Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Открытия и гипотезы, 2015 №01 - Журнал «Открытия и гипотезы» на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Ученые из Бернского университета выяснили, что вода, входящая в состав кометы 67Р/Чурюмова — Герасименко, имеет другой изотопный состав, чем вода на нашей планете. Это значит, что кометы, скорее всего, не имеют отношения к возникновению океанов на Земле.

Выяснилось, что на каждые 10 000 обычных атомов водорода, которые входят в состав молекул воды, на комете приходится около 6 тяжелых изотопов дейтерия. Это почти в три раза больше, чем на Земле. Содержание дейтерия является очень устойчивой характеристикой воды и практически никогда не меняется. Поэтому на этот показатель можно ориентироваться в вопросе о происхождении земных океанов.

Ранее считалось, что большую часть воды на Землю принесли кометы. Однако данные «Розетты» окончательно ставят крест на этой теории. К настоящему времени с помощью различных методик ученые измерили содержание дейтерия на 11 кометах, и только на одной из них, комете ЮЗР/Хартли, его оказалось столько же, сколько на Земле.

15 ноября 2014 года, проработав около 60 часов и отправив результаты проведённых анализов, спускаемый аппарат «Филы» переключился в режим ожидания (все научные приборы и большинство бортовых систем выключены) из-за исчерпания заряда батарей на борту. Освещённость солнечных батарей (и, соответственно, вырабатываемая ими мощность) слишком мала для зарядки аккумуляторов и продолжения работы, поэтому сеансы связи с аппаратом в ближайшее время маловероятны. Возможно, по мере приближения кометы к Солнцу, количество вырабатываемой энергии возрастёт до величин, достаточных для включения аппарата — такое развитие событий учтено при его проектировании. Ещё есть шанс, ведь максимальное сближение кометы с Солнцем состоится в августе 2015 года, а окончание программы исследований предполагается в декабре 2015 года.


Размер кометы на фоне Лос-Анджелеса для сравнения.


Это изображение показывает примерный размер кометы.

* * *

Ожидаемые результаты миссии «Розетта» должны дать ключ к пониманию как механизмов формирования комет — одних из самых ранних и сохранившихся почти в первозданном виде тел Солнечной системы, так и особенностей истории нашей удивительной планеты Земли.

Но самое главное — это ответ на самый фундаментальный вопрос современной науки — как возникла жизнь?

Игорь Остин

Микробные войны


Микробиологи из Университета Лестера работали с пневмококком (Streptococcus pneumoniae) — микробом, который вызывает у человека целый ряд опасных заболеваний. В ходе эксперимента они впрыскивали мышам дозу примерно в один миллион этих бактерий и затем наблюдали за их состоянием. У половины мышей вскоре развивался сепсис (заражение крови) и они погибали.

Выяснилось, что если мышам впрыскивать сразу три штамма пневмококка, то к моменту гибели в тканях животных будет присутствовать только один из них. Ученые предположили, что в какой-то момент исходная популяция бактерий проходит сквозь «бутылочное горлышко», резко сокращаясь, так что после восстановления своей численности микробы оказываются менее разнообразными.

Сопоставив генотип пневмококков на начальных и завершающих стадиях развития инфекции, специалисты установили, что в 2/3 случаев в какой-то момент популяция бактерий в грызунах сокращалась до одной-единственной клетки. Потомство этого микроба-одиночки и приводило впоследствии к развитию смертельной инфекции.

По мнению исследователей, после введения бактерий почти все они уничтожаются в ходе атаки макрофагов, клеток иммунной системы. Но одному из пневмококков иногда удается выжить и вновь заселить организм. Ученые показали, что выжившая бактерия не болезнетворнее остальных. Следовательно, ее выживание зависит исключительно от случайных обстоятельств.

Ниже дна

Жизнь на нашей планете простирается от верхних слоев атмосферы до океанских глубин и ниже. Но вот насколько ниже, долгое время оставалось непонятным.

Авторы открытия из Калифорнийского технологического института заявили о результатах бурения, проводившегося в 2012 году в районе полуострова Симокита (Япония). С помощью исследовательского судна Chikyu ученые сделали скважину в морском дне глубиной 2 446 метров. При этом дно было отделено от поверхности океана километровой толщей воды.

В ходе бурения удалось извлечь образцы породы из угольных слоев. В них ученые обнаружили колонии сферических микроорганизмов. Культивирование микробов в лаборатории показало, что они способны расщеплять метан и другие гидрокарбонаты, чьи примеси содержатся в каменном угле. При этом уровень метаболизма у данных микроорганизмов очень низкий.

Пока ученые не знают как именно бактерии очутились на глубине в 2,5 километра под дном океана. Возможно, они присутствовали в угольных слоях десятки миллионов лет назад, когда те стали погружаться под воду в результате геологических процессов. Однако не исключено, что микроорганизмы как-то проникли в залежи угля с поверхности океана.

Открытие доказывает, что в подобной изоляции и при экстремальном дефиците ресурсов жизнь может существовать и на других планетах.

Подготовил А. Косов

Люди рождаются оптимистами


Ученые выяснили, что младенцы хорошо запоминают предметы, связанные с позитивными эмоциями, и не обращают внимания на вещи, ассоциирующиеся с плохим настроением. К такому выводу пришли психологи из Университета Бригама Янга.

В эксперименте приняли участие 120 младенцев в возрасте 5 месяцев. Их сажали на стульчик и включали перед ними экран, на котором проигрывалась видеозапись выступления человека, говорящего радостным, сердитым или нейтральным голосом. Параллельно младенцам демонстрировалась фигура определенной геометрической формы.

Через пять минут после опыта детям вновь показывали эту же фигуру, а рядом с ней — еще одну, которую они до этого не видели. Через сутки этот тест повторялся.

Ученые засекали, как часто дети смотрят на уже знакомую фигуру, и как часто — на новую. Стоит отметить, что из предыдущих экспериментов известно — младенцы преимущественно реагируют на нечто новое по сравнению с уже закрепившимся в памяти.

Оказалось, что младенцы, которые знакомились с фигурами в радостной или нейтральной эмоциональной обстановке, хорошо их запоминали и потому при повторном показе глазели, в основном, на незнакомые предметы. Фигуры же, сопровождаемые негативным эмоциональным фоном, не запечатлевались в памяти детей, так что они смотрели как на старые, так и на новые объекты с равным вниманием.

Крысиные нежности


На примере крыс ученые описали, как и почему нижнее белье партнерши становится привлекательным для мужчин. О своих опытах биологи рассказали на ежегодной конференции Американского нейрофизиологического общества.

Сначала ученые поместили 12 крыс в помещение, где находились самки, одетые в специальные короткие жилетки, и позволили им спариваться друг с другом. Затем самцов (по одному) переводили в другую комнату — с двумя самками: в жилетке и без. Оказалось, что крысу в жилетке самцы одаривают своим вниманием чаще.

Далее биологи решили выяснить, как случка с одетыми в «нижнее белье»» самками отражается на работе мозга самцов. Сразу же после полового акта ученые впрыскивали в головной мозг самцов краситель, показывающий деятельность нейронной активности. Оказалось, что центры удовольствия у крыс, совокуплявшихся с самками в жилетках, работали более активно, чем у других самцов.

Хотя крысы сильно отличаются от мужчин, эротичное женское белье может оказывать на последних такое же воздействие, утверждают ученые.

Подготовил А. Косов

Откуда берутся умные дети

От чего зависит развитие ребёнка? Природа и воспитание, врождённое и приобретённое, генетическое и средовое… Всё это имеет место и начинается прямо с колыбели.


Существует волшебная ткань, с которой ребёнок рождается на свет, — мозг. Нейронных связей в коре в момент рождения — всего несколько процентов от того, что там в итоге будет. А теперь внимание: к десяти месяцам жизни у младенца будет в несколько раз больше связей в коре, чем у меня и у вас. Что дальше? Редукция. Экспериментально, на животных, исследователи видели то же самое: чрезвычайная избыточность сначала — потом редукция. Что же служит механизмом отбора?

Проводились эксперименты над детёнышами животных, которые показывали, что отбор зависит от внешнего опыта, от условий реальной жизни. Когда котёнка выращивали в цилиндре в вертикальную полоску, в его зрительной коре исчезали нейроны, способные реагировать на горизонтальные предметы. Мозг сохраняет только те устройства, которые нужны для обработки реально поступающей информации, а если такой информации нет, если обрабатывать нечего, устройство исчезает. Всё это происходит в особый младенческий период.

Внешние воздействия — природные и социальные — начали даже уподоблять скульптору, который из этой нейронной глыбы мрамора высекает, как резцом, наше «я», но такая аналогия не совсем точна. Ближе к истине нейрофизиологи, которые говорят: «useitorloseit», «используй или потеряешь». И действительно: иметь и использовать — это две разные вещи.

Нейронные сети не могут обрабатывать одновременно всё: пока обрабатывается одно, другое отодвигается. Когда информация побеждает в борьбе за нейронный ресурс, у обрабатывающего её устройства повышаются шансы сохраниться при ретакие факторы, как эмоции, внимание, некоторые другие, и именно ими активно занимаются исследователи интеллекта во всём мире. И меня всегда интересовал вопрос: что наследуемо, а что не наследуемо.

Сначала пришлось сделать невозможное

В 1992 году у себя в Психологическом институте мы решили заняться исследованием близнецов. Провести психологические пробы, оценить их уровень когнитивного развития, а потом вычленить из всего этого, что наследуемо, а что идёт от среды.

Выяснить это можно методами генетического анализа и статистически. В выборке есть монозиготные (однояйцевые) близнецы, у которых 100 % генов одинаковы, и дизиготные (разнояйцевые)близнецы, у которых одинаковы только 50 %. Признак, который абсолютно идентичен у монозиготных близнецов, но только наполовину идентичен у дизиготных, наследуем стопроцентно. А признак, сходство которого одинаково у моно- и дизиготных близнецов, зависит, скорее всего, от среды. Математическую модель разделяет вклад генетики и среды.

Для статистического исследования нужна хорошая выборка, мы решили — минимум сто пар. Представьте, каково было это организовать, да ещё в 1990-е. Мало того, что мать как-то должна привезти младенцев в лабораторию, она ещё будет не одна — кто-то приедет с нею, чтобы помогать; кроме того, она будет с двумя грудными детьми, а не с одним. И эти груднички пробудут у нас практически целый день: пока с одним проводят аппаратные исследования, другого тестируют психологически, потом они меняются местами. И так сто пар, 50 монозиготных и 50 дизиготных.

Когда прошло 5–6 лет, близнецов обследовали повторно. Все сто пар собрать не вышло, мы смогли найти только 50, что не позволило анализировать генетику, но и при таком объёме выборки удалось решить некоторые интересные задачи.


В чём измерять интеллект младенца?

Ранее в психологических исследованиях было показано, что, если измерять интеллект периодически — в первый год жизни, во второй, в пятый и так далее до 19 лет, то, начиная с третьего или даже со второго года, интеллект, измеренный в разных возрастах, очень хорошо коррелирует. Другими словами, кто оказался умным в два года, тот будет умным и в 6, и в 19 и так далее. Происходит это отчасти потому, что вклад наследственности в показатели интеллекта с возрастом увеличивается. Это тоже подтверждено исследованиями: брали разлучённых близнецов, оценивали их интеллект и интеллект их приёмных и биологических родителей. Со временем дети становились интеллектуально всё больше похожими на своих биологических родителей. (Здесь очень важно понимать, что речь идёт исключительно об интеллекте, а не обо всей психической жизни человека, которая гораздо богаче умственной.)

Но корреляция по интеллекту наблюдалась только после примерно двух лет. Между периодом младенчества и всеми остальными возрастами существовал разрыв: оценки интеллекта младенца никак не коррелировали с последующими оценками его интеллекта в других возрастах.

Интеллект младенца традиционно измеряют с помощью специальных сенсомоторных тестов — шкал Бейли, которые позволяют большое число показателей свести в суммарный результат. Этот подход основан на том, что классик психологии развития швейцарец Жан Пиаже когда-то выделил в развитии интеллекта сенсомоторную стадию и считал, что от того, как она пройдёт, должны зависеть все последующие.

Должны, а они не зависят. Разрыв. Может быть, мы просто как-то не так природу спрашиваем?

Нам стало интересно: а не сможем ли мы померить что-то другое, что лежит в основе интеллекта у младенцев. Тут как раз подоспело горячее увлечение западной психологии «нервной моделью стимула по Соколову». Коротко суть её вот в чём. У живых существ есть так называемый ориентировочный рефлекс «что такое?»; он возникает в ответ на стимул, предъявляемый впервые, и угасает при повторных предъявлениях того же стимула. Евгений Соколов предположил, что угасание зависит от той нервной модели стимула, которая была у животного или у человека в момент, когда стимул первый раз прозвучал. При первом предъявлении стимул не вписывается в модель ситуации, которая есть в мозге. По мере повторных предъявлений модель обновляется и рефлекс «что такое?» угасает.


Проще говоря, чем быстрее ребёнок привыкает к стимулу, тем у него будет выше интеллект. В 1990-е годы начали разными способами мерить у младенцев динамику привыкания и увидели: да, коррелирует! В отличие от шкал Бейли, у скорости привыкания есть корреляции с позднейшими показателями интеллекта.

Но… слабенькие. В тех работах, которые я читала уже в 2006 году, суммарные корреляции всё ещё не впечатляли. Исследователи, мыслившие более физиологично, предположили, что эти корреляции могли возникать не потому, что скорость привыкания отражает скорость обработки информации, а потому, что у тех деток, которые быстрее привыкали, было лучше внимание: способность сфокусироваться на стимуле.

Это же младенцы, ты ещё пойми, куда он смотрит. Те из них, которые «лучше смотрели на стимул» — то есть те, у которых внимание было выше, — именно они и привыкали к стимулу быстрее и имели оценки интеллекта повыше. Прекрасное предположение, но можно ли его как-то доказать? И гут мы подумали: как хорошо, мыто как раз можем померить внимание на первом году жизни!

Дело в том, что электрические процессы в мозге очень точно отражают внимание.

Основу электрических процессов, которые регистрирует энцефалограмма, составляют ритмы. Альфа-ритм доминирует в состоянии покоя зрительной системы, тета-ритм появляется при эмоциональном возбуждении, мю-ритм характерен для замирания при глубокой концентрации и так далее.

Внимание, как показывают аппаратные исследования мозга, — это довольно сложный, неоднородный процесс. Сначала стимул вызывает повышенный общий уровень нейронального возбуждения, затем это возбуждение должно канализироваться через какой-то регуляторный механизм. Именно эту роль — регулятора, фильтра, отбирающего, по какому каналу информация пойдёт в кору, а какие каналы будут при этом частично выключены как неактуальные для об- работки данного стимула, — и играет таламус.

В частности, если в соматосенсорной коре мы видим хороший мю-ритм, значит, в этот момент глубина зрительного внимания велика, а моторная система отдыхает. Такой же соматосенсорный ритм будет у замершей кошки, которая следит за мышью, у любого животного… и у младенца тоже.

Вот его-то, мю-ритм при зрительном внимании, мы и стали изучать и получили великолепную корреляцию с поведением.


«Эффект бабушки»


Внимание устроено довольно сложно: помимо того, что в таламусе регулируется канал, по которому поступает к коре сенсорный приток, есть и другая регуляция — непосредственно внутри канала. Например, в зрительном канале появляется несколько конкурирующих стимулов. Вам нужен только один из них, другие мозг воспринимает как помеху. Включается селективный механизм выбора мишени внимания, он решает исход конкуренции: какие из стимулов вы будете обрабатывать.

Тут я воспользовалась одним наблюдением, которое мы сделали немного раньше.

Дело в том, что помимо альфа-ритма, который рождается в связи таламуса и коры, у человека, и у младенца тоже, есть ещё тета-ритм. Тета-ритмы впервые описаны как эмоциональные. Но эмоции — дело тонкое, в экспериментальной обстановке их вызвать трудно, если только это не негативные эмоции, а негативные вызывать нельзя из-за этических ограничений. С другой стороны. некоторые умельцы ухитрялись снимать эмоции даже во время полового акта и действительно получали огромный тета-ритм у взрослого человека. Кроме того, такой же ритм был описан у грудного ребёнка, когда ему показали какую-то невероятную новую куклу. Всё это как будто подтверждало связь тета-ритма с аффектом.

Замечательная исследовательница Ольга Виноградова изучала тета-ритм в гипокампе животных (гипокамп связан с памятью). Так вот, тета-ритм оказался наиболее выражен как раз не в коре, а в гипокампе. Проще говоря, когда внимание захвачено одной-единственной мишенью, то в коре появляется тета-ритм.

Интересно, что сам гипокамп при этом находится в заторможенном состоянии, у него работают всего несколько групп нейронов, которые этот ритм навязывают; он не регистрирует никакой новой информации, только демонстрирует, что «линия занята».

«Я занят, отстаньте от меня, у меня одна-единственная мишень, и пока это так, никакого богатого сенсорного притока у меня не будет». Тогда я подумала; почему тета-ритм возникает при эмоциях? Может быть, в норме при эмоциональном возбуждении тета-ритм просто означает предельно сфокусированное внимание? И мы это доказали — на грудных младенцах.

Мы провели очень простой и показательный эксперимент: экспериментатор играла с младенцем в «ку-ку». Она появлялась перед ним: «Привет, ты меня видишь?», «Ты меня ждёшь?» — в этот момент её отгораживал от ребёнка белый экран. В руках у неё был датчик, которым она отмечала периоды появления и исчезновения. а видеокамера регистрировала поведение ребёнка. Гипотеза была такая: если тета-ритм связан с аффектом, то его максимум должен возникать, когда экспериментатор появляется из-за экрана и младенец весь расцветает улыбкой. А если он связан с предельно сконцентрированным, недоступным другим стимулам вниманием, то появляться должен тогда, и только тогда, когда ребёнок ждёт, глядя на совершенно пустое место, на экран. Чем управляется в этот момент внимание восьмимесячного младенца? Внешней стимуляцией? Нет. Его внимание управляется его прогнозом ситуации. У детей до этого возраста — исчезло из виду — и тут же забыто. А восьмимесячный знает, что я появлюсь, его внимание поддерживается и энцефалограф регистрирует безумный тета-ритм. Потом экспериментатор появляется — и тета-ритма нет. Он блокирован внешним стимулом; внутренняя, самим мозгом выбранная мишень, исчезла.

Мы получили ответ на свой вопрос: хорошую, нешуточную корреляцию внимания младенцев с их интеллектом в пятилетием возрасте. Никакого разрыва корреляция не показывает.




Поделиться книгой:

На главную
Назад