· включения.
· Плазмолемму, окружающую цитоплазму, нередко рассматривают как одну из органелл цитоплазмы.
2. Строение и функции плазмолеммы (цитолеммы)
Плазмолемма имеет толщину около 10 нм, и состоит на 40 % из липидов, на 5-10 % из углеводов (в составе гликокаликса), и на 50–55 % из белков.
· разграничивающая (барьерная);
· рецепторная или антигенная;
· транспортная;
· образование межклеточных контактов.
Каждый монослой ее образован в основном молекулами фосфолипидов и, частично, холестерина. При этом в каждой липидной молекуле различают две части: гидрофильную головку и гидрофобные хвосты. Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки билипидного слоя соприкасаются с внешней или внутренней средой. Билипидная мембрана, а точнее ее глубокий гидрофобный слой, выполняет барьерную функцию, препятствуя проникновению воды и растворенных в ней веществ, а также крупных молекул и частиц.
На электроннограмме в плазмолемме четко определяются три слоя наружный и внутренний электронноплотные, промежуточный с низкой электронной плотностью.
Белковые молекулы встроены в билипидный слой мембраны локально и не образуют сплошного слоя.
· интегральные пронизывают всю толщу билипидного слоя;
· полуинтегральные включающиеся только в монослой липидов (наружный или внутренний);
· прилежащие к мембране, но не встроенные в нее.
· структурные белки;
· транспортные белки;
· рецепторные белки;
· ферментные.
Находящиеся на внешней поверхности плазмолеммы белки, в также гидрофильные головки липидов обычно связаны цепочками углеводов и образуют сложные полимерные молекулы гликопротеиды и гликолипиды. Именно эти макромолекулы и составляют надмембранный слой –
Значительная часть поверхностных гликопротеидов и гликолипидов выполняют в норме рецепторные функции, воспринимают гормоны и другие биологически активные вещества. Такие клеточные рецепторы передают воспринимаемые сигналы на внутриклеточные ферментные системы, усиливая или угнетая обмен веществ и тем самым оказывают влияние на функции клеток. Клеточные рецепторы, а возможно и другие мембранные белки, благодаря своей химической и пространственной специфичности, придают специфичность данному типу клеток данного организма и составляют
Помимо барьерной функции, предохраняющей внутреннюю среду клетки, плазмолемма выполняет транспортные функции, обеспечивающие обмен клетки с окружающей средой.
· пассивный транспорт способ диффузии веществ через плазмолемму (ионов, некоторых низкомолекулярных веществ) без затраты энергии;
· активный транспорт веществ с помощью белков-переносчиков с затратой энергии (аминокислот, нуклеотидов и других);
· везикулярный транспорт через посредство везикул (пузырьков), который подразделяется на эндоцитоз транспорт веществ в клетку, и экзоцитозтранспорт веществ из клетки.
В свою очередь
· фагоцитоз захват и перемещение в клетку крупных частиц (клеток или фрагментов, бактерий, макромолекул и так далее);
· пиноцитоз перенос воды и небольших молекул.
· адгезия (прилипание) объекта к цитолемме фагоцитирующей клетки;
· поглощение объекта путем образования вначале углубления (инвагинации), а затем и образования пузырьков – фагосомы и передвижения ее в гиалоплазму
3. Строение и функции межклеточных контактов
В тех тканях, в которых клетки или их отростки плотно прилежат друг к другу (эпителиальная, гладкомышечная и другие) между плазмолеммами контактирующих клеток формируются связи – межклеточные контакты.
· простой контакт;
· десмосомный контакт;
· плотный контакт;
· щелевидный или нексус;
· синаптический контакт или синапс.
4. Гиалоплазма
Гиалоплазма или матрикс цитоплазмы составляет внутреннюю среду клетки. Она состоит из воды (90 %) и различных биополимеров (7 %) белков, нуклеиновых кислот, полисахаридов, липидов, из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества. Биополимерные соединения образуют с водой коллоидную систему, которая в зависимости от условий может быть более плотной (в форме геля) или более жидкой (в форме золя) как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является весьма динамичной средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клетки в целом.
5. Классификация органелл:
· мембранные органеллы: митохондрии, эндоплазматическая сеть, пластинчатый комплекс, лизосомы, пероксисомы;
· немембранные органеллы: рибосомы, клеточный центр, микротрубочки, микрофибриллы, микрофиламенты.
· цитоплазматические – миофибриллы, нейрофибриллы, тонофибриллы;
· органеллы клеточной поверхности – реснички, жгутики.
· Все разновидности мембранных органелл имеют общий принцип строения:
· они представляют собой замкнутые и изолированные участки в гиалоплазме (компарменты), имеющие свою внутреннюю среду;
· стенка их состоит из билипидной мембраны и белков, подобно плазмолемме.
· Однако билипидные мембраны органелл имеют и некоторые особенности:
· толщина билипидных мембран органелл меньше (7 нм), чем в плазмолемме (10 нм);
· мембраны отличаются по количеству и качеству белков, встроенных в мембраны.
Однако тот факт, что мембраны имеют общий принцип строения позволяет мембранам органелл и плазмолеммы взаимодействовать друг с другом встраиваться, сливаться, разъединяться, отшнуровываться. Этим достигается
6. Строение и функции общих органелл
Форма митохондрий может быть овальной, округлой, вытянутой и даже разветвленной, но преобладает овально-вытянутая. Стенка митохондрий образована двумя билипидными мембранами, разделенные пространством в 10–20 нм. При этом внешняя мембрана охватывает по периферии в виде мешка всю митохондрию и отграничивает ее от гиалоплазмы. Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутрь митохондрии складкикристы. В некоторых клетках (клетки коркового вещества надпочечника) внутренняя мембрана образует не складки, а везикулы или трубочки –
· зернистая (гранулярная или шероховатая);
· незернистая или гладкая.
На наружной поверхности мембран зернистой эндоплазматической сети содержатся прикрепленные рибосомы. В цитоплазме могут быть обе разновидности эндоплазматической сети, но обычно преобладает одна форма, что и обуславливает функциональную специфичность клетки. Следует помнить, что названные две разновидности являются не самостоятельными формами эндоплазматической сети, так как можно проследить переход зернистой эндоплазматической сети в гладкую и наоборот.
· синтез белков, предназначенных для выведения из клетки («на экспорт»);
· отделение (сегрегация) синтезированного продукта от гиалоплазмы;
· конденсация и модификация синтезированного белка;
· транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;
· синтез билипидных мембран.
· участие в синтезе гликогена;
· синтез липидов;
· дезинтоксикационная функциянейтрализация токсических веществ, посредством соединения их с другими веществами.
· цис-полюс – направлен основанием к ядру;
· транс-полюс – направлен в сторону цитолеммы.
Установлено, что к
· транспортная – выводит из клетки синтезированные в ней продукты;
· конденсация и модификация веществ, синтезированных в зернистой эндоплазматической сети;
· образование лизосом (совместно с зернистой эндоплазматической сетью);
· участие в обмене углеводов;
· синтез молекул, образующих гликокаликс цитолеммы;
· синтез, накопление и выведение муцина (слизи);
· модификация мембран, синтезированных в эндоплазматической сети и превращение их в мембраны плазмолеммы.
Среди многочисленных функций пластинчатого комплекса на первое место ставят транспортную функцию. Именно поэтому его нередко называют транспортным аппаратом клетки.