ЖУРНАЛ «ЮНЫЙ ТЕХНИК»
НАУКА ТЕХНИКА ФАНТАСТИКА САМОДЕЛКИ
№ 5 май 2002
Популярный детский и юношеский журнал.
Выходит один раз в месяц.
Издается с сентября 1956 года.
КАРТИНКИ С ВЫСТАВКИ
В марте в павильоне выставочного комплекса «Сокольники», на площади 5000 кв. м, было представлено около 700 экспонатов, созданных изобретателями сорока регионов России и ближнего зарубежья. Заметки с V Международного салона «Архимед-2002» и открывают наш номер.
Кандидат технических наук из г. Санкт-Петербурга Микос Арменович Минасян всю свою сознательную жизнь занимается укрощением вибраций. А попросту говоря, тряской. Для ее гашения обычно используют разного рода амортизаторы, эластичные подвески и прокладки. А Микас Арменович разработал целую серию демпферов-успокоителей. В основном, они предназначены для успокоения крутильно-изгибающих колебаний коленчатых валов на судовых двигателях. Но, в принципе, могут быть использованы и на другом транспорте — ведь двигатели внутреннего сгорания используются и на суше, и в воздухе, и в стационарных условиях.
Еще одна интересная деталь — материалом для изготовления большинства демпферов служат стальные тросы и пружины. Именно этот материал, по мнению разработчика, способен служить дольше всего в экстремальных условиях. Например, нержавейка способна работать годами даже в кислотной среде.
Трагедия, произошедшая в Нью-Йорке, подтолкнула многих изобретателей к созданию различных спасательных устройств, с помощью которых люди, застигнутые пожаром на верхних этажах высотного здания, могли бы эвакуироваться.
Изобретатель Юрий Михайлович Приходько и его сын Михаил представили на выставке устройство, позволяющее на время каждому стать альпинистом.
Конструкция с помощью крюка закрепляется на батарее центрального отопления или балконном ограждении. Конец троса человек крепит на поясе с помощью карабина. Может быть предусмотрена и специальная подвесная система типа парашютной. Остается набраться смелости и прыгнуть вниз.
Энергопоглощающая муфта, устройство которой представляет «ноу-хау» изобретателей, обеспечит плавный спуск на землю. А стоит отцепить трос, как он снова сматывается на барабан, обеспечивая возможность спасения другому.
Кандидат технических наук Сайт Мансурович Сигдиков из подмосковного города Зеленограда — изобретатель со стажем. Дельталет «Комета», представленный на нынешнем салоне, уже не первый летательный аппарат, сконструированный им. Отсюда и тщательность отработки конструкции, и продуманность деталей. В отличие от большинства самодельных дельталетов, двухместная «Комета» предоставляет своему экипажу известный комфорт. Здесь есть и удобные сиденья, и кабина, хорошо защищающая пилотов от невзгод окружающей среды.
А самое главное, считает Сайт Мансурович, — управление дельталетом стало типично авиационным. Так что пилоту, имеющему опыт летной работы, не придется переучиваться, а те, кто впервые осваивает летную профессию, получат навыки, которые им потом пригодятся при пилотировании больших самолетов.
А понять, в чем разница между старым управлением дельталетом — с помощью балки и новым — самолетной ручкой, можно, заглянув к соседям, где расположился разработанный московскими авиаторами тренажер для первоначального обучения дельталетчиков.
Ну, а экспериментальный автожир М-91 представлял собой очередную попытку примирить между собой вертолеты и самолеты. Насколько удачную — покажут летные испытания.
«ЮТ» НА «АРХИМЕДЕ-2002»
Изобретатели, приглашенные «Юным техником», к сожалению, не смогли разместиться в крохотной ячейке, отведенной журналу. Их работы были разбросаны по всей выставке.
Знакомим с некоторыми.
Студенты МИФИ показали посетителям действующий парогенератор, который на 30 % работает за счет холодной термоядерной энергии.
Кандидат химических наук Ф.С. Байбурский продемонстрировал удивительные фигуры, рожденные магнитными полями, воздействующими на магнитную жидкость.
Александр Кушелев, руководитель группы «Наномир», демонстрировал сферы из синтетического граната, которые способны добывать энергию миллиметровых волн из сверхмалых структур микромира. А его соратник Дмитрий Кожевников удивлял присутствующих моделями электронных оболочек, собираемых из детского конструктора «Магеом».
Но, кажется, наибольший успех выпал на долю изобретателя и художника О.Г. Войцеха, представившего на выставке проекты летательных аппаратов будущего. А среди них — образец многощелевого крыла с очень высоким аэродинамическим качеством. Заметим, что нашлись посетители, готовые финансировать его работу.
А у самых юных особым интересом пользовались модели самолетов, танков, кораблей, сделанных по вырезкам из журнала «Левша».
ИНФОРМАЦИЯ
ИНЪЕКЦИЯ ДЛЯ… ДОМА. Архитекторы знают, какую опасность представляет для любого, даже самого крепкого, строения проседание грунта. В Новосибирском государственном архитектурно-строительном университете разработана новая технология укрепления грунта, которая позволяет спасти дом, не выселяя жильцов. В места проседания вводят иглу своеобразного шприца, тонкую, но прочную трубу, по которой в опасное место и закачивают бетонный раствор. Раствор застывает, и образовавшаяся «подушка» не позволяет зданию оседать дальше.
ПЛАВУЧИЕ КЛУМБЫ впервые появились на Патриарших прудах в Москве еще прошлым летом. Эти своеобразные плавающие островки, по словам сотрудника Института водных проблем Петра Погожева, представляют собой уникальную разработку для очистки воды в водоеме.
Во-первых, система оборудована обычными фильтрами, которые очищают воду от грязи при перекачке ее небольшим насосом, питающимся от аккумулятора напряжением 24 В. Заодно при перекачке вода путем аэрации насыщается кислородом.
Во-вторых, внутри сетчатого резервуара живет зоопланктон, крохотные рачки, которые питаются зелеными водорослями и прочими микроорганизмами, заставляющими воду «цвести». Наконец, в-третьих, на «клумбе» высажен камыш и другие растения, которые потребляют отходы жизнедеятельности зоопланктона.
В итоге, если раньше за лето воду на тех же Патриарших прудах приходилось менять 2–3 раза, на что расходовалось порядка 60 тыс. долларов, то теперь расходы сократились втрое.
У плавучих «клумб» обнаружился лишь один недостаток. Они оказались недостаточно вандалоустойчивы. Придется, видимо, конструкторам в будущем запускать в пруды этакие бронированные очистные агрегаты…
АТОМНАЯ ТЕПЛИЦА разрабатывается в институте «Атомэнергопроект» для Ново-Воронежской АЭС. Разработчики вполне резонно рассудили, что назачем то тепло, которое получается при охлаждении водой работающих агрегатов, попросту сбрасывать в окружающую среду. Куда лучше направить, скажем, горячую воду в оранжерею или теплицу и выращивать там овощи и фрукты. Впервые такую идею реализовали на Курской АЭС, где вот уже второй десяток лет на «бросовом» тепле работают не только теплицы площадью 12 га, но и несколько рыбных прудов, вода в которых не замерзает круглый год.
Нынешний же проект для Ново-Воронежской АЭС отличается еще и тем, что предлагает использовать отходы растениеводства, животноводства и рыбоводства на специальной технологической линии, где с помощью метанообразующих бактерий будет производиться сбраживание отходов и получение как органических удобрений, так и биогаза. Все это опять-таки используется в тепличном хозяйстве.
Такой проект позволит приблизить КПД всей энергосистемы к 100 процентам. А это весьма существенная прибавка, поскольку ныне предельный КПД даже лучших турбин на АЭС не превышает 40 процентов.
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Приручение молний
Профессор Олег Александрович Троицкий, главный научный сотрудник лаборатории комплексных физико-механических исследований материалов Института машиноведения имени А.А.Благонравова Российской академии наук, коллекционирует… молнии. И старательно собирает все описания этого небесного явления. Он даже написал популярную книжку, в которой классифицировал все молнии по видам. Впрочем, не это главное. Наблюдения и анализ деяний Зевса-громовержца подвели его к созданию новой технологии обработки металлов. Об этом наш рассказ.
Профессора особенно заинтересовала одна из самых редких разновидностей молниевых разрядов — так называемые неточные молнии. «Это особая форма линейной молнии, — поясняет Олег Александрович, — которая по каким-то причинам на глазах наблюдателей распадается на крупные бусинки или ряд светящихся областей — круглые или полукруглые сегменты, разделенные темными перетяжками».
Заинтересовавшись этим явлением природы, ученый вскоре отыскал ему объяснение. «Неточная молния — это скорее всего линейная молния, пережатая местами за счет пинч-эффекта».
«Пинч» — в переводе с английского «щипок», «толчок». Суть же его физическая заключается в том, что во время прохождения линейного заряда вокруг него возникают электрические кольцевые токи, которые обладают сжимающим действием. Они как бы «прищипывают» ствол молнии, разрывая его на множество «бусинок-четок».
И, как показывает опыт, силенок у пинча оказывается достаточно, чтобы производить весьма существенные механические воздействия. «Иногда после ударов молнии в громоотвод, сделанный из металлической трубы, можно видеть, как эта труба превращается в более тонкий, но сплошной металлический стержень, — свидетельствует Троицкий. — Между прочим, если заказать технологу подобную операцию, то он будет долго ломать голову над тем, какими средствами ее осуществить»…
Получив такую подсказку природы, профессор тоже задумался: а нельзя ли как-то использовать пинч-эффект в машиностроении?
Мы можем вспомнить, что разряды электричества уже использовал в машиностроении известный ленинградский изобретатель Л.С. Юткин. Еще в 1938 году он установил, что искровой разряд между двумя электродами в жидкости порождает сильный гидравлический удар. Так было положено начало электроискровой штамповке металлов.
Однако для использования эффекта Юткина нужны довольно большие затраты энергии. Быть может, пинч-эффект позволит ее сэкономить? Серия лабораторных экспериментов показала масштабность явления. Пинч-эффект усиливается пропорционально квадрату радиуса проводника. Также квадратично пинч-эффект зависел и от силы тока. Кроме того, чем выше проводимость материала, тем и эффект сильнее.
Однако заставить его работать молотобойцем все же не удалось. При обработке больших масс металла, как оказалось, энергетически выгоднее все же использовать эффект Юткина. Зато пинч-эффект оказался удобен там, где наряду с изменением формы металла надо получить некоторые структурные преобразования. Сделать, скажем, сплав пластичнее.
Под действием электрического тока, как выяснилось, начинают «течь» даже такие «капризные» с точки зрения технологов металлы, как вольфрам, титан и молибден. И с помощью прирученной молнии из них можно если и не «веревки вить», то изготавливать тончайшую проволоку, ленты для часовых пружин и другие деликатные изделия. При этом не происходит так называемая нагортовка, то есть самопроизвольное уплотнение металла, из-за чего приходится применять дополнительную теплообработку. Кроме того, улучшается электропроводность и качество поверхности. Лента блестит, как полированная, а исследования под микроскопом показывают, что все поверхностные дефекты на ней исчезли, затянулись…
Эффективность обработки еще более повышается, если одновременно заготовку еще и обрабатывать ультразвуком. И на все про все потребуется энергия, соизмеримая с той, что нужна для 100-ваттной лампочки!
Понятное дело, уникальной разработкой физиков тотчас заинтересовались технологи. Уже принято решение о строительстве цехов по новой технологии в Екатеринбурге, ведутся переговоры о переоборудовании цехов столичного завода «Серп и молот». Изделия из металлов и сплавов, обработанных по новой технологии, нужны в авиационной и космической промышленности, в точном приборостроении и еще в десятке других отраслей.