Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Бозон Хиггса. От научной идеи до открытия «частицы Бога» - Джим Бэгготт на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Голландский теоретик Мартинус Велтман изучал математику и физику в Утрехтском государственном университете и стал профессором университета в 1966 году. В 1968 году он начал работать над проблемами перенормировки теории полей Янга – Миллса.

Исследования по физике высоких энергий не пользовались в Нидерландах особой популярностью, отчего у занимающихся ею возникало некоторое чувство отчужденности. Но Велтману это подходило, поскольку в таком случае ему не нужно было отстаивать свой выбор немодной темы для исследования.

В начале 1969 года к нему назначили молодого студента Герарда ’т Хоофта, чтобы закончить магистерскую диссертацию. Велтман не стал поручать своему студенту работу над теориями Янга – Миллса, так как посчитал тему слишком рискованной и едва ли способствующей удачному трудоустройству в дальнейшем. Но после успешной защиты диссертации ’т Хоофту предложили остаться в университете, чтобы он смог получить докторскую степень. ’т Хоофт выразил желание и дальше работать с Велт маном.

Велтман по-прежнему считал, что теории Янга – Миллса таят множество опасностей. Ему удалось значительно продвинуться в вопросе перенормировки, но проблема никак не решалась. Однако ’т Хоофт был уверен, что это будет благодатной почвой для его докторской диссертации. Велтман сначала предлагал ему другую тему, но ’т Хоофт стоял на своем.

Казалось, они совсем не подходили друг другу. Велтман был здоровяк без сантиментов, гордый своими успехами, хотя и равнодушный к отсутствию интереса со стороны остальных коллег. ’т Хоофт был некрупного сложения, предпочитал держаться в тени, и за его скромностью скрывался необычно острый ум.

В своей книге 1997 года «В поисках фундаментальных частиц» ’т Хоофт, представляя Велтмана, рассказал один забавный случай. Однажды Велтман вошел в лифт, где уже было много народу. Когда нажали кнопку, раздался сигнал, что лифт перегружен. Все посмотрели на Велтмана, который был довольно крупным человеком и к тому же вошел последним. Кто-то другой на его месте, возможно, смущенно бы извинился и вышел, Велтман ни о чем таком и не подумал. Он знал принцип эквивалентности Эйнштейна, лежащий в основе общей теории относительности: если человек находится в свободном падении, он не испытывает собственного веса. Он понял, что надо делать.

«Когда я скажу «давай», жмите!» – воскликнул он[74].

И тогда он подпрыгнул и крикнул: «Давай!»

Кто-то нажал кнопку, лифт начал подниматься. Когда Велтман приземлился, лифт уже набрал достаточную скорость и не остановился. ’т Хоофт тоже находился в лифте.

Как-то осенью или зимой 1970/71 года Велтман с ’т Хоофтом шли по университетскому кампусу.

– Мне все равно, что и как, – заявил Велтман своему студенту, – но нам нужна хотя бы одна перенормируемая теория с массивными векторными бозонами, и похоже это на природу или нет, не важно, [это все] детали, которые потом доделает какой-нибудь фанатик. В любом случае все возможные модели уже опубликованы[75].

– Это я могу, – тихо сказал ’т Хоофт.

Прекрасно понимая, как трудна проблема и что другие физики – например, Ричард Фейнман – пытались ее решить и не смогли, Велтман очень удивился, услышав ’т Хоофта. Он чуть не врезался в дерево.

– Что-что? – переспросил он.

– Я могу это сделать, – повторил ’т Хоофт.

Велтман так долго бился над проблемой, что ему не верилось, будто у нее может быть такое простое решение, как представлялось ’т Хоофту. Понятно, почему Велтман отнесся к его словам с недоверием.

– Запиши, и посмотрим, – сказал он.

Но летом 1970 года на курсах в Каржезе, корсиканском городке, ’т Хоофт узнал о спонтанном нарушении симметрии. В конце 1970 года он в своей первой статье показал, что теории полей Янга – Миллса с безмассовыми частицами поддаются перенормировке. ’т Хоофт был уверен, что применение спонтанного нарушения симметрии позволит перенормировать и теории Янга – Миллса с массивными частицами.

И вскоре он действительно все записал.

Велтману не понравилось, что ’т Хоофт использовал механизм Хиггса. Его особенно заботило, что наличие фонового поля Хиггса, пронизывающего всю Веленную, обязательно должно проявляться через гравитационные эффекты[76].

Так они спорили и спорили. В конце концов ’т Хоофт решил показать научному руководителю результаты его теоретических выкладок, не говоря конкретно, откуда они взялись. Велтман и так это прекрасно понимал, но удовольствовался тем, что просто проверил истинность результатов ’т Хоофта.

За несколько лет до того Велтман разработал новый подход к сложным алгебраическим манипуляциям с помощью компьютерной программы, которую он назвал Schoonschip, что по-голландски означает «чистый корабль»[77]. Это была одна из первых компьютерных алгебраических программ, способных манипулировать математическими уравнениями в виде символов. Велтман поехал в Женеву, взяв с собой результаты ’т Хоофта, чтобы проверить их на компьютере в ЦЕРНе.

Велтман был взволнован, но сохранял скептическое отношение. Настраивая программу, он посмотрел на результаты и решил убрать несколько четырехкратных множителей из уравнений ’т Хоофта, множителей, которые можно было отследить к бозону Хиггса. Четырехкратные множители казались Велтману просто безумием. Он настроил программу и запустил ее без них.

Вскоре он уже звонил ’т Хоофту и говорил: «Она почти работает. Ты только ошибся кое-где с двукратными множителями»[78]. Но ’т Хоофт не ошибался. «Тогда он понял, что даже четырехкратный множитель верен, – рассказал ’т Хоофт, – и все прекрасно получается. Тогда он разволновался так же, как я раньше».

’т Хоофт вполне независимо (и по чистому совпадению) воссоздал теорию поля SU(2) × U(1), которую Вайнберг разрабатывал в 1967 году, и показал, что ее можно перенормировать. ’т Хоофт думал применить теорию поля к сильному взаимодействию, но, когда Велтман спросил у коллеги из ЦЕРНа, знает ли он о других применениях теории SU(2) × U(1), его отправили к статье Вайнберга. Велтман и ’т Хоофт поняли, что они получили полностью перенормируемую квантовую теорию поля для электрослабого взаимодействия.

Это был настоящий прорыв. «Психологический эффект от доказательства перенормируемости был огромен», – написал Велтман несколько лет спустя[79]. На самом деле ’т Хоофт продемонстрировал, что калибровочные теории Янга – Миллса в принципе поддаются перенормировке. Локальные калибровочные теории фактически являются единственным классом теорий поля, которые можно перенормировать.

’т Хоофту было всего 25 лет. Сначала Глэшоу не понял доказательства. О ’т Хоофте он сказал: «Либо этот парень полный идиот, либо он величайший гений физики за много лет»[80]. Вайнберг сначала не поверил, но, когда увидел, что его коллега-теоретик отнесся к работе ’т Хоофта серьезно, решил приглядеться к ней поближе. И она его сразу убедила.

’т Хоофта назначили доцентом кафедры Утрехтского университета. Наконец-то все ингредиенты теории были в наличии. Перенормируемая, спонтанно нарушаемая теория поля SU(2) × U(1) для слабого и электромагнитного взаимодействия уже маячила на горизонте. Массы W±– и Z0-бозонов возникли «естественно из применения механизма Хиггса». Еще оставались некоторые аномалии, но ’т Хоофт указал в сноске в опубликованной статье, что они не делают теорию неперенормируемой. «Конечно, – писал он много лет спустя, – это нужно понимать так, что перенормируемость можно восстановить за счет добавления необходимого количества разного рода фермионов (кварков), но, признаюсь, я даже думал, что, может быть, это и не понадобится»[81]. Оставшиеся аномалии можно было устранить, добавив в модель несколько кварков.

А можно ли было надеяться на квантовую теорию поля для сильного взаимодействия?

Гелл-Манн получил Нобелевскую премию по физике 1969 года за большой вклад в науку, в основном за открытие странности и восьмеричного пути. Ивар Валлер, член Нобелевского комитета по физике, перечислил его достижения, когда официально представлял Гелл-Манна. Валлер также упомянул кварки и сказал, что, несмотря на усиленные поиски, они все еще не найдены. Однако он любезно признал, что кварки тем не менее имеют большую «эвристическую» ценность.

Гелл-Манну пришлось свыкаться со статусом знаменитости, которым автоматически наделяется нобелевский лауреат. Его завалили приглашениями на конференции и просьбами о статьях, так что ему совсем не хватало времени писать, хотя это и раньше давалось ему с трудом. Он даже пропустил сроки подачи собственной Нобелевской лекции в Шведскую академию, которая собиралась издать сборник лекций Le Prix Nobel[82]. И это были не единственные сроки, которые он нарушил.

Летом 1970 года Гелл-Манн с семьей уехал в Аспен, штат Колорадо. Но он скрывался от обязательств, а не от науки. Там же, в Аспенском физическом центре физики, проводили отпуск и другие физики со своими семьями.

Центр был специально создан для нобелевских лауреатов, которые хотели бы, чтобы их ничто не отвлекало. Его открыли в 1962 году на базе Аспенского института гуманитарных наук после обращения двух физиков. Они предложили создать такое место со спокойной, расслабленной, не слишком организованной атмосферой, куда физики могли бы сбежать от административных обязанностей, которые накладывала на них повседневная университетская работа, и просто говорить друг с другом о науке. Институт отдал под это часть своего кампуса АспенМедоус, расположенного в осиновой роще на городской окраине.

Именно в Аспене Гелл-Манн столкнулся с Харальдом Фрицшем, убежденным сторонником модели кварков, который с изумлением узнал, что Гелл-Манн, как ни странно, неоднозначно относится к своему собственному «математическому» изобретению.

Фрицш родился в Цвикау, городе на юге от Лейпцига. Вместе с коллегой он сбежал из коммунистической ГДР и потом от болгарских властей на лодке с подвесным мотором. Они проплыли больше 300 километров по Черному морю и добрались до Турции.

Он получал докторскую степень по теоретической физике в Институте физики и астрофизики Макса Планка в Мюнхене, ФРГ, где одним из его преподавателей был Гейзенберг. Летом 1970 года он проезжал через Аспен, направляясь в Калифорнию.

Еще студентом в ГДР Фрицш проникся убеждением, что кварки должны лежать в основе квантовой теории поля для сильного ядерного взаимодействия. Это были не просто математические приемы. Это было что-то настоящее.

Гелл-Манна впечатлил энтузиазм молодого немца, он согласился, чтобы Фрицш посещал его в Калтехе примерно раз в месяц. Вместе они стали работать над теорией поля на основе кварков. Окончив аспирантуру в ФРГ в начале 1971 года, Фрицш перевелся в Калтех.

Фрицш в некотором роде потряс основы консервативного отношения Гелл-Манна к кваркам. Это было не просто психологическое потрясение: приезд Фрицша в Калтех 9 февраля 1971 года совпал с настоящим землетрясением магнитудой 6,6 по шкале Рихтера, от которого ранним утром того же дня содрогнулась долина Сан-Фернандо недалеко от Силмара. «В память о том случае, – позднее писал Гелл-Манн, – я не стал поправлять покосившиеся картины на стене, пока их снова не потревожило землетрясение 1987 года»[83].

Гелл-Манн добился грантов для себя и Фрицша, и осенью 1971 года они оба поехали в ЦЕРН. Там Уильям Бардин, сын Джона Бардина, создателя теории сверхпроводимости вместе с Купером и Шриффером, рассказал им о некоторых аномалиях в расчетной скорости распада нейтральных пионов. Бардин некоторое время работал над этими расчетами в Принстоне со Стивеном Адлером. Они показали, что модель кварков с дробными зарядами предсказывает скорость распада, которая получалась в три раза меньше измеренной скорости. Адлер пошел дальше и показал, что модель кварков с целочисленными зарядами Хана – Намбу на самом деле лучше предсказывает скорость в измерениях.

Гелл-Манн, Фрицш и Бардин начали совместную работу над вариантами. Они хотели посмотреть, можно ли согласовать результаты распада нейтрального пиона с вариантом первоначальной модели кварков с дробными зарядами.

Как предполагали Хан и Намбу, им потребовалось новое квантовое число. Гелл-Манн решил назвать это новое квантовое число цветом. В новой системе кварки обладали бы тремя возможными цветными квантовыми числами: синим, красным и зеленым[84].

Барионы состояли бы из трех кварков разных цветов, так чтобы общий «цветной заряд» был равен нулю и давал «белый» цвет. Например, можно представить, что протон состоит из синего верхнего кварка, красного верхнего кварка и зеленого нижнего кварка (uburdg)[85]. Нейтрон состоял бы из синего верхнего кварка, красного нижнего кварка и зеленого нижнего кварка (ubdrdg). Мезоны, например пионы и каоны, состояли бы из цветных кварков и цветных антикварков, так чтобы общий цветной заряд был нулевым и частицы также были «белыми».

Это было красивое решение. Цвета кварков давали дополнительную степень свободы, и, значит, принцип Паули не нарушался. Утроение количества видов кварков означало, что скорость распада нейтрального пиона можно предсказать с точностью. И никто не мог ожидать, что цветной заряд проявится в экспериментах, ведь это свойство кварков, а кварки заключены внутри белых адронов. Цвет нельзя увидеть, потому что природа требует, чтобы все наблюдаемые частицы были белыми.

«Мы постепенно поняли, что [цветная] переменная решает все вопросы! – объяснял Гелл-Манн. – Она улучшает статистику и при этом не вынуждает нас использовать сумасшедшие новые частицы. Потом мы поняли, что она вдобавок может решить проблемы с динамикой, потому что на ней можно было построить калибровочную теорию SU(3), теорию Янга – Миллса»[86].

К сентябрю 1972 года Гелл-Манн и Фрицш подробнее разработали модель, состоящую из трех кварков с дробными зарядами, которые имели три аромата – верхний, нижний и странный – и три цвета и были связаны системой из восьми цветных глюонов – переносчиков сильного цветового взаимодействия. Гелл-Манн представил модель на конференции по физике высоких энергий, которая проводилась в честь открытия Национальной ускорительной лаборатории в Чикаго.

Но его уже начали одолевать сомнения. Больше всего Гелл-Манна беспокоил статус кварков и механизм, обеспечивающий конфайнмент[87], и он предпочитал не слишком распространяться о теории. Он упоминал вариант модели с одним глюоном и подчеркивал, что кварки и глюоны – «воображаемые».

Когда они с Фрицшем дошли до написания лекции, их обуяла нерешительность. «Готовя письменный вариант, – позднее писал Гелл-Манн, – к сожалению, мы поддались только что упомянутым сомнениям, и мы ушли в технические вопросы»[88].

Эти колебания не так уж трудно понять. Если цветные кварки действительно всегда заключены внутри белых барионов и мезонов, так что их цветной и дробный электрический заряд нельзя наблюдать, тогда можно сказать, что любые размышления об их свойствах – пустая болтовня.

Теоретики подошли очень близко к большому синтезу: слиянию теорий квантового поля на основе симметрии SU(3) × SU(2) × U(1), которое позже стало известно как Стандартная модель. Этот синтез должен был подготовить теоретическую основу для экспериментальной физики элементарных частиц в последующие 30 лет. Эта нерешительность была просто глубоким вдохом перед прыжком в воду.

Фактически дразнящие свидетельства существования кварков появились всего за несколько лет до того во время высокоэнергетических столкновений электронов и протонов. Результат экспериментов, проведенных в Стэнфордском центре линейных ускорителей (SLAC) в Калифорнии, сильно намекал, что протон состоит из точечных частиц.

Однако было неясно, кварки ли эти точечные частицы. Что еще больше сбивало с толку, результаты также предполагали, что составные части внутри протона вовсе не находятся в железной хватке, а ведут себя так, будто могут совершенно свободно бродить по своим просторным жилищам. Как это совмещалось с идеей конфайнмента?

Работа теоретиков подходила к концу. Стандартная модель была почти закончена. Теперь пришла очередь экспериментаторов.

Часть вторая

Открытие

6

Переменные нейтральные токи

Глава, в которой у протонов и нейтронов оказывается внутренняя структура, а предсказанные нейтральные токи слабого ядерного взаимодействия находятся, теряются и находятся вновь

В космических лучах происходят некоторые самые высокоэнергетические столкновения частиц, иногда их энергия гораздо выше энергии, которой можно достичь даже в современных коллайдерах[89]. Но откуда берутся лучи, непонятно, и какие частицы и энергии становятся причиной наблюдаемых событий, неизвестно. Успех экспериментов с космическими лучами зависит от случайного обнаружения новых частиц или новых процессов, воспроизвести которые может оказаться очень сложно.

Несмотря на успешные эксперименты с космическими лучами, позволившие открыть позитроны, мюоны, пионы и каоны за два десятилетия между 1930-ми годами и началом 1950-х, для дальнейшего прогресса в физике частиц требовалось сначала разработать более мощные искусственные ускорители.

Первые ускорители были сконструированы во второй половине 1920-х годов. Это были линейные ускорители, в которых ускорение электронов и протонов происходило за счет разгона их через линейную последовательность осциллирующих электрических полей. На одном таком ускорителе Джон Кокрофт и Эрнест Уолтон в 1932 году разогнали протоны до высокой скорости и затем выстреливали ими по неподвижным мишеням – ядрам, таким образом осуществив первые искусственно вызванные ядерные реакции[90].

В 1929 году американский физик Эрнест Лоуренс изобрел ускоритель иной конструкции. Он использовал магнит, чтобы заставить поток протонов двигаться по спирали, одновременно ускоряя их до все более высоких скоростей при помощи переменного электрического поля. Лоуренс назвал его циклотроном.

В Лоуренсе было что-то от шоумена с большими амбициями. За первым циклотроном последовали новые, все более крупные машины, и в 1939 году их кульминацией стало сооружение гигантского суперциклотрона с магнитом, который весил 2 тысячи тонн. Лоуренс посчитал, что он позволит протону развивать энергию в 100 миллионов электронвольт (100 МэВ), это порог энергии, требующейся протону для проникновения в ядро. Лоуренс обратился в фонд Рокфеллера с просьбой о поддержке. Его обращение стало звучать гораздо убедительнее после того, как во время теннисного матча ему сообщили, что ему только что присудили Нобелевскую премию по физике за 1939 год.

Когда началась война, циклотронную технологию Лоуренса использовали для решения других задач – для обогащения урана-235 в количестве достаточном для создания атомной бомбы, сброшенной потом на Хиросиму. В основу электромагнитной установки по разделению изотопов Центра национальной безопасности Y-12, сооруженной в Оук-Ридже, что в Восточном Теннесси, положена конструкция лоуренсовского циклотрона[91].

Работавшие в Y-12 магниты имели 76 метров в длину и весили от 3 до 10 тысяч тонн. Их конструкция истощила медные запасы США, и американское казначейство было вынуждено ссудить Манхэттенскому проекту 15 тысяч тонн серебра, чтобы закончить обмотку магнитов. Магниты забирали столько же энергии, как большой город, и были настолько сильные, что рабочие чувствовали, как их сила действует на гвоздики в их ботинках. Иногда женщины, стоявшие недалеко от магнитов, оставались без шпилек. Со стен пришлось снять трубы. 13 тысяч человек трудились на заводе, который был запущен в ноябре 1943 года.

Это был первый пример того, что в будущем станут называть «большой наукой».

В циклотроне использовалось постоянное магнитное поле и электрическое поле с фиксированной частотой, и в связи с этим энергия частиц была ограничена примерно 1000 МэВ (или 1 ГэВ, гигаэлектронвольт). Чтобы получить еще большую энергию, нужно прогонять ускоряемые частицы сгустками по кольцу, вдоль синхронно распределены магнитные и электрические поля. Одни из первых таких синхротронов – это Беватрон, ускоритель на 6,3 ГэВ, построенный в 1950 году в Радиационной лаборатории в Беркли, и Космотрон, ускоритель на 3,3 ГэВ, построенный в 1953 году в Брукхейвенской национальной лаборатории в Нью-Йорке.

Другие страны последовали успешному примеру. 29 сентября 1954 года одиннадцать западноевропейских государств ратифицировали соглашение о создании Европейского совета по ядерным исследованиям (Conseil Européen pour la Recherche Nucléaire, ЦЕРН)[92]. Три года спустя в СССР Объединенный институт ядерных исследований в Дубне, в 120 километрах от Москвы, открылся протонный синхротрон на 10 ГэВ. За ним последовал ЦЕРН и в 1959 году в Женеве пустил протонный синхротрон на 26 ГэВ.

Финансирование физики высоких энергий в США сильно возросло, когда в 1960 годах гонка за технологическое превосходство в холодной войне достигла апогея. В Брукхейвене в 1960 году построили сильнофокусирующий синхротрон, способный оперировать энергией 33 ГэВ. Казалось очевидным, что будущее физики элементарных частиц находится в руках конструкторов синхротронов, продвигающих технологии на все более высокие энергии столкновений.

Так, когда в 1962 году в Стэнфордском университете в Калифорнии началось сооружение нового линейного электронного ускорителя на 20 ГэВ стоимостью 114 миллионов долларов, многие физики отмахнулись от него, сочтя не соответствующим современным требованиям и способным только на второсортные эксперименты.

Но некоторые физики понимали, что постоянное повышение энергии адронных столкновений происходит за счет тонкости. Синхротроны разгоняли протоны и разбивали их о неподвижные мишени, в том числе другие протоны. По словам Ричарда Фейнмана, сталкивать протоны с протонами – «это все равно что разбивать друг о друга карманные часы, чтобы посмотреть, что у них внутри»[93].

Стэнфордский центр линейных ускорителей (SLAC) построен на 160 гектарах территории Стэнфордского университета примерно в 60 километрах южнее Сан-Франциско. Расчетной энергии пучка 20 ГэВ он впервые достиг в 1967 году. Трехкилометровый ускоритель имеет линейную, а не циклическую конструкцию, так как изгибание пучка электронов при помощи магнитного поля приводит к резкой потере энергии из-за рентгеновского синхротронного излучения.

Когда электрон сталкивается с протоном, могут иметь место три разных вида взаимодействия. Электрон может относительно безвредно отскочить от протона, обменявшись виртуальным фотоном, при этом скорость и направление электрона изменится, но частицы останутся целыми. Это так называемое упругое рассеяние дает электроны с относительно высокой рассеянной энергией, группирующейся вокруг пика.

Во втором виде взаимодействий при столкновении с электроном может происходить обмен виртуальным фотоном, который посылает протон в то или иное возбужденное энергетическое состояние. Рассеянный электрон в итоге оказывается с меньшим количеством энергии, и сравнение на графике рассеянной энергии с приобретенной показывает серию пиков или резонансов, соответствующих разным возбужденным состояниям протона. Такое рассеяние называется неупругим, так как могут создаваться новые частицы (например, пионы), хотя и электрон, и протон выходят из взаимодействия целыми. По сути, энергия столкновения и обмен виртуальным фотоном переходит в образование новых частиц.

Третий тип взаимодействия называется глубоко неупругим рассеянием, при котором большая часть энергии электрона и виртуального фотона переходит в полное уничтожение протона. В итоге возникает целый фонтан разных адронов, и рассеянный электрон отскакивает уже со значительными потерями энергии.

Исследования глубоко неупругого рассеяния на относительно небольших углах с жидководородной мишенью начались в Стэнфордском центре ускорителей в сентябре 1967 года. Их проводила небольшая группа экспериментаторов с участием физиков МИТ Джерома Фридмана и Генри Кендалла и работающего в лаборатории канадского физика Ричарда Тейлора.

Они сосредоточили внимание на поведении так называемой структурной функции, функции разницы между начальной энергией электрона и энергией рассеянного электрона. Эта разница связана с энергией, потерянной электроном в столкновении, или энергией виртуального фотона, которым обмениваются частицы. Они увидели, что по мере увеличения энергии виртуального фотона структурная функция показывает заметные пики, соответствующие ожидаемым резонансам протона. Однако при дальнейшем увеличении энергии эти пики сменялись широкими плато, которые постепенно снижались, когда уходили достаточно далеко в диапазон глубоко неупругих столкновений.

Любопытно, что форма функции оказалась в большой степени независимой от начальной энергии электрона. Экспериментаторы не могли понять почему.

Зато это понял американский теоретик Джеймс Бьеркен. Бьеркен получил докторскую степень в Стэнфордском университете в 1959 году и незадолго до экспериментов вернулся в Калифорнию после того, как проработал некоторое время в копенгагенском Институте Нильса Бора. Перед самым открытием Стэнфордского центра ускорителей он разработал модель, позволявшую предсказывать результаты электрон-протонных столкновений при помощи довольно эзотерического подхода, основанного на квантовой теории поля.

В этой модели протон можно было представить двумя разными способами. Его можно было считать твердым «шариком» вещества с равномерно распределенными массой и зарядом. Или его можно было считать областью почти пустого пространства, которое содержит невидимые, точечные элементы, почти как атом, который, как было показано в 1911 году, представляет собой пустое пространство, содержащее крошечное положительно заряженное ядро.

Эти два очень разных взгляда на структуру протона должны приводить к очень разным результатам рассеяния. Бьеркен понял, что при достаточной энергии электроны могли бы проникнуть внутрь «составного» протона и столкнуться с его точечными элементами. В диапазоне глубоко неупругих столкновений электроны были бы рассеяны в больших количествах, под большими углами, и структурная функция вела бы себя именно так, как это происходило при экспериментах.

Бьеркен не стал говорить, что эти точечные элементы могут быть кварками. Кварковая модель все еще вызывала насмешки у большинства физиков, и некоторые другие теории пользовались большим уважением. Споры о том, как следует интерпретировать данные, бушевали даже в самой группе физиков МИТ и Стэнфордского центра ускорителей. В связи с этим физики не торопились заявить, что их результаты свидетельствуют о существовании кварков.

Так продолжалось еще десять месяцев.

Ричард Фейнман посетил Стэнфордский центр ускорителей в августе 1968-го. Поработав со слабым ядерным взаимодействием и квантовой гравитацией, он решил снова взяться за физику высоких энергий. Его сестра Джоан жила в доме недалеко от центра, и, навещая ее, он пользовался возможностью «пошнырять» вокруг ускорителя и выяснить, что творится в полях.

Он услышал о работе группы физиков из МИТ и Стэнфордского центра над глубоко неупругим рассеянием. Должен был вот-вот начаться второй круг экспериментов, но физики все еще думали над интерпретацией данных предыдущего года.

Бьеркена не было в городе, но его новый научный сотрудник Эммануль Пасчос рассказал Фейнману о поведении структурной функции и спросил, что он насчет этого думает. Увидев данные, Фейнман заявил: «Всю жизнь я искал такой эксперимент, который мог бы проверить теорию поля для сильного взаимодействия!»[94] И в ту же ночь в номере своего мотеля он все разложил по полочкам.

Он считал, что поведение частиц, которое наблюдали экспериментаторы, связано с распределением импульса точечных элементов глубоко внутри протона. Фейнман назвал эти элементы «партоны» – буквально «части протона», – чтобы не впутываться в конкретные модели внутреннего строения протона[95].

«Мне правда нужно вам кое-что показать, – сказал Фейнман Фридману и Кендаллу на следующее утро. – Я до всего додумался в мотеле вчера ночью!»[96] Бьеркен и сам уже пришел к большинству выводов, которые изложил перед ними Фейнман, и Фейнман признал его приоритет. Но Фейнман снова сумел описать физику гораздо более простым, но красноречивым, более наглядным способом. Когда он вернулся в Стэнфордский центр ускорителей в октябре 1968 года, чтобы прочесть лекцию о партонной модели, он будто бы разжег пожар. Ничто так не придает силу идее, как когда ее с энтузиазмом отстаивает нобелевский лауреат.

Правда ли, что партоны – это в самом деле кварки? Фейнман не знал ответа, и ему было все равно, но у Бьеркена и Пасчоса скоро уже была подробная модель партонов, основанная на триплетах кварков.

Дальнейшее изучение глубоко неупругого рассеяния электронов на нейтронах в Стэнфордском центре ускорителей и результаты исследования рассеяния нейтрино на протонах в ЦЕРНе дали новые подтверждения. К середине 1973 года кварки официально «состоялись». Может быть, мысль о них как о странной игре природы родилась в шутку, но теперь они сделали решительный шаг к тому, чтобы их признали действительными составными частями адронов.

Некоторые важные вопросы оставались без ответа. Поведение структурных функций можно было понять только при условии, если допустить, что отельные кварки движутся внутри протона или нейтрона совершенно независимо друг от друга. И однако же 20-гигаэлектронвольтные электроны ударяли в отдельные кварки, что приводило к уничтожению нуклонов-мишеней, так почему же кварки при этом не высвобождались?

Это не имело никакого смысла. Если сильное взаимодействие с такой мощью удерживает кварки внутри нуклонов, что они навечно там заключены и никто никогда не сможет их увидеть, как же может быть, что внутри нуклонов кварки, по всей видимости, движутся с полной свободой?

К концу 1971 года законченная квантовая теория поля для электрослабого взаимодействия была полностью разработана, и теоретики все больше убеждались в ее истинности. Нарушение симметрии при помощи механизма Хиггса могло объяснить разницу между электромагнитным и слабым ядерным взаимодействиями, которые в ином случае оставались бы все тем же универсальным электрослабым взаимодействием. Нарушение симметрии сообщило массу переносчикам слабого взаимодействия, в то же время оставив фотоны безмассовыми. Для слабого взаимодействия требовалось два заряженных переносчика, частицы W+ и W—, и нейтральный переносчик, частица Z0. Если Z0 существует, то можно было ожидать, что их взаимодействие с обменом проявится в виде слабых нейтральных токов.

Если теория верна, то следовало ожидать, что нейтральные каоны покажут слабые нейтральные токи, что также подразумевало изменение странности. Наконец-то было объяснено довольно странное отсутствие этих меняющих странность токов за счет механизма ГИМ и существования четвертого – очарованного – кварка.

Теоретики обратились к другим источникам слабых нейтральных токов, которые не влекли за собой изменения странности, и стали убеждать экспериментаторов, чтобы те занялись их поисками. Наилучшими кандидатами были взаимодействия между мюонными нейтрино и нуклонами: протонами и нейтронами. В столкновениях мюонного нейтрино и нейтрона, например, обмен виртуальной W—-частицей превращает мюонное нейтрино в отрицательный мюон, а нейтрон – в протон. Это заряженный ток. Обмен виртуальной Z0-частицей оставляет невредимыми и мюонное нейтрино, и нейтрон – это нейтральный ток (см. рис. 16). Если происходят оба процесса, тогда данные о слабых нейтральных токах можно получить за счет рассеяния мюонных нейтрино на нуклонах, а еще можно поискать события, при которых не образуются мюоны. По оценке Вайнберга, на каждые 100 событий с заряженными токами должно приходиться примерно от 14 до 33 событий с нейтральными токами.

Проблема в том, что нейтрино – чрезвычайно легкие, нейтральные частицы, не оставляющие следов в детекторах частиц. Детекторы регистрируют прохождение заряженных частиц, которые отрывают электроны в атомах материала детектора, оставляя за собой характерный след заряженных ионов. Первый детектор такого типа изобрел шотландский физик Чарльз Вильсон в 1911 году. В диффузионной камере следы частиц можно наблюдать благодаря конденсации водяного пара вокруг остающихся ионов.


Рис. 16



Поделиться книгой:

На главную
Назад