Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Юный техник, 2001 № 07 - Журнал «Юный техник» на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Однако и тут вопрос: можно ли с помощью контакта антенн передавать информацию с такой скоростью? Математический расчет показал: даже если бы 60 тысяч муравьев одновременно повернулись в одну сторону и мгновенно коснулись антеннами друг друга, сигнал шел бы до города со скоростью, в 100 раз меньшей, чем было на деле.

Получается, у атта существует какая-то телекоммуникационная система? Каким же образом она устроена?

Первой отпала гипотеза об оптическом «телеграфе» — атта слепы.

Передавать сообщения с помощью запахов мгновенно тоже невозможно — распространение пахучих молекул по воздуху происходит довольно медленно. Остается либо ультразвук (а может, инфразвук), либо нечто вроде… радиосвязи. Доктор Хелен Форрест из университета Ратгерс обнаружила, что насекомые действительно способны издавать различные звуки за счет «щелчков» суставами лап, потирания лапок и смыкания челюстей. Она также убедилась, что муравьи могут генерировать и гораздо более сложные звуки так называемыми «органами стрекотания», несколько напоминающими те, что имеются у кузнечиков.

Но тогда, сделала вывод исследовательница, «возникшие в результате вибраций колебания воздуха мог бы без всяких приборов услышать человек, находящийся рядом с насекомым и обладающий достаточно тонким слухом». В качестве доказательства она привела магнитозапись звуков 25 видов муравьев!


А это уже и впрямь фокус!

Следующий эксперимент поставил исследователей в тупик.

Как уже говорилось, воспроизводством потомства занимаются у атта матки. Будучи еще небольшого размера, в молодости они улетают из своего родного «города», находят там пару, затем возвращаются на землю и вкапываются в нее, основывая новый город. Появившаяся на свет армия рабочих муравьев ухаживает за маткой, а она тем временем вырастает до чудовищных размеров.

Для защиты матки рабочие муравьи сооружают «бетонную» камеру, настолько прочную, что разрушить ее можно только с помощью лома. Камера полностью окружает матку, и только в самой нижней ее части проделан ряд небольших отверстий для входа и выхода подносчиков пищи, каналы для вывода экскрементов и прохода «акушерок», следящих за яйцами, а также желоб для яиц.

Часто такие камеры достигают величины кокосового ореха, слегка сплюснутого и чуть удлиненного. А толщина стенок может достигать трех дюймов (7,5 см). Вот здесь ученые и столкнулись с тайной.

Добравшись до камеры, в которой находится матка, и осторожно срезав ее боковую часть, они увидели, что всю камеру занимает большое насекомое. Его пометили тонкой струйкой краски из пульверизатора.

Пока камера оставалась открытой или прикрытой куском стекла, ничего необычного не происходило. Матка либо погибала, либо рабочие муравьи с превеликим трудом переносили ее в другое место. Однако если закрыть потревоженную камеру всего на пару минут — матка из нее попросту исчезала.

Дальнейшие раскопки и поиски показали удивительную вещь: пропавшая матка, помеченная краской, в конце концов обнаруживалась в другой сверхпрочной камере, расположенной в нескольких десятках метров от прежнего места. Как она туда могла попасть?

Есть два варианта ответа на этот вопрос. Ответ первый, весьма простой: ученые просто морочат нам головы, подогревая интерес к своей работе. На самом деле никаких исчезновений не происходит.

Ну, а если все-таки исследователи не лукавят? Тогда придется предположить, что атта, обладающие развитой системой телекоммуникации, также создали и систему телепортации самых важных членов своего общества, срабатывающую в экстремальных случаях.

С точки зрения теоретической физики, такое вполне возможно. Если через материю проходят звук и свет, так почему бы и веществу не проходить сквозь вещество? В любом случае материя на 99 процентов состоит из «дырок» в кристаллической решетке. Вот ведь струя воды из шланга может пробить любую мелкую проволочную сетку насквозь. К тому же, последние работы физиков показывают: некое подобие телепортации элементарных частиц в природе существует. Сами исследователи замахнулись создать подобную систему для телепортации материальных объектов уже к середине XXI века.

Вот ведь какие чудеса творятся у нас под ногами!


Максим ЯБЛОКОВ

ВЕСТИ ИЗ ЛАБОРАТОРИЙ

Поют ли звезды?

Речь, конечно, пойдет не о «звездах» рок-музыки. А о самых настоящих, тех, что светят нам с небосклона. Возможно, они тоже имеют свой голос?


Художник Ю.САРАФАНОВ

— Покажу-ка вам фокус, — улыбнулся с заговорщицким видом профессор Вадим Николаевич Гладышев. Взяв тампон, пропитанный спиртом, он поджег его зажигалкой и сунул снизу в вертикально расположенную стальную трубку. И… оттуда тотчас донесся сильный чистый звук.

Трубка запела. Но почему? Заглянув внутрь, можно было обнаружить всего лишь какую-то сеточку, но никаких признаков подобия свистка.

Откуда же шел звук? Как он возник?

Как потом выяснилось, профессор повторил на моих глазах классический опыт немецкого исследователя К.Рикке, впервые поставленный еще в 1859 году.

А вот почему трубочка поет, ответа не знал ни Вадим Николаевич, ни сам Рикке. Лорд Релей знал о подобном эффекте с водородным факелом, помещенным в трубку, знал также сам Майкл Фарадей, автор знаменитой «Истории свечи». В 1818 году он записал: «Такое явление характерно не только для водорода, но и для других газов, хотя и в меньшей, чем для водорода, степени». Но в чем причина, также не объяснил.

— Сегодня мы можем отметить лишь то, что это явление очень похоже на наблюдаемое нами в камерах сгорания ракет, — пояснил профессор. — Они, как известно, ревут, хоть уши затыкай, примерно шестая часть их мощности уходит в звук. А вот почему? Понятно лишь, что происходит двойное преобразование энергии — сначала химическая энергия топлива превращается в тепловую, а та уж — в механическую энергию акустических колебаний…

И это явление не единственное, которое пока не поддается точному описанию. Есть немало и других. Одно из величайших открытий в истории человечества — огонь — и по сей день упорно не желает открывать все свои тайны.

Между тем, как отмечал тот же Фарадей, «явления, наблюдающиеся при горении свечи, таковы, что нет ни одного закона природы, который бы не был при этом так или иначе затронут».

Кстати, интересна история создания его знаменитой книги «История свечи». Она представляет собой запись лекций, которые были прочитаны замечательным английским физиком-экспериментатором для юношества в период с 1827 по 1860 год. А уже в 1861 году были изданы отдельной книгой. Впоследствии она неоднократно переводилась на многие языки. На русском эта книга первый раз была издана в 1866 году, еще при жизни Фарадея. Последнее из попадавшихся на глаза изданий датировано 1980 годом.

Фарадей обстоятельно и доходчиво постарался изложить все известные в его время научные сведения о процессе горения. Книгу читали многие из ныне известных ученых. В их числе и профессор Гладышев. И лично его она заинтересовала вот с какой стороны.

— Ни Фарадей, ни кто-либо другой словом не обмолвились, почему горение имеет неустойчивый характер, — пояснил Вадим Николаевич. — Между тем всем хорошо известно: пламя свечи, костра, даже керосиновой лампы, казалось бы, надежное прикрытое стеклом, все равно колеблется. Почему?

Заинтересовавшись этим вопросом еще в школьные годы, будущий профессор довольно скоро пришел к выводу, что перед ним один из случаев автоколебательной системы.

В наши дни подобные системы довольно широко используются, например, в радиоэлектронике, где применяют автогенераторы электромагнитных волн. Что же касается самого процесса горения, то он широко используется в технике — в разного рода моторах, начиная от обычных двигателей внутреннего сгорания и кончая ракетными.

Над вопросом, почему пламя колеблется, как его можно обуздать, десятилетиями бились лучшие умы. Среди них академики Л.Капица, Л.Ландау, Л.Арцимович, Б.Раушенбах и многие другие. Вместе с зарубежными коллегами они выдвинули не менее двух десятков теоретических объяснений неустойчивости фронта горения, что помогало решать те или иные практические задачи.

Скажем, уже упоминавшийся нами Релей сформулировал критерий, определяющий соотношение между изменением давления и подводом тепла. «Если теплота сообщается воздуху в момент наибольшего сжатия или отнимается от него в момент наибольшего разрежения, то это усиливает колебания, — писал он. — Напротив, если теплота сообщается в момент наибольшего разрежения, то колебание этим ослабляется». И даже нашел этому соответствующее математическое выражение.

Критерием Релея пользуются все специалисты по тепловым системам, но он, к сожалению, не охватывает все случаи. Когда, например, появились первые двигатели внутреннего сгорания, пришлось вносить исправления. То же самое пришлось делать и в 20-е годы XX века, когда стали конструировать первые ракеты.

При решении частных задач многочисленные теории помогают найти тот или иной выход. Скажем, широко известно: чтобы уменьшить детонацию в цилиндрах ДВС, научились добавлять в бензин тетраэтилсвинец. Он крайне ядовит, от него сильно страдает экология. Но другого способа утихомирить двигатель, увы, пока никто не придумал.

В какой-то мере усмирить ракетные двигатели удалось, подобрав соответствующую форму ракетных дюз. Ракеты ныне летают не только на орбиту, но и к далеким планетам.

Однако об экологии таких запусков лучше умолчим. Не удалось до конца усмирить и пламя плазмы в экспериментальных термоядерных реакторах — все время идут досадные срывы плазменного шнура. И теоретики вместе с экспериментаторами настоятельно ищут причины вот уж какое десятилетие…

Каждый, кто сталкивается с горением, разрабатывает в своей области те или иные конкретные рецепты, использует их с большей или меньшей эффективностью. Однако общей теории, которая бы позволила разом разрешить все мучающие практиков вопросы, нет как нет. А точнее, не было до недавнего времени.

Я держу в руках небольшую книжицу, написанную профессором Гладышевым. Она называется просто и обыденно — «Автоколебания при горении и термоядерных процессах». Текст в ней, конечно, не столь захватывающ, как в детективе. Тем не менее, при чтении ее можно сделать весьма интригующие выводы. Проанализировав все доступные ему источники горения, Гладышев выделил среди них многие сходные черты. Скажем, звезда, пульсирующая в далекой галактике, может быть описана примерно теми же уравнениями, что и труба — термоакустический генератор, — с которой мы начали наш рассказ.

— Неужто и звезды поют? — не удержался я от вопроса.

Гладышев только усмехнулся.

— Трудно сказать, — ответил он. — В том, что существуют колебания в электромагнитном диапазоне, в том числе и видимом, мы уже убедились на практике.

А насчет звука… Для распространения акустических колебаний нужны либо воздух, либо вода. А есть ли они в окрестностях звезды?..

Станислав ЗИГУНЕНКО

У СОРОКИ НА ХВОСТЕ


И ИНТЕЛЛЕКТ НЕ ПОМОГАЕТ… Эффективный способ борьбы с угонщиками предлагает одна южноафриканская фирма. Она разработала электронные номерные знаки, которые при несанкционированном вторжении в автомобиль тотчас исчезают, а вместо цифр появляется надпись «Угон». Поможет ли новшество, неизвестно. Вот ведь в Японии прямо из экспериментального цеха угнали «думающий» автомобиль, который способен самостоятельно с помощью спутника и компьютеров прокладывать себе дорогу и ориентироваться в дорожной ситуации.

А АНТАРКТИДА ТАЕТ И ТАЕТ… Британская научная экспедиция, исследовавшая состояние ледового покрытия Антарктиды, зафиксировала быстрое таяние в западной части этой полярной области Земли. Замеры, проведенные учеными Лондона и Кембриджа, а также обработка данных с космических спутников засвидетельствовали, что с 1992-го по начало нынешнего года Западная Антарктида потеряла 31 куб. км ледовой массы.

Как отмечается в журнале «Сайенс», исследования велись на самом крупном леднике региона — Пайн, толщина которого составляет 2,5 км. Установлено, что ежегодно только этот ледник теряет в весе 4 миллиарда тонн, что ведет к повышению уровня океана на 0,01 мм. Так что резон вспомнить, что некогда, в мезозойскую эру, Антарктида была тропическим районом, где бродили даже динозавры. Правда, было это примерно 200 млн. лет назад…

ДАМЫ — ЛУЧШИЕ ШЕРЛОКИ ХОЛМСЫ. Способности женщин запоминать и различать людей по их внешнему виду, значительно выше, чем у мужчин. Женщины также гораздо наблюдательнее, и поэтому их реже вводят в заблуждение новый макияж, грим, смена прически или перекрашивание волос. К таким выводам пришли шведские ученые из Стокгольмского университета.

ТОНЬШЕ ВОЛОСА, А РЕЖЕТ… Сингапурские физики впервые в мире получили пучок протонов, поперечный диаметр которого в 1000 раз меньше, чем толщина человеческого волоса. Исследователи из Института ядерной микроскопии при Национальном университете Сингапура предполагают использовать такие сверхтонкие протонные пучки в качестве лучевых резцов для изготовления микромашин и световых затворов для оптоэлектронных систем.

ЧАЙ ВМЕСТО ЛЕКАРСТВА… Для профилактики стоматологических заболеваний имеет смысл полоскать рот настоем чая, утверждают шведские специалисты. Как показали исследования, полифенолы — вещества, входящие в состав байхового чая, — подавляют жизнедеятельность микроорганизмов, которые вызывают разрушение зубов и болезни десен.

…А ТАКЖЕ ЯБЛОКИ И ПОМИДОРЫ. Английские пульманологи утверждают, что эти плоды улучшают работу легких. Их вывод базируется на результатах обследования 2700 жителей Уэльса. Статистика показала, что люди, которые регулярно потребляют помидоры и яблоки, реже страдают одышкой и имеют емкость легких, превышающую средние показатели.

PRO ET CONTRA

Идея УМ заманчива, но… недостижима!

Пути технического прогресса неисповедимы. Казалось бы, уж лет сто, как окончательно и бесповоротно победил переменный ток. Но сторонники постоянного тока не унимаются. И не из-за простого упрямства. Судите сами. Двигатель переменного тока — дешевая и надежная машина. Однако не любит переменных режимов. И без них не обойтись. Например, мотору электровоза приходится изменять скорость и крутящий момент в десятки раз. Идет состав в гору — крутящий момент максимален, а скорость мала, едет по горизонтальной дороге — наоборот, скорость велика, а крутящий момент во много раз меньше.

Работать в таких условиях двигатель переменного тока просто не может. А вот двигатель постоянного тока легко с ними справляется. Но к сожалению, у него есть очень ненадежное место — коллектор и щетки. Те же, что и у моторчика от плейера. Однако плотность тока и напряжение в плейере малы, потому и не доставляют никаких хлопот.

При мощностях же 5–7 тысяч киловатт, которые нужны прокатным станам и электровозам, щетки приходится часто менять, да еще чистить и протачивать коллектор…

Возни не оберешься! Хотели бы инженеры сделать двигатель помощнее раз в десять, да не рискуют. Может случиться, что большую часть времени он будет простаивать в ремонте. Вот и задумались над проблемой: а нельзя ли построить его вообще без коллектора? Думают уже лет сто, но еще не построили.

К сожалению, все попытки создания таких агрегатов обречены на неудачу по чисто теоретическим причинам, известным еще со времен Фарадея.

Русский ученый Б.Якоби создал первый в мире электромотор, в котором действие электромагнитных сил непосредственно преобразовывалось во вращение. С ним схожи все современные. Из его схемы можно понять, что для непрерывной работы электромотора необходимо переключающее устройство. Ведь после подключения к источнику тока катушки притянутся к полюсам магнита и застынут в таком положении до тех пор, пока не будет изменено направление тока. Тогда сменится полярность магнитного поля. И они, оттолкнувшись от полюсов магнита, сделают еще пол-оборота и опять застынут в новом устойчивом положении. Словом, для работы электромотора требуется устройство, превращающее постоянный ток в переменный. Ничего лучше коллектора для этого пока не придумали.

Якоби первым обратил внимание на то, что генератор превращается в электромотор, если через него пропускать ток. Обмотки генератора постоянного тока вырабатывают ток переменный, а в постоянный он превращается при помощи коллектора. Таким образом, машины постоянного тока (моторы и генераторы) «сходны до наоборот». Но беда у них одна.

Коллектор и щетки ограничивают мощность. Были попытки создать генераторы постоянного тока без щеток, но и они оказались безрезультатными.

Дело в том, что ток в контуре возникает от изменения текущего сквозь него магнитного потока. Пусть, к примеру, магнитный поток равномерно увеличивается. Неограниченно возрастать, как и все в нашем мире, магнитный поток не может, когда-то его рост должен закончиться, не правда ли? И тогда ток в контуре прекратится. Далее возросший пусть до «космических размеров» магнитный поток начнет уменьшаться, в контуре начнет индуцироваться ток, но уже другого направления. Чтобы во внешней цепи постоянный ток не менял направления, применяют коллектор — своеобразный механический выпрямитель.

Однако существуют открытые еще Фарадеем униполярные машины постоянного тока, в которых, на первый взгляд, коллектор отсутствует, хотя щеточный узел имеется. На рисунке 1 представлена схема такой машины.


Она имеет как бы один полюс, потому ее и называют униполярной, а соответствующее наведение ЭДС — униполярной индукцией. В этой машине сам диск представляет собой коллектор или коммутатор. Мысленно разрежем диск на ряд секторов. Они-то по мере вращения и вступают в контакт со щеткой и ведут себя как провод, пересекающий неподвижное (ибо магнит-то неподвижен!) магнитное поле. Возникает, как и положено, ЭДС. Поскольку направление и скорость движения секторов постоянны, то направление и величина ЭДС в них одинаковы. Так же постоянен ток в цепи униполярного генератора. Мысленно увеличивая число секторов диска до бесконечности, можно понять, почему так происходит.

Такое объяснение удобно для расчета, но в физическом отношении не полно.

Отметим еще одну принципиальную схему, которая была применена Фарадеем. Если взять вращающийся магнит (с круглым сечением) и соединить его с контуром (рис. 2) таким образом, чтобы один конец контура касался середины северного полюса, а другой — с помощью скользящего контакта магнита в нейтральной его плоскости, то в контуре будет наводиться ЭДС.


Все исходящие из магнита индукционные линии в силу симметрии находятся в плоскостях, проходящих через ось магнита. При вращении магнита вокруг своей оси число индукционных линий в контуре не увеличивается и не уменьшается независимо от того, считать ли силовые линии вращающимися вместе с магнитом или неподвижными относительно него. Поэтому, казалось бы, в контуре не должна наводиться ЭДС, но она наводится, что легко проверить прибором.

Это явление объясняется тем, что в контур вносятся все новые элементы длины. Если часть контура заменить неподвижным проводником, то действительно никакой ЭДС не наблюдалось бы. Но в контур входят части, которые постоянно по мере вращения магнита замещаются новыми элементами поверхности магнита. Именно эти элементы и пересекают индукционные линии поля, образуя ЭДС.

Униполярная индукция обратима: если в неподвижный контур включить какой-нибудь источник тока, обеспечив замыкание его через диск, то получим униполярный мотор. Так же можно заставить вращаться магнит, включив в цепь контура источник.



Поделиться книгой:

На главную
Назад