Рис. 6. Модель спрединга морского дна в море Содружества – котловине Эндерби и море Дейвиса – котловине Лабуан. Параметры модели: глубина поверхности магнитоактивного слоя – 7,0 км; мощность магнитоактивного слоя – 1,0 км; намагниченность (J) – 1,7 A/м (5,7 А/м для аномалий M10Nn-M11An симметричной последовательности); наклонение (I) – -70°; склонение (D) – -65°. На врезке показано положение профилей и их номера. Для моделирования использовалась шкала инверсий геомагнитного поля Градштейна и др. 1994 г. (Gradstein et al., 1994). Аномалии неспрединговой природы показаны пунктирной линией.
Третья серия аномалий наблюдается в котловине Принцессы Елизаветы. Она характеризуется гармоничной последовательностью максимумов и минимумов шириной 10–15 км (рис. 3). Моделирование этой серии не проводилось из-за отсутствия аномалий характерной формы, которые могли бы служить ориентиром для их идентификации. Можно лишь предположить, что они представляют собой такую же симметричную последовательность, как вторая серия с центральной аномалией М9n.
Четвертая серия аномалий выявлена в море Дейвиса. Моделирование выполнялось от аномалии M11An, связываемой с началом раскрытия Индийского океана в этом районе (рис. 6). Рассчитанные скорости полуспрединга, здесь, как и в море Содружества, регулярно уменьшаются с юга на север, но имеют меньшие величины (от 4,0–5,2 до 1,9 см/год). Центральная часть линейной последовательности осложняется положительными магнитными аномалиями неспрединговой природы (рис. 6), которые связны с вытянутыми хребтами, выявленными по сейсмическим данным (рис. 4). Эти хребты располагаются под углом около 20° к простиранию спрединга морского дна и поэтому интерпретируются нами в качестве внутриплитных внедрений магматических пород, обусловленных действием плюма (горячей точки) Кергелен.
Австрало-Антарктическая котловина, юго-западная часть которой расположена в пределах площади исследований, отличается расчлененным рельефом, создаваемым крупными вытянутыми поднятиями и впадинами СЗ-ЮВ простирания (рис. 4). Образование этой котловины связано с расколом литосферы между Антарктидой и Австралией в позднемеловое время. Начальное раскрытие океана (в период от 33 до 18 хронов полярности) происходило в ультрамедленном режиме (при скоростях полуспрединга от 0,5 до 1,5 см в год (
В пределах вулканической провинции Кергелен, кроме основного поднятия (собственно плато), нами выделена его окраина, фундамент которой залегает на более высоком гипсометрическом уровне по сравнению с окружающими океаническими котловинами и характеризуется протяженными внутренними отражениями, представляющими собой поверхности лавовых потоков (толщ). Мощность земной коры основной части плато составляет 15–18 км, а его окраины – 10–12 км. В пределах плато и его окраины обнаружены многочисленные массивные (т. е. без внутренней сейсмической расслоенности) поднятия изометричной и вытянутой формы (рис. 4), которые интерпретируются в качестве интрузивных тел и/или вулканических центров.
Природа земной коры южной части плато Кергелен до сих пор остается дискуссионной. Пока еще не ясно, имеет ли оно океаническое происхождение (как, например, Исландия или сопоставимое по размерам плат Онтонг-Ява в Тихом океане), образовавшись за счет избыточного магматизма в срединно-океанических хребтах и внутриплитного излияния базальтов, или изначально представляло собой микроконтинент с корой континентального типа, который был перекрыт вулканическими комплексами. В настоящее время достаточно убедительно доказана континентальная природа центральной части плато Кергелен (вместе с банкой Элан), расположенной между 53° и 58° ю.ш. (рис. 2). Свидетельствами этого являются: 1) геохимические особенности базальтов, изученных скважинами 747 и 750, указывающие на контаминацию мафических расплавов веществом континентальной литосферы (
Основываясь на изотопных характеристиках базальтов, вскрытых скважиной 738 (рис. 2), установлено, что они содержат континентальную компоненту (
Рис. 7. Модель строения земной коры трога Принцессы Елизаветы и южной части плато Кергелен, построенная методом лучевого трассирования с помощью программного пакета «SeisWide». Для моделирования использованы записи тринадцати донных станций и сейсмический профиль МОГТ (рис. 1). Вверху показан пример сейсмической записи и рассчитанные годографы преломленных волн (красные линии). Числа на разрезе и под рассчитанными годографами – скорости сейсмических волн (в км/с). Слой со средней скоростью 6.4 км/с в нижней части коры интерпретируется в качестве континентального блока. Положение разреза показано на рис. 4.
После панафриканской активизации в позднем протерозое – раннем палеозое, материки южного полушария окончательно сложились в единый суперконтинент Гондвану, центральная часть которой представляла собой обширное поднятие докембрийского кристаллического щита, практически лишенное осадочного покрова. В тектоническом отношении эта провинция сохраняла относительно стабильное состояние до позднепалеозойского-раннемезозойского времени, когда процессы эпикратонной рифтогенной активизации (растяжения земной коры) привели к формированию внутриконтинентальных грабенов и замкнутых бассейнов. На антарктической суше, прилегающей к району работ, это событие проявилось внедрением мафических даек с возрастом около 320–310 млн. лет и образованием молассовой толщи пермо-триасового возраста, задокументированной на побережье залива Прюдс. Предполагается, что моласса накапливалась в рифтовой зоне карбонового заложения длиной более 2000 км, которая пересекала Восточную Гондвану (ортогонально структуре современной окраины) от гор Гамбурцева в центральной Антарктиде через залив Прюдс до центральной Индии (грабен Маханади). Не менее протяженный рифт возник в это же время на протоокраине западной Австралии и мог проникать в район моря Дейвиса и моря Содружества, образуя вместе с ортогонально-ориентированной ветвью разветвленную рифтовую систему.
В отличие от первой фазы деструктивного тектогенеза гондванской литосферы в позднем палеозое, которая завершилась образованием внутриконтинентальных рифтов и временной ее стабилизацией, следующая (позднемезозойско-кайнозойская) оказалась более «успешной». Она характеризуется внедрением мантийных плюмов, повторным, более значительным растяжением и разделением литосферных плит. Процесс распада Гондваны начался с рифтогенеза между Африкой и Антарктидой в ранней юре (около 170–180 млн. лет назад). В поздней юре возникла протяженная рифтовая система между Антарктидой, Австралией и Индией с тройным сочленением на стыке трех континентов. В районе моря Содружества процессы растяжения привели к формированию системы внутриконтинентального и окраинного рифтовых грабенов (рис. 8А), первый из которых представлен грабеном ледников Ламберта – Эймери – залива Прюдс (вероятно, реактивированный пермский грабен), а второй – зоной перехода от коры континентального к коре океанического типа. Финальная стадия растяжения в окраинном рифте сопровождалась подъемом мантии и внедрением продуктов ее дифференциации в верхние уровни земной коры.
Начало спрединга морского дна около 134 млн. лет назад, вероятно, было инициировано внедрением мантийного плюма (горячей точки) Кергелен под литосферу Восточной Гондваны в районе сочленения юго-западной Австралии и Антарктиды, которое маркируется излиянием базальтов Банбери в юго-западной Австралии, плато Натуралиста и окраинного вулканического плато Брюс в западной части моря Дейвиса (рис. 8Б;
Рис. 8. Реконструкции Гондваны на время 160 млн. лет (А), 134,5 млн. лет (Б), 128 млн. лет, после первого перескока оси спрединга (В), 118 млн. лет, после второго перескока оси спрединга (Г), 83 млн. лет (Д). 1 – внутриконтинентальные рифтовые грабены, 2 – срединные хребеты, 3 – палеохребты (оси палеоспрединга), 4 – отмершие хребты, 5 – область проявления базальтов Банбери. Аббревиатура: ЛЛ – ледник Ламберта; ББЭ – континентальный блок банки Элан, БЮПК – континентальный блок южной части плато Кергелен, ПН – плато Натуралиста, ББ – банка Брюс, БЭ – банка Элан, ЮПК – южная часть плато Кергелен, ХБ – хребет Броукен. Темно-серым цветом закрашены материки и острова по береговой линии (современные контуры); светло-серым цветом закрашена континентальная окраина до изобаты 2000 м.
Южная часть плато Кергелен принадлежала индийской окраине и через некоторое время после раскола литосферы была оторвана от нее за счет перескока спрединга морского дна (рис. 8В). Предполагается, что такой геодинамический режим часто возникает при внедрении мантийных плюмов и привел, например, к образованию микроконтинентов Сейшельского архипелага в Индийском океане, острова Ян-Майен в Норвежско-гренландском море и Тасманского плато – комплекса подводных гор Гилберт в Тасмановом море (
Рифтогенез и последующее остывание литосферы привели к погружению земной коры континентальной окраины и образованию обширных осадочных бассейнов в море Содружества и море Дейвиса, которые разделены поднятием фундамента в троге Принцессы Елизаветы. На региональном уровне в этих бассейнах выделяются две области, в пределах которых существуют принципиальные различия внутренней структуры, состава и обстановок формирования осадочного чехла: одна из них занимает шельфы, а другая – глубоководную акваторию, т. е. континентальный склон, подножие континентального склона и абиссальную котловину. В период полевых работ по проекту МПГ шельфовые области изучить не удалось из-за сложной ледовой обстановки, но на этапе обобщения и интерпретации данных были использованы геолого-геофизические материалы, полученные на шельфе залива Прюдс в прошлые годы (рис. 1).
Шельф залива Прюдс впервые был исследован в 1981 г австралийской экспедицией, в результате чего в его осадочном чехле было выделено 4 главных сейсмических комплекса: PS.5, PS.4, PS.2B, PS.2A (
Комплекс PS.5 залегает в основании осадочного чехла рифтового грабена залива Прюдс (рис. 9). Он отличается высокой (4,8–5,0 км/с) скоростью сейсмических волн и достигает мощности 4,5 км. Комплекс PS.5 не был опробован бурением ODP, но по значениям скорости упругих волн, свойственным этой толще, предполагается, что он сложен молассоидными пермо-триасовыми отложениями, аналогичными осадкам оз. Бивер.
Комплекс PS.4 ограничен в кровле угловым несогласием, контрастно выраженным в сейсмической записи. В осевой части грабена мощность этого комплекса достигает 3,5 км (рис. 9). Вещественный и фациальный состав комплекса PS.4 был изучен в скважине 740, которая вскрыла около 200 м средней его части. В составе комплекса присутствуют алевролиты (в преобладающем количестве) и песчаники (красноцветы) с прослоями ископаемых почв и углей (
Комплекс PS.2B имеет покровный облик, распространяясь на большей части шельфа залива Прюдс, и перекрывает комплекс PS.4 или кристаллический фундамент в западном борту грабена (рис. 9). По данным бурения в составе комплекса PS.2B преобладают песчаники, содержащие тонкие прослои сильно сцементированных осадков, и алевролиты с остатками углифицированного растительного материала (
Рис. 9. Глубинный разрез через залив Прюдс и глубоководную область моря Содружества с установленными сейсмическими горизонтами и комплексами осадочного чехла (построен на основе сейсмического профиля ПМГРЭ 1987 г. в заливе Прюдс и профиля, выполненного по проекту МПГ в глубоководной акватории). Возраст комплексов осадочного чехла шельфа залива Прюдс: PS.5 – пермь-триас; PS.4 – поздняя юра – ранний мел; PS.2B – ранний мел; PS.2A – средний эоцен – квартер. Возраст горизонтов осадочного чехла глубоководной области: CS1 – ~134 млн. лет; CS2 – ~120 млн. лет; CS3 – 42–40 млн. лет; CS4 – ~34 млн. лет, CS5 – ~24 млн. лет, CS6 – 14–13 млн. лет. Положение разреза показано на врезке.
Верхний комплекс осадочного чехла шельфа PS.2A распространяется на площади от среднего шельфа до континентального склона (рис. 9). Главной отличительной чертой этого комплекса является наличие в нем проградационных (наращивающихся в сторону океана) серий (клиноформ) с отчетливой внутренней расслоенностью. Некоторые серии в направлении внутреннего шельфа выполаживаются, приобретая агградационную (т. е. наращивающуюся вверх по разрезу) слоистость с пологим залеганием отражающих границ. Комплекс PS.2A пробурен четырьмя скважинами ODP, которые охарактеризовали большую часть его разреза (рис. 1, 9). В базальной части комплекса, вскрытого скважиной 1166, обнаружены песчаники средне-, позднеэоценового возраста, отлагавшиеся во флювиальных руслах и затапливаемых приливных бассейнах или лагунах в условиях влажного, холодного климата. Остальная часть разреза имеет пост-раннеолигоценовый возраст и включают в себя массивные и стратифицированные диамиктиты ледникового и ледниково-морского генезиса (
Осадочный чехол глубоководной области моря Содружества и моря Дейвиса изучался многими специалистами, в результате чего появилось несколько независимых сейсмостратиграфических моделей, которые во многом отличались друг от друга по набору выделяемых горизонтов, положению в разрезе и интерпретации их природы и возраста. После проведения ПМГРЭ регулярных исследований МОГТ на континентальной окраине Восточной Антарктиды и анализа всех существующих сейсмических данных была выполнена идентификация и взаимная корреляция основных региональных несогласий на всей площади работ и создана универсальная сейсмостратиграфическая модель (
В универсальной стратиграфической модели, разработанной нами для глубоководной области континентальной окраины Восточной Антарктиды на основе отечественных сейсмических данных, региональные отражающие границы нумеруются вверх по разрезу цифрами от «1» до «5» и имеют буквенные коды WS, RLS, CS и WL (аббревиатуры английских названий морей или прилегающих Земель – Weddell Sea, Riiser-Larsen Sea, Cosmonaut Sea/Cooperation Sea, Wilkes Land margin;
Основным критерием для идентификации нижнего горизонта осадочного чехла CS1, который отождествляется с поверхностью несогласия в кровле рифтового структурного этажа, является различие характера сейсмической записи в подстилающей и перекрывающей толщах (рис. 10), обусловленное изменением обстановки осадконакопления с преимущественно континентальной на морскую. Такие различия наблюдаются почти на всех разрезах, пересекающих континентальную окраину района исследований, позволяя достаточно уверенно выделять этот принципиальный раздел осадочного чехла. Сам горизонт CS1 представлен непрерывным рефлектором переменной амплитуды (рис. 10), который налегает на фундамент на расстоянии 5–50 км в сторону суши от границы континент-океан.
Рис. 10. Интерпретированный сейсмический разрез глубоководной области моря Содружества, демонстрирующий положение основных горизонтов осадочного чехла и структуру сейсмической записи ограниченных ими комплексов. Положение разреза показано на рис. 9.
Несогласие в кровле рифтового этажа выделено по сейсмическим данным на многих (хотя и не на всех) пассивных континентальных окраинах. Его образование связывается с эрозией отложений на конечной стадии рифтогенеза (перед началом спрединга морского дна) за счет термального подъема земной коры при внедрении горячей астеносферной мантии (
Рифтовый структурный этаж заполняет региональные прогибы внутриконтинентального и окраинного рифтовых грабенов и локальные структуры растяжения (полуграбены) в кристаллическом фундаменте на шельфе и под верхним подножием континентального склона. Депоцентр рифтового структурного этажа располагается примерно посередине между внутренней границей окраинного рифтового грабена и границей континент-океан. Мощность слагающих его осадков в депоцентре составляет, в среднем, около 1 км, но напротив залива Прюдс она достигает 3,0 км.
Состав рифтового этажа предполагается по данным бурения на шельфе залива Прюдс и в Пертском бассейне (юго-западная окраина Австралии), который на этапе распада Восточной Гондваны находился в сходной тектонической, географической и климатической обстановке с бассейнами морей Содружества и Дейвиса (рис. 8А). На шельфе залива Прюдс рифтовые отложения предположительно вскрыты скважиной 740 (рис. 9), но не датированы из-за отсутствия ископаемых остатков. Согласно данным бурения, эти отложения представлены алевролитами и песчаниками (с прослоями ископаемых почв и углей), имеют флювиальное происхождение и накапливались в условиях теплого, сухого климата (
Горизонт CS2 выделен на континентальной окраине Восточной Антарктиды от моря Рисер-Ларсена до моря Дейвиса (
Горизонт CS3 прослеживается в пределах всей изученной в настоящее время индоокеанской континентальной окраины Восточной Антарктиды, представляя собой практически непрерывную отражающую границу с переменными динамическими свойствами. Комплекс «CS3-CS2» в основном представлен протяженными параллельными внутренними отражениями и по характеру сейсмической записи похож на подстилающие его комплекс «CS2-CS1» (рис. 10). Наибольшая его мощность (1,2–1,8 км) приурочена к верхнему и среднему подножию континентального склона моря Содружества. На шельфе залива Прюдс с глубоководным комплексом «CS3-CS2» отождествляется толща, в которой по данным бурения преобладают осадки флювиального генезиса (
Возраст горизонта «3» в глубоководной акватории был обоснован после проведения исследований в западной части континентальной окраины Земли Уилкса, где он налегает на океанический фундамент, датированный ранним эоценом, и маркирует заметные изменения в строении осадочного чехла, которые связываются нами с самым ранним этапом оледенения этой части антарктической окраины около 42–40 млн. лет назад (
Горизонт CS4 и соответствующие ему горизонты с номером «4» в других бассейнах антарктической окраины маркируют наиболее заметные преобразования структуры осадочного чехла и, как правило, представлены контрастной в сейсмической записи границей (рис. 10). Выше этой границы в разрезе появляются глубоководные каньоны и сопряженные с ними намывные прирусловые валы (боковые наносы), а также некоторые другие специфические сейсмофации (рис. 10). Принципиальные изменения в структуре осадочного чехла на региональной границе с номером «4» (CS4 в районе исследований) связываются с крупномасштабным оледенением Антарктиды около 34 млн. лет назад, когда ледовый щит достиг края шельфов, инициируя активные склоновые процессы (образование оползней, обломочных потоков и турбидитных течений (
Основываясь на нашем предположении о среднеэоценовом возрасте горизонта CS3, глубоководный комплекс «CS4-CS3» отождествляется с нижней частью комплекса PS2A на шельфе залива Прюдс, который, согласно данным бурения, имеет средне-верхнеэоценовый возраст (рис. 9;
Комплекс «CS4-CS3» характеризуется параллельной слоистостью с непрерывными и прерывистыми, иногда изогнутыми внутренними отражениями, которые в большей мере типичны для гемипелагического осадконакопления. Он плавно увеличивается в мощности от первых сотен метров под верхним подножием континентального склона до 500–800 м под нижним подножием и выклинивается на поднятии плато Кергелен. В южной части моря Дейвиса под верхним подножием континентального склона были выявлены наклонные отражающие границы, которые налегают на горизонт CS3, образуя клиноформы, наращивающие разрез осадочного чехла в сторону океана (
По результатам бурения установлено, что в течение относительно короткого времени позднего эоцена – раннего олигоцена сначала произошло падение уровня моря и эрозия шельфа (флювиально-лагунных отложений нижней части комплекса PS2A), затем трансгрессия с накоплением морских осадков и, наконец, наступление ледника на шельф, обеспечившее активную поставку осадочного материала в глубоководную область (
Начиная с позднего миоцена (около 14 млн. лет назад), когда ледовый щит Восточной Антарктиды достиг устойчивого равновесия (полярные условия), депоцентры сместились в сторону континентального склона, а в подножии континентального склона темп осадконакопления существенно (более чем в пять раз) снизился (
Все эти события отражаются в строении синледниковой толщи осадочного чехла («Дно-CS4»), который отличается разнообразием сейсмических фаций, с различной геометрией внутренних отражений и характерными особенностями внешней морфологии. В составе этой толщи выделен региональный горизонт CS5 и локальный горизонт CS6, которые маркируют вертикальное изменение сейсмофациальной структуры и являются важными индикаторами эволюции глубоководного бассейна. Время образования горизонта CS5 оценивается путем экстраполяции возраста осадков, вскрытых в забое скважины 1165 (~22 млн. лет;
Доминирующими фациями синледниковой толщи в глубоководной области района исследований являются погребенные глубоководные каньоны и сопряженные с ними прирусловые валы. Образование каньонов, их развитие и заполнение связываются с действием склоновых процессов (гравитационного массопереноса), наиболее существенными из которых, вероятно, являлись турбидитные потоки, приводившие к транспортировке осадочного материала через континентальный склон и подножие (иногда с эрозией ранее накопившихся осадков) и его переотложению. Прирусловые валы, в свою очередь, образуются при движении турбидитных (суспензионных) потоков вдоль подводных каньонов и осаждении тонкодисперсного материала на их краях, где скорость течений резко снижается (
Рис. 11. Схема распространения осадочных фаций в синледниковой толще осадочного чехла. 1 – авандельта, 2 – поля развития иловых волн в постолигоценовых осадках, 3 – отложения обломочных потоков, 4 – современные подводные каньоны. Стрелками показано направление стока холодных вод и контурных течений.
В верхней (постолигоценовой) части синледниковой толщи, выше горизонта CS5, выявлены сейсмические фации с волнистой структурой отражений, генезис которых хорошо изучен на многих континентальных окраинах мира и в других районах Антарктики (
Плиоцен-плейстоценовое оледенение шельфа маркируется контрастным отражающим горизонтом в основании проградационной толщи (конуса выноса) устья канала Прюдс, которая резко утоняется в сторону океан (рис. 9, 10). Слой осадочных отложений этого возраста, вероятно, присутствует в самой верхней части осадочного чехла района исследований (рис. 10).
Мощность синледниковой толщи значительно изменяется в пределах района исследований. В подножии континентального склона моря Дейвиса и в троге Принцессы Елизаветы она составляет в среднем 1,0–1,3 км, но в море Содружества (между 660 и 720 в.д.) увеличивается до 2,2–2,8 км, что связано с активным выносом терригенных осадков выводным ледником (палеоледником) Ламберта (уместно сказать, что это самые большие значения мощности постэоценовых синледниковых осадков на континентальной окраине Восточной Антарктиды). Суммарная мощность осадочного чехла района исследований по проекту МПГ составляет от 5,0 до 9,0 км в подножии континентального склона моря Содружества; 2,5–4,5 км в троге Принцессы Елизаветы и 0,5–2,5 км на поднятиях фундамента шельфа, в глубоководной котловине северной части моря Содружества и на подводном плато Кергелен.
Заключение
По результатам интерпретации геофизических данных составлена схема тектонического строения района исследований, на которой показаны вещественные комплексы фундамента в пределах основных тектонических (коровых) провинций и некоторые их структурные элементы. К главным тектоническим провинциям, установленным в районе работ, относятся: докембрийский кристаллический щит Восточной Антарктиды, позднеюрско – раннемеловая система внутриконтинентального и окраинного рифтовых грабенов, раннемеловая океаническая котловина и раннемеловая вулканическая провинция плато Кергелен.
Раскол литосферы в море Содружества произошел около 134 млн. лет назад. Это событие совпадает с (и возможно обусловлено) внедрением мантийного плюма Кергелен под литосферу Восточной Гондваны в районе сочленения юго-западной Австралии и Антарктиды. Избыточный магматизм в палеохребтах выражен в увеличении мощности базальтового слоя океанической коры, окружающей южную часть плато Кергелен. Предполагается, что южная часть плато Кергелен подстилается растянутыми и утоненными блоками континентальной коры, которые принадлежали индийской окраине и через некоторое время после раскола литосферы были оторваны от нее за счет перескока спрединга морского дна около 129 млн. лет назад.
В осадочном чехле глубоководной части континентальной окраины выделено 5 региональных сейсмических горизонтов: CS1, CS2, CS3, CS4 и CS5, возраст которых составляет ~134, ~120; 42–40, ~34 и ~24 млн. лет, соответственно. Горизонт CS4 отделяет относительно однородную по своему строению нижележащую толщу от гетерогенной перекрывающей толщи, которая отличается разнообразием сейсмических фаций с различной геометрией внутренних отражений и характерными особенностями внешней морфологии. Изменения структуры осадочного чехла на границе CS4 связывается с началом крупномасштабного антарктического оледенения.
Успешная реализация экспедиционной части проекта третьего Международного полярного года в районе южной части плато Кергелен позволила получить важные научные результаты, которые существенно расширяют наши знания о ранней истории развития Индийского океана и особенностях осадконакопления в позднем кайнозое. Высокая результативность исследований связана с объединением финансовых, технических и интеллектуальных ресурсов нескольких организаций двух стран для решения фундаментальных научных задач. Опыт объединения усилий, полученный благодаря инициативе проведения 3-го МПГ, показывает, что это наиболее эффективный путь изучения антарктической литосферы.
Литература