоторых вирусов. Двойная спираль ДНК, в которой две цепочки без конца вьются друг вокруг друга оборот за оборотом, — поистине культовый научный символ. Уотсон и Крик показали, как одна цепочка дополняет другую на молекулярном уровне. Если оторвать их друг от друга, каждая из них может служить матрицей для воссоздания другой, так что из одной спирали получатся две точно таких же. Всякий раз, когда тот или иной организм размножается, он передает копии своей ДНК потомкам. Все, что для этого нужно, — это разделить цепочки и синтезировать две идентичных копии оригинала.
Хотя подробное описание молекулярного механизма этого процесса могло бы вызвать у любого читателя головную боль, лежащий в основе механизма принцип изумительно, потрясающе прост. Генетический код представляет собой последовательность “букв” (их более строгое наименование — “азотистые основания”). Таких букв в ДНК-алфавите всего четыре: А, Т, Г и Ц. Их полные названия — аденин, тимин, гуанин и цитозин, но эти химические термины для нас здесь не важны. Важно то, что в связи с ограничениями, накладываемыми формой молекул ДНК и структурой связей в них, А может образовывать пару только с Т, а Ц — только с Г. Если оторвать цепочки двойной спирали одну от другой, на каждой из них будут рядком торчать неспаренные буквы. С каждой буквой А может связаться только Т, а с каждой буквой Ц — только Г, и так далее. Азотистые основания не только дополняют друг друга, но и испытывают настоящую потребность найти себе пару. Только одно может сделать тусклую химическую жизнь буквы Т светлее — постоянная близость с буквой А. Стоит их совместить, и все их связи запоют в чудесной гармонии. Это химическое явление — настоящий “основной инстинкт”, неотъемлемое свойство азотистых оснований. Оно делает из цепочек ДНК нечто большее, чем пассивные матрицы: каждое основание обладает своего рода магнетизмом, притяжением к своему “альтер эго”. Стоит разделить цепочки, и они самопроизвольно сольются снова или, если им помешать, смогут послужить матрицами, обладающими неодолимой тягой к соединению с другой “второй половиной”, неотличимой от прежней.
Схема соединения азотистых оснований ДНК. Геометрическими особенностями “букв" определяется, что Г связывается только с Ц, а А — только с Т.
Последовательность букв ДНК кажется нескончаемой. Например, в человеческом геноме почти три миллиарда пар азотистых оснований (на научном языке — три гигабазы). Это значит, что если взять по одной из всех хромосом, имеющихся в ядре нашей клетки, общее число букв в них составит почти три миллиарда. Если опубликовать последовательность человеческого генома в виде книг, она заполнит примерно двести томов размером с солидный телефонный справочник. А ведь наш геном — еще далеко не самый большой. Как ни странно, рекордсменом по этому показателю является ничтожная амеба Amoeba dubia, гигантский геном которой содержит 670 гигабаз — примерно в 220 раз больше, чем в нашем геноме. По большей части он, судя по всему, состоит из “мусора” — ДНК-последовательностей, которые вообще ничего не кодируют.
Каждому делению клетки предшествует удвоение (репликация) всей ее ДНК — процесс, занимающий не один час. Человеческое тело состоит из чудовищного количества клеток — пятнадцати миллионов миллионов, и в каждой из них содержится собственная высококачественная копия (на самом деле — даже две копии) одних и тех же молекул ДНК. Чтобы организм каждого из нас развился из единственной оплодотворенной яйцеклетки, двойным спиралям нашей ДНК пришлось разделяться и служить матрицами для достраивания новых цепочек пятнадцать миллионов миллионов раз (и даже гораздо больше, потому что наши клетки все время умирают и замещаются новыми). Точность копирования каждой буквы фантастична: ошибки в их порядке встречаются с частотой всего в один случай на миллиард букв. Для сравнения: переписчику книг, чтобы работать со сходной точностью, понадобилось бы 280 раз переписать всю Библию от начала до конца, прежде чем сделать единственную ошибку. На деле переписчики справлялись со своей работой далеко не столь успешно. Утверждается, что до нашего времени дошло около 24 тысяч рукописных экземпляров Нового Завета, и среди них нет двух одинаковых.
И все же ошибки накапливаются и в ДНК — хотя бы потому, что геном так огромен. Ошибки, при которых одна буква случайно заменяется другой, называют точечными мутациями. Перед каждым делением человеческой клетки можно ожидать появления в каждом наборе хромосом примерно трех подобных мутаций. И чем дольше клетка делится, тем больше в ней накапливается мутаций (это может приводить к развитию болезней, например рака). Мутации могут также передаваться из поколения в поколение. Если из оплодотворенной яйцеклетки развивается женский зародыш, то яйцеклетки нового организма образуются после примерно тридцати циклов деления, и в ходе каждого цикла добавляются новые мутации. У мужского организма дела обстоят еще хуже: для образования сперматозоидов требуется около ста циклов деления, каждый из которых неизбежно вносит свою лепту в груз мутаций. Поскольку производство сперматозоидов продолжается на протяжении всей жизни и включает все больше и больше клеточных циклов, то чем старше мужчина, тем больше мутаций накапливается в его половых клетках. Генетик Джеймс Кроу сформулировал эту закономерность так: наибольшая мутационная угроза здоровью человеческих популяций исходит от плодовитых стариков. Но даже у среднего ребенка молодых родителей имеется около двухсот новых мутаций, которые у них самих отсутствовали (хотя лишь немногие из этих мутаций могут оказаться вредными)1.
Поэтому, несмотря на необычайную точность копирования ДНК, ее молекулы все-таки меняются. Каждое поколение отличается от предыдущего — не только оттого, что в результате полового процесса гены перемешиваются, но также оттого, что каждый из нас становится носителем новых мутаций. Многие из них представляют собой точечные мутации, о которых мы говорили выше (изменения единственной буквы ДНК), другие бывают намного радикальнее. Порой целые хромосомы лишний раз удваиваются или не могут разойтись при делении клетки, длиннейшие куски ДНК удаляются, вирусы встраивают в хромосомы свою ДНК, а фрагменты хромосом переворачиваются так, что последовательность букв меняется на противоположную. Возможностей таких изменений бесконечно много, хотя наиболее серьезные из них обычно несовместимы с жизнью. Если рассмотреть наш геном на этом уровне, он окажется похожим на яму, кишащую змеями, где змееподобные хромосомы без устали сливаются и разделяются. Роль стабилизирующей силы здесь играет естественный отбор, отсеивающий рождающихся монстров, кроме самых безобидных. ДНК причудливо извивается и меняется, но отбор ее выпрямляет и исправляет. Любые полезные изменения сохраняются, а любые серьезные ошибки или особо вредные изменения приводят к выкидышу — в буквальном смысле. Из вредных мутаций сразу не отсеиваются лишь не столь серьезные, которые могут быть связаны с болезнями, проявляющимися на более поздних этапах жизни.
Меняющиеся последовательности букв в ДНК стоят почти за всем, что можно прочитать в газетах о наших генах. Например, ДНК-дактилоскопия (которую используют для установления отцовства, импичмента президентов, а также уличения преступников — иногда спустя десятки лет после события преступления) основана на различиях в последовательностях ДНК-букв между индивидуумами. Человеческие геномы различаются столь заметно, что ДНК каждого из нас свойственны собственные уникальные “отпечатки”. Степень нашей подверженности многим болезням тоже зависит от крошечных различий в ДНК-последовательностях. В среднем люди отличаются друг от друга примерно одной на каждую тысячу букв, так что разница между двумя человеческими геномами составляет 6-ю миллионов однобуквенных отличий — так называемых “снипов” (SNPs, от single nucleotide polymorphisms — однонуклеотидные полиморфизмы). Существование снипов означает, что у всех нас имеются немного разные варианты большинства генов. Хотя большинство снипов почти точно не имеют для нас никаких последствий, некоторые из них связаны с недугами, такими как диабет или болезнь Альцгеймера (однако как они действуют, нам еще не всегда известно).
При всех этих различиях мы все-таки можем пользоваться понятием “человеческий геном”: несмотря на все снипы, 999 букв из каждой тысячи у всех нас все-таки совпадают. На то есть две причины: время и отбор. В эволюционных масштабах не так уж много времени прошло с тех пор, как мы были обезьянами. Более того, зоолог стал бы уверять вас, что мы по-прежнему обезьяны. Предки человека отделились от общего предка с шимпанзе около шести миллионов лет назад и с тех пор накапливали мутации с частотой двести мутаций за поколение. Этого времени хватило лишь на то, чтобы изменить около 1 % нашего генома. При этом предки шимпанзе эволюционировали со сходной скоростью, и теоретически мы могли бы ожидать разницы в 2 %. Но на деле разница несколько меньше: ДНК-последовательности людей и шимпанзе идентичны на 98,6 %2. Это связано с постоянным торможением изменений, которое обеспечивает естественный отбор, выбраковывая большинство вредных мутаций. Ясно, что когда многие изменения выбраковываются отбором, оставшиеся будут больше похожи друг на друга, чем были бы, если бы их ничто не сдерживало.
Если углубиться еще дальше в прошлое, мы увидим, как эти две силы, время и отбор, действуя вместе, сплели великолепнейший, изысканнейший ковер. Все живое на нашей планете состоит в родстве, и, читая буквы ДНК, можно выяснить, в каком. Сравнивая ДНК-последовательности, можно рассчитать степень нашего родства с любыми другими организмами, от обезьян до сумчатых, рептилий, амфибий, рыб, насекомых, ракообразных, червей, растений, простейших, бактерий — кого угодно. Свойства всех нас определяются последовательностями букв, которые можно точными методами сравнивать друг с другом. У всех нас даже есть общие участки последовательностей — фрагменты, изменение которых сдерживалось общими механизмами отбора, в то время как другие участки изменялись до неузнаваемости. Если прочитать ДНК-последовательность кролика, мы увидим такие же нескончаемые ряды оснований, одни участки которых будут идентичны нашим, другие — отличными от них, и все они будут перемешаны друг с другом, составляя сложный калейдоскоп. То же относится и к чертополоху: кое-где наши с ним ДНК-последовательности идентичны или похожи, но здесь несходные участки будут занимать гораздо больше места, отражая, во-первых, огромный промежуток времени, прошедшего с тех пор, когда жил наш общий предок, а во-вторых, разность образа жизни человека и чертополоха. Впрочем, глубокие основы нашей биохимии остались теми же. Мы все состоим из клеток, работающих сходным образом, и их общие свойства определяются похожими участками ДНК-последовательностей.
Учитывая эти черты глубокого биохимического сходства, можно ожидать, что у нас найдутся общие участки последовательностей даже с самыми далекими от нас формами жизни, такими как бактерии. Это действительно так. Но здесь мы сталкиваемся с источником некоторой путаницы, поскольку сходство последовательностей может оцениваться не в пределах 0-100%, а лишь от 25 до 100% (ведь ДНК-букв всего четыре). Если случайным образом заменить одну букву на одну из четырех, с вероятностью 25% новая буква будет такой же, как и старая. Точно так же, если с нуля синтезировать в лаборатории случайную ДНК-последовательность, она неизбежно будет по крайней мере на четверть сходна с любым случайно выбранным нашим геном. Поэтому соображение о том, что мы “наполовину бананы”, раз наш геном наполовину совпадает с геномом банана, мягко говоря, неверно. Исходя из той же логики, любая случайно составленная последовательность ДНК будет на четверть человеком. Не зная, что именно означают буквы той или иной последовательности, мы блуждали бы впотьмах.
Именно поэтому утром 28 февраля 1953 года Уотсон и Крик лишь наполовину разгадали загадку жизни. Им удалось разобраться в строении ДНК и понять, как каждая из двух цепочек двойной спирали служит матрицей для синтеза копии другой цепочки, обеспечивая передачу наследственного кода каждого организма. О чем они не упомянули в своей знаменитой статье (поскольку для выяснения этого потребовался еще десяток лет хитроумных исследований), — так это о том, как именно в каждой последовательности букв зашифрована наследственная информация. Хотя расшифровка генетического кода, этого шифра жизни, и не дала столь символичного и впечатляющего результата, как сама двойная спираль, ровным счетом ничего не говорящая о последовательностях записанных в ней букв, она стала, возможно, еще более крупным достижением — в тем числе Фрэнсиса Крика, сыгравшего в тех исследованиях немалую роль. Для темы этой главы особенно важно, что расшифрованный код, сначала казавшийся главным разочарованием современной биологии, сообщает нам интереснейшие сведения о становлении в ходе эволюции самой ДНК почти четыре миллиарда лет назад.
Схема двойной спирали молекулы ДНК, показывающая, как две ее цепочки закручиваются друг вокруг друга. Если разделить их, каждая цепочка сможет служить матрицей для синтеза точно такой же противоположной цепочки.
ДНК кажется чем-то столь современным, что нам сложно оценить, как мало в 1953 году было известно о началах молекулярной биологии. Образ двойной спирали разошелся по свету именно из той публикации Уотсона и Крика, иллюстрацию к которой нарисовала жена Крика Одиль (она была художницей). На ее рисунке ДНК похожа на своего рода винтовую лестницу, и именно так его и воспроизводили почти без изменений на протяжении полувека. Написанная в 60-х годах знаменитая книга Уотсона “Двойная спираль” стала, в свою очередь, классическим изображением современного взгляда на науку. Влияние этой книги было настолько велико, что сама жизнь, может быть, начала подражать искусству. Я, например, прочитав “Двойную спираль” еще в школе, и сам стал мечтать о Нобелевской премии и революционных открытиях. Думаю, мои представления о том, как занимаются наукой, в то время основывались почти исключительно на книге Уотсона, и разочарование, которое неизбежно постигло меня в университете, по всей вероятности, было связано с тем, что действительность не оправдала моих восторженных ожиданий. Я перестал искать острых ощущений в науке и занялся ради них скалолазанием. Потребовался не один год, чтобы я снова проникся чувством интеллектуального восторга от научной работы.
Но едва ли не все, чему я научился в университете, было неизвестно в 1953 году Уотсону и Крику. Давно стал общим местом тезис, что “белки закодированы в генах”. Но в начале 50-х годов даже по этому вопросу у ученых не было единого мнения. Уотсон впервые приехал в Кембридж в 1951 году, и очень скоро его стал раздражать скептицизм Макса Перуца и Джона Кендрю. По их мнению, еще нельзя было считать окончательно доказанным, что гены записаны в ДНК, а не в белках. Хотя молекулярная структура ДНК не была пока известна, ее химический состав был уже вполне ясен, и было известно, что он почти не меняется от одного вида к другому. Если гены действительно составляют основу наследственности и в них закодированы бесчисленные отличительные черты разных особей и видов, то как можно было пытаться объяснить все богатство и разнообразие жизни этим однородным соединением, по составу которого даже животные и бактерии не слишком отличаются друг от друга? Казалось, что белки с их бесконечным многообразием гораздо лучше подходят на роль носителя наследственной информации.
Уотсон был одним из тех немногих, кого убедили результаты экспериментов американского биохимика Освальда Эвери, опубликованные в 1944 году и свидетельствовавшие о том, что гены записаны в ДНК. Только энтузиазм и убежденность Уотсона побудили Крика взяться за насущную проблему разгадки структуры ДНК. Когда эта проблема была решена, ребром встал вопрос о генетическом коде. И здесь степень неосведомленности ученых того времени тоже просто удивительна для людей нового поколения. Молекулы ДНК состоят из последовательностей, составленных из всего четырех букв, расположенных на первый взгляд в случайном порядке. Было не так уж сложно догадаться, что этот порядок должен каким-то образом кодировать белки. Молекулы белков тоже состоят из последовательности “строительных блоков”, которые называют аминокислотами. Последовательностями букв в ДНК были предположительно закодированы последовательности аминокислот в белках. Но если код был универсальным для всех организмов (чего на тот момент уже можно было ожидать), то набор аминокислот, входящих в состав белков, тоже должен был оказаться универсальным. А в этом еще отнюдь не было уверенности. Саму эту возможность мало кто обсуждал, пока Уотсон и Крик за обедом все в том же “Орле” не составили канонический список двадцати аминокислот, который сейчас можно найти во всех учебниках. Любопытно, что хотя ни один из дуэта не был биохимиком, они угадали все с первого же раза.
Теперь задача сразу стала ясна. Все свелось к математической головоломке, варианты решения которой не ограничивались никакими фактами из тех, что пришлось зубрить следующим поколениям студентов, изучавших молекулярную биологию. Четыре буквы в молекулах ДНК должны были кодировать двадцать аминокислот. Это позволяло отбросить возможность прямой транслитерации, при которой одна ДНК-буква соответствовала бы одной аминокислоте. Дублетный код тоже был невозможен, потому что кодировал бы не более шестнадцати аминокислот (4x4 = 16). Минимальное число букв было три, то есть код мог быть триплетным (впоследствии Фрэнсис Крик и Сидней Бреннер доказали, что это именно так). Каждая группа из трех ДНК-букв могла кодировать одну аминокислоту. Но такой код казался очень уж расточительным. Из четырех букв можно составить шестьдесят четыре триплета (4x4x4 = 64), а значит, потенциально триплетами можно было закодировать шестьдесят четыре аминокислоты. Так почему же их было только двадцать? Секрет этого фокуса должен был объяснить смысл четырехбуквенного “алфавита”, организованного в шестьдесят четыре трехбуквенных “слова”, кодирующие двадцать аминокислот.
Не случайно, наверное, первым, кому удалось дать хоть какой-то ответ, стал не биолог, а энергичный американский физик российского происхождения Георгий (Джордж) Гамов, больше известный своими теориями, касающимися Большого взрыва. Гамов считал ДНК в буквальном смысле матрицей для синтеза белков. Он полагал, что аминокислоты вкладываются в ромбовидные борозды между оборотами спирали. Но его теория генетического кода была в основе нумерологической, и когда он узнал, что белки вообще не синтезируются в ядре, а значит, в ходе синтеза не могут непосредственно контактировать с ДНК, это не произвело на него особого впечатления. Этот факт лишь делал его идею более абстрактной. Суть его предположения состояла в том, что код перекрывается. Это дает большое преимущество, которое обожают криптографы: максимизация плотности информации. Представьте себе последовательность АТЦГТЦ. Первое слово, или, если использовать более строгий термин, первый кодон, будет АТЦ, второй — ТЦГ, третий — ЦГТ, и так далее. Здесь важно то, что перекрывающиеся кодоны всегда ограничивали бы число аминокислотных последовательностей. Например, если АТЦ кодирует определенную аминокислоту, за ней может следовать только аминокислота, кодон которой начинается с букв ТЦ, а следующей аминокислоте должен соответствовать кодон, начинающийся с буквы Ц. Если изучить все возможные варианты, окажется, что очень многие триплеты просто недопустимы: они не могут входить в состав этого перекрывающегося кода, потому что в нем буква А всегда должна стоять рядом с Т, Т — рядом с Ц, и так далее. И сколько триплетов у нас останется для кодирования аминокислот? Ровно двадцать! — сказал Гамов с торжеством фокусника, вынимающего кролика из шляпы.
Эта остроумная идея была первой из многих, безжалостно опровергнутых фактами. Перекрывающиеся коды оказались невозможны из-за накладываемых ими самими ограничений. Во-первых, они предполагают, что некоторые аминокислоты в белках должны всегда стоять рядом. Но Фред Сэнгер, скромный гений, впоследствии получивший две Нобелевских премии (одну за метод прочтения последовательностей аминокислот в белках, другую — за метод прочтения букв в ДНК), занимался в то время выяснением последовательности аминокислот в молекуле инсулина. Вскоре он выяснил, что аминокислоты в белке могут располагаться в любом порядке и ограничений на их последовательности в белках в природе нет. Вторая серьезная проблема состояла в том, что при перекрывающемся коде любая точечная мутация (в которой одна буква заменяется другой) неизбежно приводила бы к изменению больше чем одной аминокислоты в белке, а экспериментальные данные свидетельствовали о том, что при таких мутациях меняется лишь одна аминокислота. Стало ясно, что генетический код не перекрывается. Предположение Гамова о перекрывании кода было опровергнуто задолго до того, как стал известен настоящий код. Криптографы начали подозревать, что мать-природа упустила возможность воспользоваться некоторыми известными им трюками.
Следующую попытку разгадать загадку кода предпринял Крик. Он высказал идею настолько красивую, что ее немедленно все приняли, хотя самого автора и смущала нехватка доказательств. Крик воспользовался новыми открытиями, сделанными в нескольких молекулярно-биологических лабораториях, в первую очередь в новой лаборатории Уотсона в Гарварде. Уотсон глубоко увлекся исследованиями РНК — более короткой одноцепочечной молекулы, близкой к ДНК и находимой как в цитоплазме клеток, так и в ядре. Кроме того, он обратил внимание на то, что РНК составляет неотъемлемую часть крошечных структур, теперь называемых рибосомами, на которых, судя по всему, и синтезировались белки. Итак, неактивная ДНК сидит в ядре. Когда нужно синтезировать какой-либо белок, соответствующий участок ДНК используется в качестве матрицы, чтобы синтезировать его РНК-копию. Она физически выходит из ядра и достигает ожидающих ее снаружи рибосом, синтезирующих этот белок, используя в качестве матрицы уже молекулу РНК. Эта разновидность РНК впоследствии получила название матричной РНК (мРНК). Уотсон еще в 1952 году писал Крику: “ДНК делает РНК делает белок”. Крика теперь интересовало вот что: как точная последовательность букв молекулы матричной РНК переводится (транслируется) в последовательность аминокислот в белке?
Крик крепко задумался. Он предположил, что матричная РНК транслируется с помощью набора особых молекул — адаптеров, по одной на каждую аминокислоту. Адаптеры тоже должны состоять из РНК, у каждого из них должен быть антикодон, способный узнавать соответствующий кодон матричной РНК и связываться с ним. Принцип этого связывания, как считал Крик, должен быть точно таким же, как в ДНК: Ц образует пару с Г, А — с Т, и так далее3. Существование адаптеров предполагалось тогда чисто гипотетически, но они действительно были открыты несколько лет спустя, и оказалось, что они действительно состоят из РНК, как и предсказывал Крик. Теперь их называют транспортными РНК (тРНК). Вырисовывалась система, напоминающая детский конструктор, детали которого соединялись друг с другом и вновь разделялись, образуя изумительные, хотя и недолговечные структуры.
Но здесь Крик пошел по ложному пути. Я пишу об этом довольно подробно потому, что хотя действительность и оказалась несколько богаче, чем он предполагал, его идеи могут по-прежнему быть актуальны для решения вопроса о том, как все это возникло. Крик представлял себе, что матричная РНК просто сидит в цитоплазме, а ее кодоны торчат, как соски свиноматки, и к каждому из них может “присосаться” транспортная РНК. Рано или поздно молекулы тРНК свяжутся с мРНК по всей длине, расположившись одна за другой, и с каждой из них будет связана, как хвост поросенка, соответствующая аминокислота, готовая соединиться с соседними аминокислотами и образовать белковую цепочку.
Проблема, по мнению Крика, состояла в том, что тРНК будут прибывать в случайном порядке, по мере их появления рядом с мРНК, и связываться с ближайшим соответствующим кодоном. Но если не начинать с начала и не заканчивать в конце, как они узнают, где начинается и где заканчивается один кодон? Как они смогут найти правильную рамку считывания? Если последовательность содержит фрагмент АТЦГТЦ, то одна тРНК может связаться с кодоном АТЦ, а другая — с кодоном ГТЦ, но что помешает соответствующей тРНК узнать кодон ЦГТ в середине этого фрагмента и тем самым транслировать совсем не то, что нужно? Предложенный Криком ответ на этот вопрос предполагал категорический запрет подобных вещей. Раз матрица в целом должна читаться однозначно, значит, не все кодоны должны иметь смысл. Какие же из них требовалось запретить? Ясно, что последовательности, состоящие только из А, только из Ц, только из Т или только из Г, должны были оказаться под запретом: в цепочке АААААА нельзя найти правильную рамку считывания. Затем Крик проверил все другие трехбуквенные комбинации. Он рассуждал примерно так: если АТЦ имеет смысл, то все циклические перестановки этих трех букв (ТЦА и ТАЦ) должны быть под запретом. Сколько возможностей это нам оставляет? Снова двадцать! (Из шестидесяти четырех возможных кодонов AAA, ТТТ, ЦЦЦ и ГГГ исключаются. Остается шестьдесят. Из каждых трех вариантов циклических перестановок допустим только один, значит, делим шестьдесят на три.)
В отличие от перекрывающихся кодов, код Крика не накладывал никаких ограничений на порядок аминокислот в белке и не предполагал, что точечная мутация будет непременно менять две или три аминокислоты. Когда была выдвинута эта гипотеза, казалось, она дает прекрасное решение проблемы рамки считывания и при этом сокращает число кодонов с шестидесяти четырех до двадцати, что соответствует числу аминокислот в белках. Эта гипотеза ничуть не противоречила всем имеющимся на тот момент данным. И все же она ошибочна. Спустя несколько лет выяснилось, что искусственно полученная РНК, состоящая из кодонов ААА (запрещенных Криком), все же кодирует аминокислоту лизин и может транслироваться в белковую цепочку, состоящую исключительно из лизина.
К середине 60-х годов, когда были усовершенствованы экспериментальные методы, нескольким исследовательским группам удалось шаг за шагом выяснить, что на самом деле представляет собой генетический код. После всех попыток расшифровать его открывшаяся картина вызывала глубочайшее разочарование. Оказалось, что никакого изящного нумерологического решения не было, а код просто вырожден (это значит, что в нем полно излишеств). Три аминокислоты кодируются шестью разными кодонами каждая, в то время как другие кодируются лишь одним или двумя. Все кодоны идут в дело: три кодона означают “стоп” (конец трансляции), а все остальные кодируют ту или иную аминокислоту. Выходило, что в генетическом коде нет никакого порядка, никакой красоты. Этот пример может служить нагляднейшим опровержением мысли, что красота может служить проводником к научной истине*1. Судя по всему, в основе кода не было и никакой структурной логики: между аминокислотами и соответствующими им кодонами не было ни особой химической, ни особой физической связи.
Крик объявил этот удручающий код “застывшей случайностью”, и большинство исследователей не могло с ним не согласиться. По мнению Крика, код застыл оттого, что любые покушения на его структуру (попытки его разморозить) имели бы слишком серьезные последствия. Единственная точечная мутация может изменить ту или иную аминокислоту, расположенную в определенном месте определенного белка, но любое изменение самого кода приводило бы к катастрофическим переменам во всех белках без исключения. Разница между этими событиями соответствовала бы разнице между случайной опечаткой в книге, не особенно меняющей ее смысл, и изменением одной буквы на другую во всем алфавите, что превращало бы весь текст в абракадабру. Поэтому, как считал Крик, после того, как код был выбит на скрижалях, любые покушения на него карались смертью. Эта точка зрения и сегодня широко распространена среди биологов.
Но предполагаемая Криком “случайная” природа кода ставила одну проблему. Почему такая случайность была всего одна? Почему не несколько? Если код произволен, то один код не должен быть особенно лучше другого. Не было никаких оснований считать, что отбор некогда создал своего рода “бутылочное горлышко”, при прохождении через которое один из вариантов кода обладал бы, по словам Крика, “таким селективным преимуществом над всеми конкурентами, что сохранился бы только он один”. Но если никакого “бутылочного горлышка” не было, то почему мы не наблюдаем сосуществования разных организмов с несколькими разными кодами? Крик всерьез задумался над этим вопросом.
Самый очевидный ответ предполагал, что все живое на земле происходит от общего предка, у которого генетический код уже был жестко закреплен. Говоря об этом в философском ключе, можно было сказать, что жизнь возникла на Земле лишь однажды, в связи с чем ее возникновение казалось событием уникальным и почти невероятным, может быть даже совершенно исключительным. По мнению Крика, это заставляло предположить заражение — однократное занесение жизни на нашу планету. Он стал отстаивать идею, что жизнь была “посеяна” на Земле в форме бактериальных клонов единственного внеземного организма. Крик пошел еще дальше: принялся доказывать, что эти бактерии были преднамеренно посеяны на Земле неким инопланетным разумом с помощью космического корабля. Крик назвал подобный сценарий “направленной панспермией”. Эту тему он разработал в книге “Жизнь как она есть”, опубликованной в 1981 году. Мэтт Ридли в своей превосходной биографии Крика писал: “Предмет этой книги вызвал немало удивления. Великий Крик пишет об инопланетных жизненных формах, рассеиваемых во Вселенной космическим кораблем? Не слишком ли успех вскружил ему голову?” Действительно ли идея случайного кода оправдывает столь далеко идущие философские выводы — вопрос спорный. Чтобы код прошел через “бутылочное горлышко”, не требуется, чтобы определенный его вариант имел какие-то особые преимущества перед другими. Сильный отбор по любому признаку, хотя бы и в результате исключительного события, например столкновения с Землей астероида, вполне мог истребить все живое на планете, кроме потомков единственного клона, которые по определению должны были обладать только одним вариантом кода. Так или иначе, Крик не вовремя выдвинул свою идею направленной панспермии. Как раз в начале 8о-х годов, когда он писал свою книгу, стало ясно, что генетический код нельзя считать ни застывшим, ни случайным. В нем есть скрытые закономерности, своего рода “код внутри кодонов”, дающий нам ключи к разгадке тайны происхождения нашего кода, возникшего почти четыре миллиарда лет назад. Теперь мы знаем, что он представляет собой не тот жалкий шифр, который так разочаровал в свое время криптографов, а единственный в своем роде код из миллиона возможных, способный противостоять изменениям и одновременно ускорять ход эволюции.
Код внутри кодонов! С 60-х годов в генетическом коде выявили целый ряд закономерностей, но большинство из них легко было отбросить как обыкновенный статистический шум (что, собственно, и делал Крик). Казалось даже, будто совокупность этих закономерностей не несет особого смысла. Хороший вопрос — почему так казалось. Этим вопросом задался калифорнийский биохимик Брайан Дэвис, уже давно интересовавшийся корнями генетического кода. Он отмечает, что сама идея “застывшей случайности” погасила интерес к проблеме происхождения кода. Какой смысл изучать происхождение случайности? Случайности случаются, только и всего. Кроме того, по мнению Дэвиса, те немногие исследователи, которые продолжали интересоваться этой проблемой, пошли по ложному пути, ухватившись за наиболее популярную в то время идею первичного бульона. Если генетический код возник в таком бульоне, то он должен восходить к молекулам, возникновение которых в результате происходивших в таком бульоне физических и химических процессов особенно вероятно. А это заставляло предположить, что в основе кода лежал некий базовый набор аминокислот, а все остальное добавилось позже. Истины в этой идее было ровно столько, чтобы данные, свидетельствующие в ее пользу, производили сильнейшее впечатление, хотя в действительности они лишь сбивали с толку. Смысл закономерностей генетического кода мы начинаем понимать лишь тогда, когда рассматриваем его как продукт биосинтеза, то есть продукт клеток, способных синтезировать собственные “строительные блоки” из водорода и углекислого газа.
Так что же собой представляют эти неочевидные закономерности? С каждой буквой триплетного кода связана некая закономерность. Особенно красноречивы свойства первой буквы, поскольку она касается процесса, позволяющего поэтапно превращать несложные вещества-предшественники в аминокислоты. Принцип, лежащий в основе этой закономерности, настолько поразителен, что его стоит здесь изложить в двух словах. В клетках современных организмов аминокислоты синтезируются посредством целого ряда биохимических преобразований, начинающихся с нескольких несложных веществ-предшественников. А удивительно здесь то, что между первой буквой триплетного кодона и этими несложными предшественниками есть определенная связь. Так, все аминокислоты, предшественником которых оказывается пируват, соответствуют кодонам, начинающимся с одной и той же буквы — в данном случае Т5. Я привел в качестве примера именно пируват, потому что мы уже встречались с этим веществом в главе 1. Оно может образовываться в гидротермальных источниках из углекислого газа и водорода при участии катализаторов — ими могут служить присутствующие в таких источниках минералы. Но это относится не только к пирувату. Предшественники всех аминокислот участвуют в цикле Кребса — основе биохимии всех клеток, и должны образовываться в щелочных гидротермальных источниках, которые мы обсуждали в главе 1. Напрашивается вывод (на данном этапе, надо признать, поверхностный, но нам еще предстоит его уточнить), что между первой буквой триплетного кода и гидротермальными источниками существует какая-то связь.
А как обстоят дела со второй буквой? Здесь наблюдается связь со степенью растворимости (или нерастворимости) аминокислоты в воде, то есть гидрофильности (или гидрофобности). Гидрофильные аминокислоты растворяются в воде, в то время как гидрофобные с ней не смешиваются, а растворяются в жироподобных веществах, таких как липидные мембраны клеток. Все аминокислоты можно распределить по своего рода спектру, начиная от “очень гидрофобных” и заканчивая “очень гидрофильными”. Именно этот спектр имеет связь со второй буквой триплетного кода. Пяти из шести самых гидрофобных аминокислот соответствуют кодоны с буквой Т в середине, а всем самым гидрофильным — кодоны с буквой А в середине. Промежуточным аминокислотам спектра соответствуют кодоны с буквой Г или Ц в середине. Таким образом, чем бы это ни объяснялось, в целом наблюдается сильная и вполне определенная связь между первыми двумя буквами каждого кодона и той аминокислотой, которую этот кодон кодирует.
Именно последняя буква приводит к вырожденности кода: восьми аминокислотам свойственна (прекрасный научный термин!) четырехкратная вырожденность. Хотя большинству читателей может показаться, что четырехкратная вырожденность означает совершенно опустившихся людей, пьяниц, которым удается падать в четыре разных канавы одновременно, биохимики обозначают этим термином ситуацию, когда третья буква кода не несет никакой информации. Независимо оттого, какое азотистое основание стоит на этом месте, во всех четырех случаях триплет кодирует одну и ту же аминокислоту. Например, в триплете ГГГ, кодирующем глицин, можно заменить последнюю Г на Т, А или Ц — и все три новых триплета будут по-прежнему кодировать глицин.
Вырожденность кода по третьей букве имеет несколько интересных следствий. Мы уже отмечали, что дублетный код мог бы кодировать только шестнадцать из двадцати входящих в состав белков аминокислот. Если исключить из их списка пять самых сложных (оставив, таким образом, пятнадцать, плюс стоп-кодон), закономерности, касающиеся первых двух букв, окажутся выражены еще ярче. Так что, возможно, код первоначально был дублетным и лишь потом расширился до триплетного в результате “присвоения кодонов”: аминокислоты могли соперничать друг с другом за третью букву. Древнейшие аминокислоты, вероятно, получили “нечестное” преимущество в борьбе за “прикарманивание” триплетных кодонов, и очень похоже, что так оно и было. Например, те пятнадцать аминокислот, которые скорее всего кодировались первоначальным дублетным кодом, загребли себе 53 из 64 возможных триплетов (в среднем 3,5 кодона на аминокислоту), в то время как оставшиеся пять “позднейших” аминокислот разделили между собой лишь восемь кодонов (в среднем 1,6 на аминокислоту). Очень похоже, что здесь кто успел, тот и съел.
Давайте подробно рассмотрим следующую возможность: код первоначально был дублетным, а не триплетным, и кодировал пятнадцать аминокислот (плюс один стоп-кодон). Этот первоначальный код, судя по всему, был почти полностью детерминирован, то есть продиктован физическими и химическими факторами. Есть немного исключений из того правила, что первая буква связана с предшественником, а вторая — с гидрофильностью или гидрофобностью аминокислоты. Здесь было мало простора для игры случая, не было свободы от физических законов.