Николай Векшин
Миллениум-мифы
Мифы, догмы и парадигмы
Человек живёт в загадочном (но привычном) материальном мире. В стремлении понять его он неустанно строит абстрактные схемы, позволяющие как-то описывать реальность, как-то предсказывать события и как-то осуществлять научно-технический прогресс. Для этого в распоряжении человеческого духа имеется всего десяток цифр и три десятка букв. Вот, по сути, весь его интеллектуальный «инструмент». До смешного мало! Поэтому не удивительно, что между реальным миром и абстрактными схемами слишком часто возникают неприятные разрывы.
Жизнь скоротечна, а мир бесконечно разнообразен. Современный человек, барахтающийся в море информации нашего технократического нового тысячелетия (нашего
С течением веков парадигмы сменяют друг друга. Причиной этого является как появление новых знаний, так и новых заблуждений. Многие парадигмы после тщательных исследований или логического анализа оказываются мифами или частично мифами. И наоборот: то, что казалось мифом, сказкой или фантазией, может оказаться вполне реальным.
Во многих случаях для развенчания мифа, в принципе, хватает имеющихся знаний, но эти знания либо вообще игнорируются, либо не удостаиваются должного внимания. Самое удивительное заключается в том, что большинство специалистов, как правило, видят только то, что их устраивает, т. е. то, что им привычно и полезно. Они с ослиным упорством и куриной слепотой не желают видеть очевидное. Типичный пример из средневековья: Галилей утверждал, что наблюдал пятна на Луне, и пригласил инквизиторов посмотреть в телескоп, чтобы убедиться в этом, но ни один из них взглянуть даже не соизволил. Это – абсолютно типичная ситуация, причем, не только для средневековья, но и для нашего просвещенного века.
Человеческий мозг склонен выдавать желаемое за действительное, ожидаемое за свершившееся и предположенное за доказанное. Виной этому – человеческая ограниченность, неполнота знаний и спесивые амбиции, подкрепляемые жаждой славы и денег.
В данной книге я попытался критически рассмотреть ряд современных мифов и догм, принимаемых большинством ученых и неученых за несомненные истины. Поскольку количество мифов и догм огромно, то я остановился лишь на тех, с которыми в той или иной степени соприкоснулся лично. При этом стиль изложения в одних случаях я сделал иронично-научно-популярным, в других – серьёзно-шутливым.
В книгу я также включил свои новые афоризмы, миниатюры, стихи и пародии. В них тоже в какой-то мере отражены мои критические воззрения на самые разные темы.
Большой Взрыв и расширение Вселенной (при изложении использована Википедия и другие материалы)
Древние греки полагали Вселенную бесконечной, вечной и не зависимой от богов.
В средние века преобладала богословская доктрина: Вселенная – это близкие звёзды и планеты, которые созданы Богом и ограничены небесной сферой. Галилей, Коперник и Бруно считались еретиками.
В XIX веке ученые вернулись к древнегреческой точке зрения. Причем, для этого появились веские научные основания. Астрономия твёрдо встала на ноги фактов и вычислений. Когда Наполеон спросил Лапласа, где же место Бога в его схеме движения звёзд и планет, тот ответил: «Сир, я не нуждаюсь в этой гипотезе».
В начале XX века Эйнштейн и другие релятивисты, сделавшие акцент на относительность всякого движения, пришли к предположению о возможности искривления пространства вблизи звёзд и планет, а также к утверждению о сокращении длин при субсветовых скоростях (что ведёт к замедлению времени). Вселенная вздрогнула и перекосилась.
Математик Фридман получил решения уравнений Эйнштейна для всей Вселенной. Проще говоря, вывел несколько формул из кучи формул и на их основе пришёл к гипотезе о том, что Вселенная имела начало. И этим началом якобы был Большой Взрыв. Вся материя как будто внезапно возникла в одной-единственной точке пространства (причем, взорвалось само пространство!) и стала разлетаться в разные стороны. И продолжает разлетаться. Почему взорвался вакуум? А кто ж его знает! Похоже, что постарался Бог или кто-то вроде него. Без гипотезы о Боге многие современные релятивисты обойтись уже не могут.
На базе возникших космологических моделей, основанных на эйнштейновской Общей теории относительности (ОТО), Эддингтон предположил, что Вселенная расширяется и что чем дальше от нас астрономический объект, тем больше его относительная скорость. Интересно, что сначала в модели предполагалось, что Вселенная сжимается или наоборот расширяется, но с замедлением.
Какие же экспериментальные факты были положены в основу грандиозной картины Взрыва с расширением? Да почти ни какие. Факт был один-единственный: наличие космического красного смещения, т. е. некоторое преобладание красного света в спектре свечения галактик; точнее – смещение привычных спектральных полос различных атомов к «красному» краю оптической шкалы длин волн. Красное смещение было впервые обнаружено американским астрономом Слайфером (1912). Другой американец Хаббл (1929) установил, что для далёких галактик оно больше, чем для близких. Оказалось, что оно средне-статистически (т. е. далеко не всегда!) возрастает примерно пропорционально расстоянию (закон Хаббла).
Релятивисты ухватились за эти наблюдения, радостно объяснив красное смещение галактик эффектом Доплера, хорошо известным для звуковых волн. «Покраснение» (увеличение длины волны) излучения быстро движущихся объектов должно сказываться тем сильней, чем их скорость ближе к скорости света.
Как выяснилось поздней, измерения Хаббла оказались сильно неточными и, по сути, не имеющими отношения к космическому красному смещению. Цитирую: «Наибольшие скорости галактик, рассмотренных Хабблом, составляли 1000 км/с. В принципе, это большая скорость, но за время движения света (
Однако упорные релятивисты, воспользовавшись философским идеалистическим гегелевским тезисом «тем хуже для фактов», от своей идеи о Большом Взрыве и расширении Вселенной не отказались. Более того, они настолько мощно задавили противников изощренными математическими изысками и подгонкой под них астрономических наблюдений (красное излучение «сверхновых» звёзд и реликтовое излучение Вселенной), что в настоящее время их точка зрения стала общепринятой. Любое иное мнение воспринимается как противоречащее основам современной науки.
Для того чтобы применять уравнения ОТО для Вселенной, пришлось выдвинуть гипотезу о тёмной материи и тёмной «отрицательной» энергии, удвоении плотности барионной материи и т. д. А вот какие приводились доказательства в пользу этих гипотетических сущностей (цитирую и комментирую):
«Наблюдениями, говорящими в пользу существования тёмной энергии, были, по-видимому
В принципе, в подобных гипотезах, весьма неубедительных, нет ничего слишком плохого, кроме бездоказательности, туманности и путаницы. Они даже могут оказаться со временем плодотворными. Но надо не забывать применять мудрую «бритву Оккама»: «Не умножай сущностей без необходимости».
Увы, количество космических «сущностей», порожденных воспаленными мозгами теоретизирующих математиков, возрастает нынче в геометрической прогрессии. Возникла куча спекуляций о прошлом Вселенной и её дальнейшей судьбе. За эти спекуляции Перлмуттер, Шмидт и Рисс недавно (2011) отхватили себе Нобелевскую премию. Поистине чудеса физики!
Самое забавное, что космическое (почему-то его принято называть космо
Вот ещё характерный примерчик доказательства: «В то время как свет летит через космос, пространство расширяется». А пространство это что – эфир XIX века? «Вместе с ним расширяется и волновой пакет. Соответственно, изменяется длина волны». Отсюда автоматически следует, что изменяется энергия волны. Как же легко тут удалось математикам нарушить основное табу физиков – закон сохранения энергии!
«Общепринятая (
Релятивисты противоречат сами себе: «Кроме этого рассматриваются пространства с положительной или отрицательной кривизной». И это тоже – однородность и изотропность? «Предполагается (
Цитирую и комментирую дальше: «Динамика изменения функции
«Обычно изучается зависимость той или иной характеристики объекта (свечения, угловых размеров, и т. п.) от параметра красного смещения. В результате возникают различные варианты определения расстояния (фотометрическое расстояние, угловое расстояние и т. д.). Все они являются модельными, в том смысле, что зависят от параметров космологической модели, т. е. от явного вида функции». То есть – что хотим, то и нарисуем.
«Вплоть до 50-х гг. XX века внегалактические расстояния, измерение которых связано, естественно, с большими трудностями
Продолжаю цитировать и комментировать: «В соответствии с этой общепринятой моделью
Вот цитата другого автора: «Доплеровское красное смещение и космологическое красное смещение – вещи абсолютно разные и описываются различными формулами». С полным вас приездом, господа релятивисты! Оказывается, что эффект Доплера тут вообще – как кобыле зонтик. «В процессе расширения
А вот еще один факт. Ближайшая крупная галактика Андромеда, как установлено астрономами, вообще движется в противоположную сторону (к нам, а не от нас). Релятивисты предпочитают в подобных случаях помалкивать.
В пользу Большого взрыва нынче модно приводить другой довод: наличие реликтового излучения Вселенной (это свечение в миллиметровом диапазоне длин волн).
В работе Я. Б. Зельдовича «Горячая модель Вселенной» реликтовое излучение объясняется расширением Вселенной: «Энергия квантов при расширении убывает в соответствии с тем, что длина волны увеличивается в той же пропорции, в которой в ходе расширения растут все расстояния между каждой заданной парой частиц или парой галактик». При этом Зельдович не рассмотрел тщательным образом другие возможные причины реликтового излучения. А зря. Отмечу попутно, что академик Зельдович (при всём моём к нему уважении) не только плохо знал оптическую спектроскопию, но вообще не имел нормального высшего образования.
В настоящее время считается, что сверхновые звезды помогают однозначно измерять космическое расширение: «Их наблюдаемые свойства исключают альтернативные космологические теории, в которых пространство не расширяется». Доказательств никаких не приводится. Но безапелляционно утверждается: «Вселенная при расширении охлаждается, как сжатый воздух, вырывающийся из баллона аквалангиста». Как можно
«В рамках стандартной космологической модели
Аналогичным образом трактуется реликтовое излучение. Оно якобы имеет красное смещение около 1000. Эта цифра верна лишь в том отношении, что миллиметровый диапазон примерно в тысячу раз «красней», чем оптический световой диапазон. Но ведь нет никаких оснований, кроме желания релятивистов, брать оптический диапазон за шкалу отсчёта. Интерпретация реликтового излучения релятивистами такова: «Когда горячая плазма молодой Вселенной испускала принимаемое нами сегодня излучение, она удалялась от нас почти в 50 раз быстрее скорости света». Грандиозно. Но бездоказательно. И, как уже отмечалось, противоречит эйнштейновскому тезису о предельной скорости света (для материальных объектов).
В брошюре А. И. Староверова «От парадокса Эренфеста – к стационарности Вселенной» (2009) был сделан расчет длины волны реликтового излучения в рамках классической физики.
λ
R = c (λ – λ0) / H λ
Здесь R – расстояние до дальней галактики, с – скорость света, λ – регистрируемая длина световой волны, λ0 – исходная длина, H – постоянная Хаббла. Если, принять R = 4000 Мпк (радиус сферы реликтового излучения, доходящего до нас) и взять λ0 = 1 мкм (край области оптического излучения галактик), то получается, что λ = 500 мкм, т. е. это как раз область реликтового излечения. Никакой релятивизм с расширением тут не понадобился. В указанной брошюре релятивистская гипотеза о расширении Вселенной была подвергнута справедливой критике. Наличие «красного» смещения у галактик было легко объяснено в рамках классической физики.
Теперь процитирую профессора А. В. Засова (физ. ф-т МГУ): «Все недоразумения… связаны с тем, что для наглядности рассматривают расширение ограниченного объема Вселенной в жесткой системе отсчета… Отсюда представление и о Взрыве, и о доплеровском смещении, и распространенная путаница со скоростями движения…»
Какие же есть более веские причины космического красного смещения? Их три: 1) Пониженная, по сравнению с Солнцем, температура далёких звёзд, 2) Квантованная потеря энергии звёздных фотонов при их прохождении через межзвездную пыль (это принято называть «усталостью» фотонов), 3) Аналогичная потеря энергии при прохождении через электромагнитные поля.
Первая причина вполне очевидна. Чем ниже температура тела, тем меньше энергия его свечения. В первом приближении это описывается законом В
Вторая причина тоже существенна. Межзвездная пыль имеет низкую плотность, но за счет гигантских расстояний на ней происходит квантованное «дробление» энергии фотонов: каждая молекула холодной пыли способна забирать на себя не менее одного кванта колебательной энергии, что делает пролетающий фотон более «красным». Этот процесс известен в спектроскопии как комбинационное рамановское рассеяние света. Релятивисты, оппонируя этой точке зрения, утверждали, что при рассеянии свет должен был бы отклоняться, но этого не наблюдается. Да, отклонение не наблюдается. Но не потому, что нет рассеяния, а потому что релятивисты перепутали рамановское рассеяние (на отдельных атомах или молекулах, с изменением длины волны, но без отклонения в сторону) с релеевским (оно происходит на частицах, без изменения длины волны, но с отклонением). Нужно подчеркнуть, что межзвездная «пыль» состоит не столько из частиц, сколько из отдельных атомов и молекул. Поэтому световая волна сильно подвергается рамановскому рассеянию, но мало – релеевскому.
Третья причина тоже возможна. Вселенная вся пронизана электромагнитными волнами в диапазоне от метров и сантиметров до микрометров. При взаимодействии оптической волны с радиоизлучением, реликтовым излучением и инфракрасным излучением есть вероятность перераспределения энергии между ними.
Элементарные частицы и атом
Количество разнообразных элементарных частиц (бозоны, фермионы, лептоны, кварки, нейтрино и т. д. и т. п.) предсказанных теоретиками и обнаруженных (или пока не обнаруженных) экспериментаторами исчисляется нынче великим множеством. При этом ученые относятся к ним как к реальным объектам, исходно существующим в природе.
Но тут уместно вспомнить поучительное мнение выдающегося немецкого физика Вернера Гейзенберга, одного из основателей квантовой механики. Когда студенты стали спрашивать его про внутреннее устройство элементарных частиц, Гейзенберг попросил их взглянуть в окно, смотрящее на здание бассейна, и ответить на вопрос: люди, выходящие из здания одетыми в пальто, в самом бассейне плавают тоже в пальто? Гейзенберг правильно понимал, что элементарные частицы как таковые не существуют. Они возникают лишь в результате взаимодействия. Если перенести его точку зрения с элементарных частиц на атом, то можно сказать, что никаких электронов, протонов и нейтронов в атоме нет. Он из них не состоит. Они возникают лишь в момент взаимодействия атомов с электромагнитным полем или иным излучением, которое исследователь направляет на них. Такой взгляд позволяет обойтись без гипотезы Бора о фиксированных внутриатомных орбитах, по которым вращаются электроны. Бору пришлось постулировать, что отрицательно заряженный электрон может вращаться вокруг положительно заряженного ядра. Этот парадокс, противоречащий закону Кулона о притягивании разноименных зарядов, невозможно преодолеть ни моделью электрона в виде частицы, крутящейся по орбите вокруг ядра, ни моделью о размытой траектории в виде электронного облака. Но, если стать на позицию Гейзенберга, парадокс исчезает. Хотя Гейзенберг по сути прав, но модель Бора более наглядна и удобна для применения.
Формула E = mc2
Глядя на формулу E = mc2, почти любой скажет, что это – великая формула Эйнштейна о связи между энергией и массой. Но на самом-то деле кое-что тут не совсем так.
Во-первых, эту формулу придумал вовсе не Эйнштейн, а Пуанкаре. На это указал В. И. Арнольд в статье «Недооцененный Пуанкаре» (Успехи математических наук, 2006, т.61, № 1, с. 3–24). Причем, Эйнштейн, тщательно изучивший (по совету Минковского) теорию Пуанкаре, никогда не ссылался на первоисточник и только в 1945 году признался в этом. Кстати, знаменитые «преобразования Лоренца» в эйнштейновской специальной теории относительности тоже принадлежат не Эйнштейну и даже не Лоренцу, а всё тому же самому Пуанкаре.
Во-вторых, ничего особенно «великого» в выше приведенной формуле нет. Основываясь на правиле сохранения размерности физических величин, эту формулу легко мог бы вывести любой старшеклассник, причем,
Пуанкаре, получив эту формулу в ходе сложных математических преобразований, отнёсся к ней как чистый теоретик, увлеченный лишь математическими изысками. Несомненной заслугой Эйнштейна является то, что он обратил на эту формулу пристальное внимание и осознал, как физик, что из массы можно черпать огромную энергию. Не случайно именно Эйнштейн впоследствии стал одним из создателей ядерной бомбы.
В заключение уместно заметить, что многие «великие» формулы физики довольно тривиальны. Действительно, если какая-либо формула имеет вид функции Y = Z X, то коэффициент пропорциональности Z (размерность и её величина), устанавливающий связь между физическими параметрами X и Y, получается автоматически – путем деления Y на X. К примеру, в знаменитой формуле E = hν энергия E и частота ν связаны через постоянную Планка h, которая тривиальным образом просто выравнивает размерность правой и левой части формулы.
Дарвиновская теория и переходные виды
Еще каких-нибудь три десятка лет назад теория Дарвина была общепринятой и фигурировала в учебниках как закон природы. В наше время стало модным не только критиковать дарвинизм, но и говорить о его полной несостоятельности.
Отсутствие переходных видов при палеонтологических раскопках обычно выдвигается как один из сильнейших аргументов против эволюционной теории Дарвина (кстати, он сам прекрасно понимал «загвоздку» и писал об этом). Но фокус в том, что указанный аргумент исходит из предположения, кажущегося очевидным, что полезные признаки должны постепенно накапливаться и постепенно подвергаться естественному отбору.
Но давайте задумаемся. Мутация, согласно генетике, представляет собой мгновенное изменение в генотипе. Это может быть небольшое изменение или большое. Если изменение небольшое, то никаких особых преимуществ ни данная особь, ни её потомство не получают (по сравнению с другими особями популяции). Более того, эта особь, в которой произошла мутация, согласно законам статистики, в дикой природе погибнет, причем, скорее всего, до того, как обзаведется потомством. Но вот если вдруг изменение в генотипе очень сильное и при этом радикально полезное, то вероятность выживания резко возрастает. Такая мутация представляет собой резкий скачок. Но в этом случае должен возникать принципиально новый вид, а вовсе не переходный вид.
Тут, по ходу дела, нужно заметить, что мутации соматических клеток не наследуются. Наследуются только те мутации, которые происходят в половых клетках. При слиянии мужских и женских хромосом таких клеток возникает потомство, которое теперь содержит мутацию во всех клетках, в том числе – соматических, которые формируют фенотип и подвергаются естественному отбору.
Современная теория эволюции утверждает, что новые виды животных и растений возникают в природе благодаря мутациям в ДНК. Мутация представляет собой локальное изменение в молекуле ДНК. Предположим, что произошла полезная точечная мутация в ДНК. Ведет ли это к появлению нового вида? Нет. Такая мутация приводит только к возникновению какого-либо нового качественного признака у того же самого вида, ибо количество хромосом остаётся прежним. Здесь необходимо особо подчеркнуть, что в природе один вид генетически отличается от другого, прежде всего, количеством хромосом (а также их размерами), но вовсе не последовательностью нуклеотидов ДНК. К примеру, у человека – 46 хромосом, а у обезьяны – 48. Человек не скрещивается с обезьяной, хотя последовательность нуклеотидов человеческой и обезьянней ДНК совпадает на 98 %. Между прочим, сходство с ДНК свиньи – 95 %! Именно разница в числе хромосом и их размерах полностью отделяет один вид от другого и делает невозможным размножение потомства, даже если оно будет специально получено.
Модель постепенного накопления небольших мутаций, на которую сделала упор современная «нейтралистская» теория эволюции (Кимура и его последователи) хорошо объясняет появление новых признаков, но никак не может объяснить возникновение
Как возникает скачкообразное изменение количества хромосом? Скорее всего, это может происходить в процессах клеточного мейоза и митоза, причем, либо на ранней стадии эмбриогенеза (пока клетки не дифференцированы) или у самцов и самок в процессе сперматогенеза и оогенеза.
Итак, нужно принять, что новый вид возникает в природе за счёт изменения количества хромосом (резкий скачок), а не многочисленных точечных изменений в молекуле ДНК. Тогда никаких переходных видов не требуется. Вот почему палеонтологи не обнаруживают переходных видов. А те переходные виды, которые палеонтологами всё же обнаруживаются, относятся, по-видимому, не к новым видам, а к подвидам.
Homo sapiens
Считается, что первые представители
Радиоуглеродный метод, принятый в палеонтологии и археологии для определения дат, весьма спорен. Хотя за этот метод в 1911 году Либби получил Нобелевскую премию, но через сто лет оказалось, что датировки по изотопу углерода не столь точны, как казалось Либби и его последователям. Причем, дискуссии на эту темы шли всё время (например, статьи Ивлева в журнале «Биофизика» в 80-х годах). Метод даёт слишком большие погрешности, причем, не только из-за загрязнения археологических находок современными микробами и пылью, но и из-за несовершенства самого метода. К примеру, археолог Милойчич обнаружил, что некоторые
А что уж говорить о древних артефактах из далёкого прошлого! Особенно спорным является допущение Либби о том, как стабильно вёл себя изотоп углерода на Земле в течение тысяч и миллионов лет. Учёный не учёл, что геофизика планеты и круговорот углерода на ней подвержены резким перепадам.
И, что ещё более важно, в общепринятой хронологии Земли отсутствует независимый контроль дат каким-либо другим методом, не радиоуглеродным.
Интересно, что Ньютон в своей книге «Исправленная хронология древних царств» высказал большие сомнения в общепринятой хронологии исторических событий. Нужно отметить, что Ньютон, как настоящий ученый, весьма скурпулёзно проанализировал множество источников о давних событиях, причем, особо тщательно – Библию.
Некоторые ученые сегодня склоняются к точке зрения Ньютона. По их мнению, история человечества и вообще всей планеты Земля гораздо короче, чем та, которая описывается нынче традиционно, основываясь на радиоуглеродном методе.
Считается, что современный человек появился 80 или 40 тыс. лет назад (по разным радиоуглеродным оценкам разных археологических артефактов). Анализируя митохондриальную ДНК, генетики пришли к заключению, что все люди на Земле имеют общую мать – Еву. Возраст Евы учёные оценили, опять-таки полагаясь на радиоуглеродный анализ, в 80 тысяч лет.
Но возникает закономерный вопрос: почему физиологически полноценный
Однако если предположить правоту Дэникена и других смелых энтузиастов, говорящих о том, что человек возник в результате генетического эксперимента инопланетян, то всё становится на свои места. Кстати, тут уместно заметить, что Дэникен вовсе не был первый, кто по серьёзному заговорил об инопланетянах. Одним из первых был советский ученый Казанцев, про которого почему-то совсем забыли.
Существует масса древних текстов (Библия, шумерские таблички, индийские веды и т. д.), в которых весьма точно (хотя мифологически) и сходно описаны громыхающие ракеты, спускающихся с неба, летательные аппараты вроде вертолётов, лучи огня вроде лазеров и т. д. Тщательный научный анализ текстов можно найти в книге Арзуняна «Бог был инопланетянин».
Имеется множество археологических свидетельств об инопланетянах (или точней – о каких-то сверх-существах). Тут и рисунки в пустыне Наска, и многотонные плиты в Баальбеке, и гигантские платформы Пума-Пунку в Тиуанако, и фигурки скафандрах, и т. д. и т. п. Количество таких вещественных доказательств огромно. Но на самом деле достаточно было бы одного: египетские пирамиды. Каких только идиотских объяснений ни навыдумывали в своё время специалисты-археологи, чтобы объяснить чудесное появление каменных глыб весом десятки тонн в Египте, на острове Пасхи, в болотах Боливии! Что касается факта обработки поверхности глыб с точностью до долей миллиметра (как будто алмазной пилой или мощным лазером!), то большинство «специалистов» хранили молчание, ибо тут никакой заумной глупостью отделаться было невозможно.
А как объяснить, что в излучине реки Нигер в Африке живёт племя дикарей догонов, обладающих точными астрономическими сведениями про Сириус и другие звёзды? Эти сведения передаются у них от поколения к поколению, причем, не только устно. Они запечатлены в древних пещерных наскальных рисунках!
Таких фактов более чем предостаточно для принятия гипотезы об инопланетянах, их роли в создании
Кстати, всё выше сказанное не отрицает дарвиновскую теорию. Оно лишь объясняет, почему человек не остался в животном мире, а стал развиваться как цивилизованное существо.
Кратковременная и долговременная память
Общепринято, что у человека есть два вида памяти: кратковременная и долговременная. Этой догме давно учат и школьников на уроках биологии, и студентов ВУЗов. В интернетовской Википедии можно прочесть в пользу двух видов памяти такие сведения (привожу «выжимку», своими словами):
Герман Эббингауз, проводивший опыты на себе, установил, что если заучивать список бессмысленных слов, то после первого прочтения обычно удаётся запомнить не более семи. Это – объём кратковременной памяти. Количество сохранившейся информации зависит от времени с момента заучивания до момента проверки. Легче запоминаются первые и последние элементы. Ёмкость кратковременной памяти можно немного увеличить за счёт смысловой или ассоциативной группировки элементов. Кратковременная память позволяет без повторения помнить что-либо в течение нескольких секунд, вплоть до одной минуты. Эта память осуществляется за счет временных нейронных связей из фронтальной и теменной коры (сюда попадает информация из сенсорной памяти). Считается, что кратковременная память основана на электрофизиологических механизмах, поддерживающих возбуждение связанных нейронных сетей.
Долговременная же память, согласно общепринятой точке зрения, фиксируется в виде структурных изменений в отдельных клетках нейронных сетей и обусловлена биохимическими процессами. Эта память может хранить гораздо большее количество информации, причем, на протяжении всей жизни. Она основана на усилении синаптической силы в нейронах и на увеличении числа связей. Одиночное воздействие вызывает выброс серотонина, который воздействует на мембранный рецептор, активируя G-белок, который стимулирует аденилиатциклазу. Она синтезирует циклический АМФ и т. д. Ионы калия выходят из сенсорного нейрона, но входят ионы кальция. Налицо целый каскад биохимических реакций. Длительность этих реакций, по мнению учёных, соответствует формированию долговременной памяти.
Итак, современная нейрофизиология трактует память как последовательность электрических и биохимических процессов. И утверждает, что есть память двух видов – кратковременная и долговременная. Казалось бы, всё ясно и научно убедительно.
Но не будем спешить с выводами. Да, конечно, функционирование нейронов связано с электрическими сигналами. Да, сигналы сопровождаются биохимическими реакциями. Но не ясно, в каком виде удаётся зафиксировать информацию, причем, мгновенно. В каком конкретно виде эта информация хранится? И как извлекается? Ответов, увы, нет.
А как объяснить гигантскую, причем мгновенную, память людей-феноменов? Им достаточно взглянуть на страницу и – всё, текст запомнен, причём, навсегда. Вразумительного ответа на этот вопрос нет.
А как быть с воспоминаниями, возникающими у пожилых людей? Старики прекрасно помнят кучу событий из детства, причем, эти события зачастую совершенно незначительны и случайны. Ответа тоже нет.
А как объяснить, например, такой простейший фактик? Ребёнок учит стишок, учит, учит, учит… Ну, никак не запомнит! Но ежели подсказать ему нужное слово, тут же вспоминает. Получается, что на самом-то деле запомнить-то он сразу запомнил, но просто не мог вспомнить. Причем, с момента обучения до момента успешного вспоминания (с подсказкой или без) может пройти какое угодно время, а вовсе не секунды или одна минута.
Всё это противоречит Эббингаузу и его последователям. Почему? Потому что на самом-то деле они имели дело не с запоминанием, а со вспоминанием. Они наивно спутали процесс фиксации информации (запоминания) и её извлечения (вспоминания). А ведь это разные вещи.
Чтобы объяснить множество фактов, не укладывающихся в традиционную схему, давайте обратимся к противоположной точке зрения, давно прозябающей на задворках современной науки в виде непризнанной гипотезы (материалы доступны в Интернете).
В середине XX-го века два американских Карла – нейропсихолог Карл Лэшли и нейрохирург Карл Прибрам – поставили под сомнение все имеющиеся теории работы мозга. И этим восстановили против себя всех своих маститых коллег во всём мире.
Лэшли обучал крыс отыскивать кратчайший путь в лабиринте. Потом хирургически удалял у них большие участки мозга. И снова проводил испытания. Оказалось, что вне зависимости от того, какие участки мозга были удалены, память сохранялась. Это означало, что определенная память не локализована в определенных участках мозга (как считалось ранее), а была равномерно распределена по нему, делокализована. К примеру, даже после удаления у крыс 90 % зрительного отдела коры головного мозга животные были в состоянии выполнять сложные зрительные задачи. В клинике у пациентов, когда значительная часть мозга удалялась по медицинским показаниям, память становилась несколько расплывчатой, но в целом она не терялась. Например, люди, получившие травму головы в автокатастрофе, помнили всех родственников и прочитанные ранее книги.
Прибрам в середине 1960-х годов осознал, что мозг подобен голографическому устройству: целое пространственное трёхмерное изображение создаётся не по отдельным точкам, а восстанавливается из оптической интерферограммы, подобной оптической дифракционной картинке. При вспоминании мозг обрабатывает зафиксированные «дифракционные» изображения с помощью «внутренней голографии». Даже небольшая часть голограммы, как известно из оптики, позволяет восстановить целостную картину.
Когда электрический сигнал достигает конца нейронного разветвления, он распространяется далее в виде волны. Поскольку нейроны тесно прилегают друг к другу, электрические волны накладываются друг на друга, формируя интерференционную картину – голограмму.
Голограммы обладают способностью к хранению гигантского количества информации. В голографической оптике, изменяя угол, под которым два лазера облучают кусочек фотоплёнки, удаётся записать на одной поверхности множество изображений. Каждое такое изображение может быть восстановлено освещением плёнки лазером, направленным под тем же углом, под которым находились первоначально два луча. По-видимому, в мозге происходит нечто подобное.
Еще один исследователь – Пенфилд – заключил, что всё, что человек когда-либо испытывает в жизни, записывается мозгом, будь то незнакомое лицо в толпе или паутинка из детства.
И это действительно так. Проблема плохой памяти не в трудности запоминания, а в трудности отыскания нужной информации в огромном массиве записанной информации, точнее – в её быстром восстановлении из голографической записи.
А вот характерная современная научная цитата: «Голографический принцип работы мозга, в принципе, способен объяснить многие механизмы памяти человека… Однако реальных доказательств и достоверных экспериментальных данных на этот счет пока нет».