2. Тени
Рассмотрение физических явлений, происходящих при горении свечи, представляет собой самый широкий путь, которым можно подойти к изучению естествознания.
В своих знаменитых научных лекциях в Королевском институте Майкл Фарадей всегда побуждал своих слушателей изучать мир, рассматривая, что происходит при горении свечи. Я заменю свечу электрическим фонариком. Это правомерно, поскольку устройство электрического фонарика во многом основано на открытиях Фарадея.
Я опишу несколько экспериментов, которые демонстрируют явления, лежащие в основе квантовой физики. Такого рода эксперименты со множеством вариантов и уточнений уже многие годы остаются основой существования квантовой оптики. Об их результатах не спорят, однако даже сейчас в некоторые из них трудно поверить. Базовые эксперименты удивительно просты. Они в сущности не требуют ни специализированных научных инструментов, ни больших познаний в математике или физике, потому что они заключаются всего лишь в отбрасывании теней. Обычный электрический фонарик может производить весьма странные картины света и тени. Если о них как следует подумать, обнаруживаются исключительной важности следствия. Чтобы объяснить их, нужны не просто новые физические законы, а новый
Представьте себе, что в темной комнате, где нет других источников света, включили электрический фонарик. Нить накала лампочки испускает свет, который расширяется, образуя конус. Чтобы не усложнять эксперимент отраженным светом, стены комнаты должны быть матово-черными, полностью поглощающими свет. Или, поскольку мы проводим эти эксперименты только в своем воображении, можно представить себе комнату астрономических размеров, чтобы свет не успевал достичь стен и вернуться до завершения эксперимента. Рис. 2.1 иллюстрирует данный опыт. Но этот рисунок кое в чем не соответствует действительности: если бы мы смотрели на фонарик со стороны, то не увидели бы ни его самого, ни испускаемого им света. Невидимость – одно из наиболее понятных свойств света. Мы видим свет лишь тогда, когда он попадает в наши глаза (хотя мы обычно говорим о том, что видим объект, находящийся на линии нашего зрения, который последним повлиял на этот свет).
Мы не можем увидеть свет, который просто проходит мимо. Если бы в луче оказался отражающий объект или даже пыль или капельки воды, чтобы рассеять свет, мы увидели бы, где он проходил. Но поскольку в луче ничего нет и мы смотрим на него извне, никакая часть его света нас не достигает. Точным представлением того, что мы должны увидеть, была бы абсолютно черная картинка. Если бы там был второй источник света, мы могли бы увидеть фонарик, но опять же не его свет. Лучи света, даже самого интенсивного света, который мы можем получить (с помощью лазеров), проходят друг сквозь друга, как если бы на их пути вовсе ничего не было.
На рис. 2.1 видно, что около фонарика свет наиболее яркий, а по мере удаления от него свет тускнеет, так как луч расширяется, чтобы осветить все бо́льшую площадь. Наблюдателю, находящемуся внутри луча и удаляющемуся от фонарика спиной вперед, рефлектор будет казаться все меньше, а затем, когда он станет выглядеть точкой – все слабее. Но нет ли тут подвоха? Действительно ли свет способен распространяться беспредельно все более и более тонкими лучами? Ответ: нет. На расстоянии примерно 10 000 км свет фонарика станет слишком слабым, чтобы человеческий глаз мог его различить, и наблюдатель ничего не увидит. То есть человек не увидит ничего; а животное с более чувствительным зрением? Глаз лягушки в несколько раз чувствительнее человеческого: этого как раз достаточно, чтобы эксперимент принес существенно иной результат. Если наблюдателем будет лягушка и она будет удаляться от электрического фонарика, момент, когда она полностью потеряет его из вида, никогда не наступит. Вместо этого лягушка увидит, что фонарик начал мигать. Вспышки будут видны через неравные промежутки времени, которые будут увеличиваться по мере удаления лягушки от фонарика. А вот яркость каждой отдельной вспышки не будет меньше. На расстоянии 100 млн км от фонарика лягушка будет видеть в среднем только одну вспышку света в день, но эта вспышка будет столь же яркой, как и наблюдаемая с любого другого расстояния.
К сожалению, лягушки не могут рассказать нам, что они видят. Поэтому при проведении реальных экспериментов мы используем фотоумножители (датчики света, чувствительность которых превышает чувствительность глаз лягушки), а вместо того, чтобы смотреть с расстояния в 100 млн км, ослабляем свет, пропуская его через темные фильтры. Однако принцип остается тем же самым, как и результат: не полная темнота и не однородный тусклый свет, а мигание, причем вспышки – одинаково яркие, независимо от того, насколько темный фильтр мы используем. Это мерцание показывает, что существует предел равномерного «растягивания» света. Пользуясь терминологией ювелиров, можно сказать, что свет не является бесконечно «ковким». Подобно золоту, небольшое количество света можно равномерно распределить по очень большой площади, но в конечном итоге, если попытаться растянуть его еще сильнее, он станет комковатым. Даже если можно как-нибудь предотвратить группирование атомов золота в отдельные комки, существует предел, за которым атомы уже нельзя разделить без того, чтобы золото не перестало быть золотом. Поэтому единственный способ сделать золотой лист толщиной в один атом еще тоньше – расположить атомы дальше друг от друга, чтобы между ними было пустое пространство. Но когда эти атомы окажутся достаточно далеко друг от друга, уже нельзя будет считать, что они образуют сплошной лист. Например, если каждый атом золота будет находиться в среднем на расстоянии нескольких сантиметров от своего ближайшего соседа, можно будет провести рукой через этот «лист», не прикасаясь к золоту вообще.
Точно так же существует минимальный кусочек или «атом» света –
Это свойство – появляться лишь в виде кусочков дискретных размеров – называется
Является ли граница между светом и тенью резкой, или существует некая «серая зона»? Обычно существует довольно широкая серая область, и одна из причин ее существования показана на рис. 2.3. Есть темная область (называемая
Однако размер нити накала – не единственная причина того, почему фонарик отбрасывает полутени. Различное влияние на свет оказывают рефлектор, расположенный позади лампочки, стеклянный колпак фонарика, разные швы и дефекты и т. д. Так что мы ожидаем появления сложной светотеневой картины просто потому, что сам фонарик сложен. Но случайные особенности фонариков не являются предметом наших экспериментов. За вопросом о свете фонарика скрывается более фундаментальный вопрос о свете вообще: существует ли, в принципе, некий предел того, сколь резкой может быть тень (другими словами, насколько узкой может быть полутень)? Например, если фонарик сделать из абсолютно черного (неотражающего) материала и использовать все меньшего размера нити накала, возможно ли сужать полутень беспредельно?
Глядя на рис. 2.3, кажется, что это возможно: если бы нить накала не имела размера, не было бы полутени. Но на рисунке я сделал некоторое допущение относительно света, а именно, что свет распространяется только прямолинейно. Из повседневного опыта нам известно, что это так и есть, поскольку заглядывать за угол мы не умеем. Однако тщательные эксперименты показывают, что свет не всегда движется по прямой. При некоторых обстоятельствах он искривляется.
Это трудно продемонстрировать с помощью одного лишь фонарика, потому что сложно делать крошечные нити накала и очень черные поверхности. Эти практические сложности скрывают те пределы, которые фундаментальная физика накладывает на резкость теней. К счастью, искривление света можно продемонстрировать и иначе. Предположим, что свет фонарика проходит через два последовательных маленьких отверстия в светонепроницаемых экранах, как показано на рис. 2.4, и что свет падает затем на третий экран. Вопрос состоит в следующем: если этот эксперимент повторять, уменьшая диаметр отверстий и увеличивая расстояние между первым и вторым экранами, будет ли полная тень (область абсолютной темноты) сужаться безгранично, пока не превратится в прямую линию между центрами двух отверстий? Может ли освещенная область между вторым и третьим экраном быть ограничена произвольно узким конусом? Говоря языком ювелиров, сейчас мы спрашиваем что-то вроде того, «насколько пластичен свет», насколько тонка нить, в которую можно его растянуть. (Из золота можно получить нити толщиной в 0,0001 мм.)
Оказывается, что свет не так пластичен, как золото! Задолго до того, как диаметр отверстий приблизится к десятитысячной доле миллиметра, а в действительности уже при диаметре отверстий около одного миллиметра свет начинает заметно возмущаться. Вместо того чтобы проходить через отверстия по прямым линиям, свет не желает оставаться в ограниченном пространстве и расползается позади каждого отверстия. И, расползаясь, он «растрепывается». Чем меньше диаметр отверстия, тем сильнее свет уклоняется от прямолинейного пути. Появляются сложные картины света и тени. На третьем экране мы уже видим не освещенную и темную области с полутенью между ними, а концентрические кольца разной толщины и яркости. Кроме того, там присутствует цвет, так как белый свет является смесью фотонов разных цветов, каждый из которых распространяется и рассеивается немного по-своему. На рис. 2.5 показана типичная картина, которую может образовать на третьем экране белый свет, пройдя через отверстия в первых двух экранах. Напоминаю, здесь не происходит ничего, кроме отбрасывания тени! Рис. 2.5 – это всего лишь тень, отброшенная вторым экраном, изображенным на рис. 2.4. Если бы свет распространялся только прямолинейно, появилась бы только крошечная белая точка (гораздо меньше, чем яркое пятно в центре рис. 2.5), окруженная очень узкой полутенью. Все остальное было бы полной тенью – совершенной темнотой.
Как бы ни озадачивало искривление лучей света при прохождении через маленькие отверстия, я не вижу в этом фундаментальной проблемы. В любом случае для наших настоящих целей важно то, что свет действительно искривляется. Это означает, что тени не должны выглядеть как силуэты предметов, которые их отбрасывают. Более того, дело даже не в размывании изображения, вызванном полутенью. Оказывается, перегородка со сложной картиной отверстий может отбрасывать тень совершенно другой формы!
На рис. 2.6 показана примерно в натуральную величину часть картины теней, создаваемой на расстоянии 3 м двумя прямыми параллельными щелями в светонепроницаемой перегородке. Щели находятся на расстоянии 0,2 мм друг от друга и освещаются нерасходящимся красным лучом лазера, расположенного по другую сторону перегородки. Почему используется свет лазера, а не электрического фонарика? Только потому, что точная форма тени также зависит и от цвета света, который ее производит. Белый свет фонарика содержит весь спектр видимых цветов, поэтому он может отбрасывать тени с многоцветными краями. Поэтому для экспериментов, смысл которых в получении точной формы тени, лучше использовать свет одного цвета. Можно поместить перед фонариком цветной фильтр (например, пластину из цветного стекла), чтобы через него проходил свет только одного цвета. Это помогло бы, но фильтры выделяют его не слишком аккуратно. Лучше воспользоваться светом лазера, поскольку лазер можно очень точно настроить на испускание света совершенно конкретного цвета почти без примеси других[4].
Если бы свет распространялся прямолинейно, то на рис. 2.6 мы бы увидели две ярких полосы с резкими границами, расположенные на расстоянии 0,2 мм друг от друга (что было бы невозможно увидеть в таком масштабе), а остальная часть экрана осталась бы в тени. Но в действительности свет искривляется так, что образует много ярких и темных полос без резких границ. Если щели сдвинуть вбок так, чтобы они оставались в пределах лазерного луча, то и картина на экране сдвинется на столько же. В этом отношении она ведет себя как обычная тень, отбрасываемая крупным предметом. Хорошо, а какую тень мы получим, если прорежем в перегородке еще пару таких же щелей, сдвинув их на половину расстояния между первыми двумя, так что получится четыре щели, разделенные расстоянием в 0,1 мм? Можно было бы ожидать, что картина будет выглядеть почти так же, как и изображенная на рис. 2.6. Как-никак первая пара щелей отбрасывает тени, показанные на рис. 2.6, и, как я уже сказал, вторая пара щелей должна произвести подобную картину тени, сдвинутую в сторону на 0,1 мм – то есть почти на том же самом месте. Кроме того, мы знаем, что лучи света обычно проходят друг сквозь друга, не претерпевая изменений. Так что две пары щелей, казалось бы, должны дать ту же самую картину, но в два раза ярче и чуть более размытую.
В действительности происходит нечто совершенно иное. Реальная картина теней, отбрасываемых перегородкой с четырьмя прямыми параллельными щелями, показана на рис. 2.7 (а). Для сравнения ниже я снова привожу рисунок тени от перегородки с двумя щелями – рис. 2.7 (b). Мы видим, что тень от четырех щелей представляет собой отнюдь не комбинацию двух слегка смещенных теней от двух щелей, а имеет новую и более сложную структуру. В этой картине есть участки, вроде тех, что помечены знаком X, которые не освещены на картине тени от четырех щелей, но освещены на картине тени от двух щелей. Эти участки были яркими при наличии в перегородке двух щелей, но
Таким образом, появление еще двух источников света затемняет зону X, а их удаление снова освещает ее. Каким образом? Можно представить себе, как два фотона направляются к зоне X и отскакивают друг от друга, как бильярдные шары. Любой из двух фотонов, будь он один, попал бы в зону X, но они мешали друг другу и оба ушли куда-то в другие места. Скоро я покажу, что это объяснение не может быть истинным. Тем не менее от основной идеи этого объяснения уйти невозможно: через вторую пару щелей должно проходить
Во-первых, картина тени от перегородки с четырьмя щелями, изображенная на рис. 2.7 (а), появляется только в том случае, если все четыре щели освещены лазерным лучом. Если освещены только две щели, появляется картина, которая должна быть для двух щелей. Если освещены три щели, появится новая картина, отличная от двух предыдущих, – тень от трех щелей. Таким образом, то, что создает помехи, находится в луче света. Двухщелевая картина также появляется вновь, если две лишние щели заполнить светонепроницаемым материалом, и не появляется, если этот материал прозрачный. Другими словами, создающий помехи агент блокируется всем, что не дает проходить свету, даже если это нечто почти неощутимо, как туман. Однако он проникает сквозь все, что позволяет пройти свету, даже через такое непроницаемое (для вещества) препятствие, как алмаз. Если в приборе установить сложную систему зеркал и линз, то до тех пор, пока свет может дойти от каждой щели до конкретной точки на экране, в этой точке будет наблюдаться часть четырехщелевой картины. Если до конкретной точки может дойти свет только от двух щелей, на экране мы увидим часть двухщелевой картины и т. д.
Таким образом, что бы ни вызывало помехи, оно ведет себя в точности как свет. Оно всегда присутствует в луче света, но отсутствует вне его. Оно отражается, передается или блокируется тем, что отражает, передает или блокирует свет.
Возможно, вы удивитесь, почему я столь досконально разбираю этот вопрос. Ведь абсолютно очевидно, что это
Что нам следует ожидать, когда эти эксперименты проводятся с использованием
Однако именно это мы и увидим! Независимо от того, насколько редко появляются фотоны, картина теней остается неизменной. Даже при проведении эксперимента с одиночными фотонами мы не увидим ни единого случая их попадания в точку X, если открыты все четыре щели. Но стоит только закрыть две щели, и вспышки в точке Х возобновятся.
Быть может, фотон расщепляется на фрагменты, которые после прохождения через щели изменяют свою траекторию и соединяются вновь? Эту возможность мы тоже можем исключить. Опять-таки если запустить в наш прибор ровно один фотон и у каждой из четырех щелей установить по детектору, то зарегистрировать сигнал сможет максимум один из них. Поскольку при подобном эксперименте никогда не наблюдается срабатывания двух детекторов одновременно, можно утверждать, что обнаруживаемые ими объекты не расщепляются.
Хорошо, но если фотоны не расщепляются на фрагменты и не меняют траекторию под действием других фотонов, то что же их отклоняет? Когда через прибор проходит по одному фотону за раз, что проникает через другие щели, создавая ему помехи?
Подведем итог. Мы обнаружили, что, когда один фотон проходит через наш прибор:
• он проходит через одну из щелей, а затем что-то воздействует на него, заставляя отклониться от своей траектории, и это отклонение зависит от того, какие еще щели открыты;
• воздействующие агенты прошли через какие-то из оставшихся щелей;
• воздействующие агенты ведут себя в точности так же, как фотоны…
• …но их невозможно увидеть.
С этого момента я буду называть воздействующие объекты «фотонами». Именно фотонами они и являются, хотя в данный момент кажется, что существует два вида фотонов, один из которых я временно назову
Таким образом, мы пришли к выводу о существовании бурлящего, непомерно сложного скрытого мира теневых фотонов. Они летят со скоростью света, отражаются от зеркал, преломляются линзами и останавливаются, встретив светонепроницаемые барьеры или фильтры неподходящего цвета. Однако они не оказывают никакого воздействия даже на самые чувствительные детекторы. Единственная вещь во вселенной, по воздействию на которую можно наблюдать теневой фотон, – это сопровождаемый им реальный фотон. Это явление называется интерференцией. Если бы не это явление и не странные картины теней, по которым мы его обнаруживаем, теневые фотоны были бы абсолютно незаметными.
Интерференция свойственна не только фотонам. Квантовая теория предсказывает, а эксперимент подтверждает, что ей подвержены любые частицы. Так что каждый реальный нейтрон должны сопровождать войска теневых нейтронов, каждый электрон – войска теневых электронов и т. д. Каждую из этих теневых частиц можно обнаружить лишь косвенно по ее воздействию на движение реального партнера.
Отсюда вытекает, что реальность гораздо обширнее, чем кажется, и большая ее часть невидима. Те объекты и события, которые мы и наши приборы можем наблюдать непосредственно, – не более чем вершина айсберга.
Реальные частицы обладают свойством, которое дает нам право называть их совокупность
По сходным причинам можно было бы предложить назвать совокупность теневых частиц
Нужно сделать замечание относительно терминологии. Слово «вселенная» традиционно использовали для обозначения «всей физической реальности». В этом смысле может существовать не более одной вселенной. Мы можем и далее придерживаться этого определения и утверждать, что то, что мы привыкли называть нашей Вселенной, а именно: все непосредственно ощутимое вещество и энергия вокруг нас, и все окружающее нас пространство – далеко не вся вселенная, а лишь небольшая ее часть. В этом случае нам пришлось бы придумать новое название для этой маленькой реальной части. Но большинство физиков предпочитает продолжать пользоваться словом «вселенная» для обозначения того, что оно всегда обозначало, несмотря на то что сейчас эта сущность оказывается лишь маленькой частью физической реальности. Для обозначения физической реальности в целом было придумано новое слово – мультивселенная, или
Опыты с интерференцией одной частицы, подобные описанным мной, показывают, что мультиверс существует и содержит множество партнеров каждой частицы реальной вселенной. Чтобы прийти к следующему выводу о разделении мультиверса на параллельные вселенные, следует рассмотреть явление интерференции более чем одной реальной частицы. Самый простой способ осуществить это – спросить посредством «мысленного эксперимента», что должно происходить на микроскопическом уровне, когда теневые фотоны встречают непрозрачный объект. Безусловно, они останавливаются: мы знаем это, поскольку интерференция прекращается, когда на пути теневых фотонов появляется светонепроницаемая перегородка. Но почему? Что их останавливает? Мы можем исключить прямолинейный ответ, что реальные атомы перегородки поглощают их так же, как поглотили бы реальные фотоны. Во-первых, нам известно, что теневые фотоны не взаимодействуют с реальными атомами. Во-вторых, мы можем проверить, измерив атомы перегородки (или точнее, заменив перегородку детектором), что они не поглощают энергию и никоим образом не изменяют свое состояние, пока не встретят реальный фотон. Теневые фотоны не оказывают на них никакого влияния.
Другими словами, перегородка одинаково воздействует как на реальные, так и на теневые фотоны, но на нее эти два вида фотонов воздействуют по-разному. В действительности, насколько нам известно, теневые фотоны вообще не оказывают на нее никакого воздействия. На самом деле это и является определяющим свойством теневых фотонов, потому что если бы они оказывали видимое воздействие хоть на какой-то материал, то этот материал можно было бы использовать как детектор теневых фотонов, а само явление теней и интерференции не существовало бы в том виде, в каком я его описал.
Следовательно, в месте существования реальной перегородки находится и теневой барьер некоторого вида. Без особых усилий можно сделать вывод, что эта теневая перегородка состоит из
По той же причине каждый теневой атом в перегородке может взаимодействовать лишь с небольшой долей других теневых атомов, находящихся около него, и те, с которыми он взаимодействует, образуют перегородку, весьма похожую на реальную. И так далее. Всё вещество и все физические процессы имеют такую структуру. Если реальным барьером является сетчатка глаза лягушки, значит, должно быть много теневых сетчаток, каждая из которых способна остановить только одного теневого партнера каждого фотона. Каждая теневая сетчатка сильно взаимодействует только с соответствующими теневыми фотонами, с соответствующей теневой лягушкой и т. д. Другими словами, частицы группируются в параллельные вселенные. Они «параллельны» в том смысле, что в пределах каждой вселенной частицы взаимодействуют друг с другом так же, как в реальной вселенной, но воздействие, оказываемое каждой вселенной на остальные, весьма слабое, и реализуется оно через явление интерференции.
Таким образом, мы построили цепочку умозаключений, которая начинается со странной структуры теней и заканчивается параллельными вселенными. На каждом этапе мы обнаруживаем, что поведение наблюдаемых нами объектов можно объяснить только присутствием невидимых объектов, которые имеют вполне определенные свойства. Ключевая идея заключается в том, что явление интерференции одиночной частицы определенно исключает возможность того, что существует одна лишь реальная вселенная, которая нас окружает. Никто не отрицает, что такое явление интерференции существует. Тем не менее лишь немногие физики признают существование мультиверса. Почему?
Ответ, к сожалению, выставляет большинство не в лучшем свете. Я еще вернусь к этому в главе 13, но сейчас мне хотелось бы подчеркнуть, что доводы, представленные мной в этой главе, обращены лишь к тем, кто ищет
«Почему мы не можем просто сказать, – спрашивают некоторые физики-прагматики, – что фотоны ведут себя так,
Причину того, что эффект интерференции обычно столь слаб и трудно обнаружим, можно найти в законах квантовой механики, которые им управляют. Существенны два частных вывода из этих законов. Во-первых, каждая субатомная частица имеет партнеров в других вселенных и интерферирует только с этими партнерами. Любые другие частицы этих вселенных не оказывают на нее непосредственного воздействия. Следовательно, интерференцию можно наблюдать лишь в особых случаях, когда траектории частицы и ее теневых партнеров расходятся и затем вновь сходятся (когда, например, фотон и теневой фотон стремятся к одной и той же точке на экране). Даже время должно быть правильным: если на одной из двух траекторий организовать задержку, интерференция ослабнет или прекратится. Во-вторых, для того, чтобы обнаружить интерференцию между любыми двумя вселенными, необходимо, чтобы произошло взаимодействие
Ради блага читателей, которые могли видеть другие описания квантовой физики, я должен кратко показать связь между рассуждением, приведенным мной в этой главе, и обычным способом подачи этого предмета. Возможно, из-за споров, возникших среди физиков-теоретиков, традиционно отправной точкой является сама квантовая теория. Сначала теорию пытаются изложить как можно точнее, а уже затем – понять, что она говорит нам о реальности. Это единственный возможный подход, если нужно прийти к пониманию мельчайших деталей квантовых явлений. Но в отношении вопроса о том, состоит ли реальность из одной вселенной или из многих, этот подход излишне сложен. Именно поэтому в данной главе я ему не следовал. Я даже не сформулировал ни одного постулата квантовой теории, а просто описал некоторые физические явления и сделал неизбежные выводы. Но если начинать с теории, существует две вещи, которые никто не будет оспаривать. Первая заключается в том, что квантовая теория не имеет себе равных в способности предсказывать результаты экспериментов даже при слепом использовании ее уравнений без особых размышлений об их значении. Вторая состоит в том, что квантовая теория рассказывает нам нечто новое и необычное о природе реальности. Спор заключается лишь в том, что именно.
Хью Эверетт[6] первым ясно осознал (в 1957 году, примерно через тридцать лет после того, как эта теория стала основой физики субатомных частиц), что квантовая теория описывает мультивселенную. С того времени не утихает спор о том, допускает ли эта теория какую-то другую интерпретацию (или реинтерпретацию, или переформулировку, или модификацию и т. д.), согласно которой она описывала бы единственную вселенную, но продолжала бы правильно предсказывать результаты экспериментов. Другими словами, действительно ли принятие предсказаний квантовой теории вынуждает нас принять существование параллельных вселенных?
Мне кажется, что этот вопрос, а следовательно, и преобладающая тональность спора относительно этой проблемы имеет характер упорного заблуждения. Признаться, для физиков-теоретиков, подобных мне, допустимо и оправданно прикладывать огромные усилия, чтобы достичь понимания формальной структуры квантовой теории, но не за счет того, чтобы потерять из вида нашу главную цель – понять реальность. Даже если предсказания квантовой теории можно каким-то образом получить, не ссылаясь на другие вселенные, отдельные фотоны все равно будут отбрасывать описанные мной тени. И без знания квантовой теории ясно, что эти тени не могут быть результатом любой отдельно взятой истории фотона, описывающей его движение от фонарика к глазу наблюдателя. Они несовместимы ни с одним объяснением, рассматривающим только те фотоны, которые мы видим. Или только те перегородки, которые мы видим. Или только видимую нами вселенную. Следовательно, если наилучшая теория из тех, что были в распоряжении физиков, не ссылалась на параллельные вселенные, это просто значит, что нам понадобится теория получше, которая будет ссылаться на параллельные вселенные, чтобы объяснить то, что мы видим.
Означает ли это, что принятие предсказаний квантовой теории заставляет нас принять и существование параллельных вселенных? Само по себе – нет. Любую теорию мы всегда можем истолковать в духе инструментализма – так, чтобы она не заставляла нас признавать что-либо относительно реальности. Но спор-то не об этом. Как я уже сказал, чтобы узнать, что параллельные вселенные существуют, нам не нужны глубокие теории: об этом нам говорит явление интерференции с участием одной частицы. Глубокие теории нужны нам, чтобы объяснить и предсказать такие явления – рассказать, каковы эти другие вселенные, каким законам они подчиняются, как влияют друг на друга и как все это укладывается в теоретические основы других предметов. Именно это и делает квантовая теория. Квантовая теория параллельных вселенных – это не проблема, это решение. Она не является некой сомнительной и факультативной интерпретацией, проистекающей из заумных теоретических соображений. Она является объяснением – и единственно логичным объяснением – замечательной и контринтуитивной реальности.
До сих пор я использовал условные термины, подразумевающие, что одна из множества параллельных вселенных отличается от других тем, что она «реальна». Пришло время разорвать последнюю связь с классическим понятием реальности, основанным на существовании одной вселенной. Вернемся к нашей лягушке. Мы поняли, что история лягушки, которая смотрит на далекий от нее фонарик в течение многих дней, ожидая вспышку, которая появляется в среднем раз в день, – еще не вся история, потому что должны также существовать теневые лягушки в теневых вселенных, сосуществующие с реальной лягушкой и тоже ждущие появления фотонов. Допустим, что нашу лягушку научили подпрыгивать при появлении вспышки. В начале эксперимента у реальной лягушки будет множество теневых партнеров, и изначально все они будут похожи. Но уже вскоре похожими между собой будут не все. Маловероятно, чтобы каждая лягушка увидела фотон немедленно после начала эксперимента. Но событие, редкое в одной вселенной, является обычным в мультиверсе в целом. В любой момент где-то в мультиверсе существует несколько вселенных, в которых один из фотонов воздействует на сетчатку глаза лягушки, находящейся в этой вселенной. И эта лягушка подпрыгивает.
Почему же она подпрыгивает? Потому что в пределах своей вселенной она подчиняется тем же законам физики, что и реальная лягушка: на ее теневую сетчатку попал теневой фотон, принадлежащий этой вселенной. Одна из светочувствительных теневых молекул этой теневой сетчатки отреагировала сложными химическими изменениями, на что, в свою очередь, отреагировал зрительный нерв теневой лягушки. Он передал сообщение в мозг теневой лягушки, которая, следовательно, испытала ощущение, что она видит вспышку.
Но, быть может, мне следует сказать «
Ни одна из копий какого-либо объекта не занимает привилегированного положения не только в только что изложенном объяснении теней, но и в полном математическом объяснении, даваемом квантовой теорией. Субъективно я могу считать, что выделяюсь среди копий своей «реальностью», поскольку я могу непосредственно воспринимать себя, а не других, но я должен смириться с тем, что все остальные копии чувствуют то же самое по отношению к себе.
Многие из этих Дэвидов Дойчей пишут эти же самые слова в это мгновение. У некоторых это получается лучше. А некоторые пошли выпить чашку чая.
Терминология
Резюме
В экспериментах с интерференцией на картине теней могут присутствовать такие участки, которые становятся темными при появлении в перегородке новых щелей. Это явление сохраняется, даже если эксперимент проводят с отдельными частицами. Цепочка рассуждений, основанная на этом факте, исключает возможность того, что вселенная, окружающая нас, – это вся реальность. В действительности вся физическая реальность, мультиверс, содержит огромное количество параллельных вселенных.
3. Решение проблем
Я не знаю, что более странно: поведение самих теней или тот факт, что созерцание нескольких светотеневых картин может вынудить нас столь радикально изменить представления о структуре реальности. Доводы, приведенные в предыдущей главе, несмотря на их дискуссионный итог, представляют собой типичный пример научного рассуждения. Полезно поразмышлять над характером этого рассуждения, которое представляет собой природное явление по крайней мере столь же удивительное и плодотворное, как и физика теней.
Тем, кто предпочел бы, чтобы структура реальности была более прозаичной, может показаться несоразмерным и даже нечестным, что такие грандиозные выводы могут проистекать из того факта, что крошечное пятно света оказалось на экране
Последовательные попытки объяснения движения планет сыграли важную роль в истории науки.
По мере того, как расчеты астрономов становились точнее, уменьшалась разница между предсказаниями следующих друг за другом теорий в отношении вида ночного неба. Чтобы обнаружить эти различия, приходилось строить все более мощные телескопы и измерительные приборы. Однако объяснения, на которых были основаны эти предсказания, не сближались между собой. Напротив, как я только что описал, это была последовательность революционных перемен. Таким образом, наблюдения все меньших физических эффектов вызывали всё большие изменения в нашем мировоззрении. Может показаться, что мы делаем все более грандиозные выводы, исходя из все более слабых свидетельств. Чем же тогда оправдываются такие выводы? Можно ли быть уверенным, что только из-за того, что звезда на фотопластинке Эддингтона оказалась смещенной на доли миллиметра, пространство и время должны быть искривленными; или из-за того, что фотодетектор в определенном положении не регистрирует попадание слабого света, должны существовать параллельные вселенные?
В действительности в моих описаниях недостаточно отражена степень хрупкости и косвенности всех наших экспериментальных результатов. Дело в том, что мы не воспринимаем звезды, пятна на фотопластинках или любые другие внешние объекты или события непосредственно. Мы видим что-либо только тогда, когда изображения этого появляются на сетчатке наших глаз, но даже эти изображения мы не воспринимаем, пока они не вызовут электрические импульсы в наших нервах и наш мозг не получит и не поймет эти импульсы. Таким образом, вещественное доказательство, которое непосредственно склоняет нас к тому, чтобы принять один взгляд на мир, а не другой, не назвать даже «миллиметровым»: оно измеряется в тысячных долях миллиметра (таково расстояние между волокнами глазного нерва) и в сотых долях вольта (изменение электрического потенциала наших нервов, из-за которого мы по-разному воспринимаем разные вещи).
Однако мы не придаем равного значения всем нашим сенсорным восприятиям. В научных экспериментах мы заходим достаточно далеко, чтобы приблизиться к восприятию тех аспектов внешней реальности, которые, как нам кажется, могут нам помочь при выборе одной из конкурирующих теорий. Еще до того, как провести наблюдение, мы тщательно продумываем, куда и когда нам следует смотреть и что именно искать. Часто мы используем сложные, специально построенные приборы, такие как телескопы и фотоумножители. Но как бы ни были сложны эти приборы и как бы ни были значительны внешние причины, которым мы приписываем показания этих приборов, мы воспринимаем эти показания только через свои органы чувств. Но нельзя уйти от того факта, что мы, люди, – маленькие создания лишь с несколькими несовершенными и неполными каналами получения информации о том, что нас окружает. Мы интерпретируем эту информацию как свидетельство существования большой и сложной внешней вселенной (или мультиверса). Но когда мы взвешиваем эти доказательства, то в буквальном смысле мы воспринимаем только слабые электрические токи, протекающие в нашем мозге.
Что оправдывает те выводы, которые мы делаем из этих картин? Дело определенно не в логической дедукции. Ни эти, ни какие-либо другие наблюдения не могут
Поскольку солипсизм и бесчисленное множество сходных с ним теорий логически согласуются с вашим восприятием любых возможных результатов наблюдений, ясно, что из наблюдений логически невозможно вывести ничего, что касалось бы реальности. Как же тогда я могу говорить, что наблюдаемое поведение теней «исключает» теорию о том, что существует только одна вселенная или что наблюдения солнечного затмения делают ньютоновский взгляд на мир «рационально несостоятельным»? Как это возможно? Если «исключение» не означает «опровержение», что оно тогда означает? Почему нужно считать себя обязанным менять свой взгляд на мир или вообще любое мнение из-за того, что нечто было подобным образом «исключено»? Казалось бы, такая критика ставит под сомнение всю науку, любое рассуждение о внешней реальности, которое обращается к результатам наблюдений. Но если научное рассуждение не равносильно последовательности логических выводов из опыта, то чему же оно равносильно? Почему мы должны принимать его выводы?
Этот вопрос известен как «проблема индукции». Название его происходит от того, что на протяжении большей части истории науки было доминирующим представлением о том, как она работает. Это представление заключалось в существовании способа обоснования вывода, не дотягивающего по строгости математического доказательства, но тем не менее достойного внимания, который называется