Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Юный техник, 2000 № 04 - Журнал «Юный техник» на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Посадка «на хвост» была опробована советскими авиаконструкторами еще до войны…


Так, возможно, будет выглядеть посадка космолета в XXI веке.

«Фрегат» — по существу четвертая дополнительная ступень, которая позволяет уже в ходе орбитального полета по командам с Земли с помощью своего собственного жидкостного реактивного двигателя переместить спутник, корабль или иную полезную нагрузку с одной орбиты на другую. Это и было продемонстрировано в ходе испытаний.

Выполнив программу полета и произведя необходимые маневры для выхода на траекторию снижения, аппарат вместе с макетом полезной нагрузки пошел на посадку. Она тоже была не совсем обычной. Российские инженеры из НПО имени Лавочкина и специалисты германского концерна «Даймлер-Крайслер азроспейс» впервые испытали в реальных условиях уникальную технологию защиты космических кораблей от сгорания в плотных слоях земной атмосферы.

В тот момент, когда корабль входит в плотные слои атмосферы и начинает разогреваться, его обволакивает надувной кокон из специальной термостойкой пленки. «Кокон» этот выполняет сразу две функции. Во-первых, прикрывает непосредственно сам корпус корабля, не позволяя ему перегреваться. Во-вторых, служит аэродинамическим тормозом, замедляя движение аппарата в атмосфере.

Винт вместо парашюта

И парашюты, и крылья, в том числе надувные, нужны для того, чтобы погасить при посадке скорость космолета. А для этого есть и другие способы.

В марте 1999 года американская компания «Ротари Рокет», которую возглавляет известный специалист по аэрокосмической технике Гарри Хадсон, продемонстрировала опытный образец оригинального 135-тонного двухместного космического корабля многоразового использования.

В отличие от традиционных «Шаттлов» новый корабль, получивший название «Ротон», не имеет узлов, отстреливаемых во время полета. Весьма оригинальна и двигательная установка аппарата. Ее основой служит 7-метровый вращающийся диск, по окружности которого размещено 96 ракетных двигателей, каждый из которых имеет камеру сгорания размером не больше… консервной банки.

Компоненты топлива — керосин и жидкий кислород — поступают в них под действием центробежной силы. Для этого перед взлетом диск с двигателями раскручивают от внешнего привода. Вращение диска в полете поддерживается благодаря тому, что каждое из сопел чуть отклонено в одну сторону. Возникающий гироскопический момент помогает кораблю устойчиво держаться на курсе.

Корпус нового аппарата почти целиком изготовлен из композитного материала на основе углеродных волокон и эпоксидных смол. Благодаря этому он получился очень легким и в то же время прочным.

После того, как экипаж выполнит полетное задание, он начинает готовиться к спуску. Для этого «Ротон» разворачивают задом наперед. Тяговые двигатели становятся теперь тормозными, и корабль постепенно начинает спускаться с орбиты по пологой спирали. Перед входом в плотные слои атмосферы экипаж раскрывает четыре складывающиеся 7-метровые вертолетные лопасти, расположенные на носу (который стал при спуске кормой). По мере того, как нарастает плотность окружающего воздуха, лопасти раскручиваются, тормозя падение аппарата. И он совершает плавный спуск в режиме авторотации (то есть лопасти вращаются свободно, без помощи двигателя).

Впрочем, в будущем Хадсон намерен увеличить длину каждой лопасти до 9,5 метра и установить на их концах небольшие реактивные двигатели. Экипаж аппарата получит возможность не только маневрировать при спуске, но взлетать по-вертолетному. И лишь на высоте около 5 километров астронавты запустят основные ракетные двигатели и поднимутся на орбиту.

В настоящее время опытный образец «Ротона» проходит всесторонние испытания. Прежде всего отрабатываются приемы мягкой посадки. С этой целью «Ротон» уже несколько раз спускался с самолета-носителя на вертолетных лопастях. Кроме того, в августе 1999 года на испытательном полигоне Мохаве, штат Калифорния, летчики включали основные двигатели, совершив 5-минутный полет на высоте около 3 метров.

К середине 2000 года компания «Ротари Рокет» планирует построить еще три «Ротона». Один из них послужит тренажером для подготовки экипажей, а два других готовят к полномасштабным полетам в космос.

Хадсон надеется, что каждый из таких аппаратов сможет совершить до 100 запусков на орбиту без капитального ремонта.


Приземление «Poтона» конструкторы видят таким..

Посадка на «подушку»

Слов нет, «Ротон» во многом близок к идеалу. По крайней мере, теоретически. На практике же многих инженеров беспокоит проблема прочности вертолетных лопастей, которым в довершение к традиционным перегрузкам придется испытать на себе еще и тепловой удар при погружении в плотные слои атмосферы. Будут ли они служить достаточно надежно?

Ведь и на обычных вертолетах ротор является наиболее уязвимым, ненадежным элементом всей конструкции…

Кроме того, не станем забывать, близок день, когда космический корабль с космонавтами на борту отправится в полет к другим небесным телам. На Луне атмосферы практически нет, на Марсе она весьма разрежена… Так что ротор годится далеко не всюду.

Наиболее универсальным средством как старта, так и приземления на сегодняшний день остаются реактивные двигатели… Они включаются перед самым приземлением и сводят скорость движения к нулю.

Ну а в дополнение к ним хорошо бы еще добавить некое посадочное устройство типа телескопических ног или, скажем, подушки. Не удивляйтесь, идея подушки тоже заимствована у парашютистов. Некоторые асы в старые добрые времена брали с собой в полет небольшие кожаные подушечки. При спуске они подсовывали их под ремень, чтобы было удобнее сидеть на подвеске. А перед самым приземлением бросали себе под ноги, смягчая толчок приземления.

Вот и ныне инженеры приходят к мысли, что снизить скорость и мягко посадить космический корабль с помощью ракетного тормозного двигателя технически сложно. Для этого величина тяги двигателя должна плавно изменяться в широком диапазоне.

Роль буфера при посадке могут выполнять гидравлические опоры, подобные стойкам шасси современного вертолета. Именно такая система была опробована при посадке «Орла» на Луну.

Есть еще одно посадочное средство, о котором стоит рассказать подробнее. Это надувные эластичные баллоны, прикрепленные к космическому кораблю. Именно на них он и садится. Такой способ был использован при посадке американского зонда на поверхность Марса.

Перегрузку аппарата при посадке на баллон действительно можно уменьшить до незначительных величин, если высота баллона будет велика, а площадь опоры мала. Но такой баллон неустойчив. Подобно тонкому стержню, он легко может прогнуться и опрокинуться. А короткий баллон с большой площадью опоры плохо гасит перегрузки. Конструкторы должны найти «золотую середину», чтобы баллон был устойчив, а перегрузки незначительны.

Однако это еще не все. Космическому кораблю грозит еще одна опасность: полностью погасив скорость, он может вновь подпрыгнуть как мячик. Нужно очень тщательно подобрать время, когда необходимо разорвать оболочку баллона и выпустить газ.

Несколько слое о форме баллонов. Во многом она зависит от способа посадки космического корабля. Если он опускается строго перпендикулярно поверхности планеты, лучше применить вертикальный цилиндрический баллон с постоянным давлением. Но вполне возможно, что космический корабль садится не строго вертикально, а с боковой скоростью. В этом случае, коснувшись поверхности планеты, вертикальный цилиндр изогнется, а его оболочка может порваться. Надежнее совершать посадку на баллон в виде полусферы. Объем же баллонов может быть сравнительно невелик.

Например, для мягкой посадки лунной кабины весом около трех тонн потребуется баллон с объемом менее трех кубических метров.

Станислав НИКОЛАЕВ, инженер

Художник В.КОЖИН

Тайна летающего льда

Слышал, что в Италии, Испании, Японии и других странах с неба падали глыбы льда. Есть ли хоть какое-то объяснение этому феномену?

Виктор Разоренов,

г. Санкт-Петербург


Это необычное природное явление поставило в тупик многих исследователей. До сих пор к рассказам о гигантских кусках льда, падающих на землю с ясного неба, большинство ученых не относилось всерьез. Однако в начале этого года явление приобрело такой масштаб, что отмахнуться от него стало невозможно. На глазах у сотен очевидцев огромные «ледяные камни» упали посреди поля для игры в гольф вблизи Рима.

Чуть позже в городе Анкона чудом не погиб рабочий, которому ледяная глыба обрушилась почти на голову. Кроме того, сообщения о «летающем льде» поступили из Венеции, Болоньи и некоторых других городов Италии…

Так, скажем, в урок естествознания под открытым небом неожиданно превратились занятия в средней школе в городке Сан-Мартино ди Лупари (Северная Италия). Ученики и учителя выбежали из школы после того, как здание сотряс сильнейший удар. На улице увидели осколки огромной ледяной глыбы, а в металлической кровле школы обнаружили впечатляющую вмятину.

Ледовой бомбардировке подверглись и испанские области Валенсия, Астория и Андалусия, а также небольшой городок Мостолес, расположенный в 20 км от Мадрида. Газетчики вспомнили, что в архивах хранятся десятки свидетельств, рассказывающих о подобных происшествиях.

Например, газета «Труд» несколько лет назад писала об огромной (размером с сарай) глыбе льда, упавшей в Татарии, на территории Азнакаевского лесхоза. В 1996 году несколько ледовых глыб упало возле школы и близлежащих домов в предместье Токио. Причем в течение примерно двух недель ледовые «гостинцы» обнаруживались настолько регулярно, что дирекция школы велела учащимся являться на занятия только в защитных шлемах и касках.

Первое, о чем подумали эксперты, занявшиеся поисками объяснений этого явления, — это то, что падающие глыбы — разновидность града. Однако специалисты по физике атмосферы отвергли подобное объяснение.

Так, например, американский профессор М.Дэвис, занимавшийся изучением таинственных ледопадов, заявил журналистам: «Могу сказать почти определенно, что известные сегодня науке атмосферные процессы не в состоянии сформировать или удержать в воздухе такие массы льда».

В ход пошла вторая версия: с неба падают обломки ледовой корки, покрывающей на высоте поверхность самолетов. Однако лед падал на землю и там, где даже близко нет самолетных трасс.

Кроме того, в архивах отыскалось сообщение, что в Шотландии «на ферму Балвуллич в поместье Орд свалился кусок льда неправильной формы диаметром примерно 20 футов (6 метров), чудом не раздавив дом» еще в 1849 году, когда никаких самолетов не было и в помине.

Самой логичной на сегодняшний день является версия о космическом происхождении ледяных глыб. Возможно, они представляют собой остатки ядер ледяных комет и метеоритов. Однако многие эксперты сомневаются — лед чересчур чистый. Обычно «ледовые снежки» изрядно загрязнены космической пылью..

Все это позволило вступить в дискуссию… уфологам.

Ныне они говорят о том, что странные ледяные глыбы могут служить доказательством реальности… существования НЛО.

Логика их рассуждений такова. Если верить показаниям очевидцев, наблюдавших полеты НЛО, земная гравитация на них не действует. Они могут входить из космоса в атмосферу медленно, не разогреваясь от трения о воздух, как это происходит при посадке земных космических кораблей. А так как корпус «тарелок», летавших в космосе, должен охлаждаться до температуры окружающего пространства (то есть практически до «абсолютного нуля»), то при вхождении НЛО в земную атмосферу на стенки объекта тут же начнут намерзать водяные пары.

Очевидно, что на кораблях «пришельцев» должны быть и антиобледенительные системы, время от времени сбрасывающие растущую корку льда. Так, мол, и рождаются «летающие айсберги».

По словам российского уфолога Андрея Белобородого, ученые не могут найти ответа на загадку, потому что не там и не то ищут. Эксперты тратят силы и время на кропотливую экспертизу общей массы льда, а интерес должны представлять грани упавших глыб, где лед мог соприкасаться с обшивкой НЛО. Возможно, там имеются частицы металла или краски…

Такая версия выглядит, конечно, достаточно фантастично. Но в ней, по крайней мере, есть хоть какая-то логика, объясняющая феномен.

Максим ЯБЛОКОВ

Художник Ю.САРАФАНОВ

PS. Впрочем, пока заметка готовилась к печати, пришло еще одно сообщение, способное пролить свет на корни этой таинственной истории. Специалисты Института астрофизики, расположенного на Канарских островах, попытались связать сообщения о падении ледовых глыб с наблюдавшимися в конце прошлого и начале этого года «звездными ливнями».

Как ныне хорошо известно, подобные «звездопады» происходят, когда в своем движении по орбите вокруг Солнца наша планета пересекается с трассой движения скоплений мелких комет и метеоритов. Ну а коли так, то почему не предположить, что среди них попадаются и достаточно крупные ледовые глыбы, которые падают на нашу планету, не успев растаять по дороге?

Упало же в тунгусскую тайгу в начале века некое небесное тело. Судя по нанесенным разрушениям, было оно весьма больших размеров, однако никаких осколков Тунгусского метеорита не найдено и по сей день. Да и как их найдешь, если они могли давным-давно растаять.

ОКНО В НЕВЕДОМОЕ

Прогулки под колоколом по морскому дну

Говорят, впервые бронзовый водолазный колокол, под которым ныряльщики могли передвигаться по морскому дну, использовал еще Александр Македонский. Многие века это сооружение напоминало поставленную вертикально бочку без нижнего днища. Но поскольку верхнее — на месте, то при погружении бочки «торчком» под воду в ней сохраняется какое-то количество воздуха. Им и дышит водолаз, имея возможность рассматривать окрестности через прозрачные оконца, специально устроенные в боковинах бочки-колокола.

За прошедшие тысячелетия водолазный колокол неоднократно совершенствовался. От него «отпочковались» водолазный скафандр — мягкий и жесткий, батискафы и даже мини-подлодки, но и сам водолазный колокол продолжает сохранять свою практическую ценность. Сегодня под ним отдыхают аквалангисты-ныряльщики, работающие на больших глубинах. Используют колокол и при кессонных работах, например, в Метрострое…

Но то речь о больших колоколах, под которыми может поместиться сразу несколько человек и соответствующая техника. Бывают же колокола и совсем маленькие. Такие, например, как вы видите на снимке. По существу, каждый из них представляет собой герметичный шлем-маску, от которой уходит наверх воздухопроводный шланг с поплавком. Поплавок служит для того, чтобы верхний конец шланга постоянно держался над поверхностью воды. А сам ныряльщик надевает пояс со свинцовыми грузилами. И тогда, не всплывая, он может пройтись по морскому дну.

Глубина погружения при этом не превышает 3–4 м, но и этого достаточно, чтобы для многих подводный колокол стал окном в неведомый ранее мир.


Прогулка по морскому дну.


Красоты подводного мира тут же фиксируются на цветную фотопленку.


Подводные джунгли.

ВЕСТИ ИЗ ЛАБОРАТОРИЙ

Сокровища под дном океана

Запасы «черного золота» подходят к концу — пугают нефтедобытчики. Обоснованы ли их опасения?

Да, действительно, запасы нефти на Земле не беспредельны. И хотя некоторые исследователи убеждены, что нефть продолжает образовываться даже в наши дни, а потому беспокоиться особенно не о чем, большинство экспертов склоняется к выводу: запасов нефти на Земли хватит нашей промышленности в лучшем случае еще лет на пятьдесят…

Ну а дальше что? Надо, наверное, переходить на использование природного газа метана. Его и ныне уж вовсю используют во многих странах, причем не только в качестве топлива в промышленных котельных и частных кухнях, но и в химической промышленности, как сырье для получения многих продуктов, которые раньше вырабатывает только из нефти.

Но ведь природный газ обычно сопутствует добыче нефти, можете сказать вы. И если иссякнут нефтяные скважины, то не будет и газа…

Все верно. Но… лишь отчасти. Потому что, как выяснилось сравнительно недавно, большая часть метана в природе содержится в виде газогидратов.


Метан в море

Газогидраты были открыты лет тридцать тому назад советскими учеными во главе с академиком Н.В. Черским. Именно ему и его ученикам принадлежит идея о том, что дно морей может быть устлано твердым, замерзшим газом, дополнительно сжатым давлением вышележащих слоев воды и прикрытых сверху лишь тонким слоем осадочных пород.

Сначала в такую возможность мало кто верил. Однако экспедиции, проведенные в различных районах Мирового океана, убедили скептиков: дно действительно практически повсеместно устлано этими самыми гидратами — хоть черпай их экскаваторными ковшами…

Сегодня уже известно, что образование газогидратов — то есть соединений природного метана с водой — происходит в условиях, непривычных для нашей земной жизни, но вполне типичных для океанских глубин. Они, эти условия, определяются высоким давлением и низкой температурой, царящими на дне океана.

Однако откуда берется метан на дне моря? В тех местах, где океаническая плита, сдвигаясь, уходит под континентальную, возникают зоны сильнейшего сжатия. Возникающее давление и выдавливает метан. Одна из таких зон находится у западного побережья Северной Америки. Это фактически подтверждено экспедицией, работающей там с 90-х гг. нашего века.

Германский геолог Юрген Миллер, руководитель одной из таких поисковых экспедиций, названной «Себек» — «Морское дно«, — утверждает, что сегодня ученые имеют все основания считать, что газовая смесь, заключенная в донной породе, на 99 процентов состоит из метана.



Поделиться книгой:

На главную
Назад