Вадим Романов Что надо знать о мусорных экскретах
Книга издана в авторской редакции и оформлении
Автор:
Романов Вадим Иванович –
Ведущий научный сотрудник
Института глобального климата и экологии
РАН и Росгидромета, доктор технических наукЗамечания и пожелания о содержании книги
направлять по E-mainame = "note" vadim39@inbox.ru
По этому же адресу направлять заказы на приобретение книг.Техническое и научное редактирование выполнено Романовой Р. Л.
Введение
Что такое мусор, отбросы и что такое отходы? Одно и то же это или разные понятия? Как эти понятия проявляются в нашей жизни и как будут проявляться в жизни наших детей? Эти и ещё множество других вопросов, до сих пор не являясь предметом научного изучения, всё чаще возникают не только у жителей стремительно загаживаемых городов и мегаполисов, но и у обитателей патриархальных, погруженных казалось бы в многовековую дремоту, городков и деревень…
Что же такое могло случиться, чтобы ранее инертное и социально пассивное население нашей необъятной страны вдруг встрепенулось и активизировалось? Просто исчез продовольственный и вещевой голод, и у основной массы населения появились «лишние» продукты питания и вещи, часть из которых перекочевала на свалки…
Известно, что мусор не вчера появился, а существует столько же, сколько живёт человечество. Человек оказался на редкость «мусоротворческим существом». Каждый день он в среднем создаёт («творит») около 1 килограмма мусора. Однако, если этот килограмм мусора в «допластиковую» эпоху легко и быстро разлагался простейшими микроорганизмами, то после создания пластиковых изделий — необыкновенно красивых, продуманно функциональных и прочных — мусор (вернее его пластиковая часть) стал «не по зубам» бактериям. Например, в земле он может лежать практически неповреждённым десятилетиями (при некоторых условиях — столетиями!).
Лавинообразный поток мусора способен погрести под собой современную цивилизацию. Изделия из пластики буквально наводнили весь мир, стали незаменимыми и казалось бы жизненно необходимыми. Действительно пластик прекрасный материал, но он имеет один важный недостаток. Недостатком пластиковых изделий с точки зрения их утилизации является их высокая «живучесть» в природных средах, составляющая в зависимости от конкретных условий от нескольких лет до нескольких сотен лет.
Горы мусора, отбросов и отходов скапливаются на предприятиях, свалках и мусорных полигонах, выбрасываются на землю, закапываются в грунт, затапливаются и сжигаются, однако проблема замусоривания природы только усугубляется, так как генерация мусора значительно превосходит его реальное уничтожение.
Мусор, как говорится, «достал» всех! Жители больших и малых населённых пунктов выступают с требованиями убрать мусор подальше от их жилья, не строить мусорные полигоны и мусоросжигающие заводы, навести порядок на улицах и в водоёмах. Из-за не убираемого вовремя мусора возникают даже политические кризисы…
Следует заметить, что не только содержимое мусорного ведра или отбросов мусорных свалок и полигонов представляют интерес, а вернее сказать — озабоченность, для множества жителей нашей страны и других экономически развитых стран. Мусор в Космосе (точнее сказать, в околоземном космическом пространстве) стал предметом дебатов в научных заведениях, парламентах, изданиях прессы. Оказалось, что он может нарушить работу ставших привычными средств мировой коммуникации, а также функционирование жизненно важных народнохозяйственных объектов.
Все эти вопросы поднимаются и обсуждаются в нашей книге, состоящей кроме введения и заключения из трёх глав. Первая глава посвящается рассмотрению базовых определений и понятий экскретологии, роли и места в этом научном направлении так называемых мусорных экскретов, связанных с деятельностью человека. Обсуждаются разновидности мусорных экскретов, их свойства, неоднозначный характер формирования этих объектов.
Во второй главе книги рассмотрены возможности полезного использования мусорных экскретов. Современные технологии позволяют из отбросов получать полноценные продукты питания, из мусора свалок — тепловую и электрическую энергию. Мусорные экскреты, при должном обращении с ними, способны решать многие проблемы энергетики и космонавтики. Кроме того, глобальные мусорные экскреты в виде залежей перспективных ископаемых могут рассматриваться в качестве сырьевой базы цивилизации.
В третьей главе книги обсуждается роль мусорных экскретов в планетарном цивилизационном кризисе, разразившемся практически во всех странах мира. Он носит комплексный характер и имеет политическую, экономическую, социальную и экологическую составляющие. Рассмотрены вопросы влияния мусорных экскретов на предкризисное и кризисное состояния земли, водных объектов и околоземного космического пространства. Обсуждаются проблемы мусора как инициатора массовых протестных выступлений и политических кризисов.
Отдельной затронутой в книге проблемой является описание нового объекта (феномена) — так называемого квазимусора, являющегося продуктом общества избыточного потребления. Доля квазимусора в производстве общей «мусорной корзины человечества» становится всё более заметной и весомой, и этот новый объект должен учитываться в структуре генерируемых цивилизацией отходов.
Книга имеет много иллюстративного материала, облегчающего её восприятие; она адресована читателям, любознательным и неравнодушным к судьбам родной земли.Глава I Экскреты и экскретология
Этот раздел книги, посвященный ознакомлению с понятиями и определениями экскретологии, написан на основе наших работ [1, 16,90].
1.1. Понятия и определения, используемые в экскретологии
В широком смысле экскретами являются любые естественно-природные и антропогенные объекты, закончившие свой жизненный цикл, выделенные и/или отторгнутые организмами (в том числе и общественными), выбрасываемые за ненадобностью или уничтожаемые каким-нибудь способом.
В справочной литературе (например, в словаре русского языка Д. Н. Ушакова [16]) понятие отторжения определяется так: «Отторгать — отторгнуть что от чего, оторвать, отделить дёргая, порвав; отодрать, отнять силою». В нашей книге процесс отторжения трактуется более расширенно и предполагает:
а) для живых организмов — выделение, отделение и изоляцию от привычных биогеоценозов в том числе со смертельным исходом;
б) для неорганических объектов — выделение, отделение, изоляцию от первоначального физического тела, потерю или выбрасывание, деструкцию или уничтожение.
Классификации выделяемых природой и обществом объектов как составных частей экскретологии представлена на схеме Рис. 1.1.1.
Схема этого рисунка иллюстрирует подразделения экскретов на антропогенные и естественно-природные. Из неё видно, что природные мусорные экскреты — это отбросы, мусор и токсичные выбросы, причём все эти экскреты естественного происхождения. Антропогенные мусорные экскреты, появляющиеся при деятельности человека, кроме техногенных продуктов содержат также и продукты естественного происхождения. Антропогенные мусорные экскреты представлены экскретами мусора и квазимусора, отбросов, сырьевых отходов и токсичных выбросов.
Элементы
Можно сказать, что экскретами являются все материальные объекты природных сред и человеческого общества, отслужившие «свой срок», закончившие жизненный цикл или появившиеся (возникшие) при деструктивных, катаклизменных или катастрофических явлениях.
Классификация экскретов по принадлежности к естественно-природным (в дальнейшем для краткости — природным) или антропогенным приведена на схеме Рис. 1.1.1. В ней естественно-природные объекты противопоставляются антропогенным, хотя формально, антропогенные объекты являются частью природных (Природа — всё существующее во Вселенной, органический и неорганический мир [2]). Такая вольность в формулировке позволяет акцентировать характерные различия экскретов и поэтому, на наш взгляд, вполне уместна.
Кроме того, противопоставление антропогенных и естественно-природных объектов, на наш взгляд, диктуется самой жизнью. Ведь ни сам современный человек, ни огромное количество неестественных им созданных ксенобиотических объектов, мягко говоря, «не вписывается» в отрегулированный тысячелетиями экологический механизм планеты. И сомнительно, что когда-нибудь впишется… Существование неистребимых антропогенных мусорных экскретов тому явное доказательство. Поэтому более правильным было бы вместо названия экскретов «анропогенные» в схеме рисунка 1.1.1. использовать название «неестественно-природные».
Подробно о «немусорных» экскретах: потерях, находках, виктимах, утратах и девиатах можно прочитать в нашей книге [1].
Обсудим кратко «мусорную составляющую» экскретологии, её компоненты, основные и вспомогательные понятия. Приведём некоторые определения мусорных экскретов [1,16,90].
Например, для бытовых отходов можно использовать следующее определение.
На бытовом уровне
В общем случае
Понятие твёрдого или условно твёрдого предмета, вещества или продукта в этом определении означает, что рассматриваемые объекты не жидкие и не газообразные, а относятся к твёрдой фазе. Твёрдое тело характеризует агрегатное состояние вещества со стабильностью формы в виде кристаллических или аморфных объектов [87], а понятие твёрдости характеризует сопротивляемость вдавливанию или царапанию [3]. Строго говоря, любое тело при достаточном охлаждении становится твёрдым.
При нормальных условиях примерами твёрдых тел могут быть металлы, соединения металлов с неметаллами (металлиды), некоторые минералы. Примерами твёрдых аморфных тел служат стекло и изделия из него, янтарь, смолы, битумы и полимеры [87]. При экскретологических исследованиях наряду с понятием твёрдого тела целесообразно использовать понятие условнотвёрдого тела как мерило содержания в нём влаги (в основном воды). На практике именно водность (влажность) выбросов является определяющей характеристикой при рассмотрении их классификации и динамики в природных средах.
Влажность определяется как отношение массы воды, находящейся в данный момент в материале, к массе (реже к объёму) материала в сухом состоянии и выражается в процентах. При этом массу материала берут в естественном влажном, а не в насыщенном водой состоянии.
Вычисляют массовую влажность Wm и объёмную Wo по формулам (%):Wm =((m2-m1)/m1)*100; Wo = ((m2-m1)/V)*100,
где
m1 и m2 — масса материала соответственно в сухом и в естественном влажном состоянии, [г];
V- объём материала в сухом состоянии, [см3].
Понятие условнотвёрдого тела можно конкретизировать применительно кИз соотношения (3) следует, что при массовом содержании твёрдого вещества и газов в выбросе, превосходящем 30 %, его следует причислить к «твёрдым отходам» (в России — ТБО). Приближённая оценка «твёрдости» мусорных отходов может быть записана так:
α ≥ 0,3,
где α — массовая доля твёрдого вещества в выбросе.
В эту категорию выбросов попадает большинство бытового, часть промышленного, горнорудного и прочего мусора (см. Таблицу № 1.2.).
"Жидкими отходами" \liquid waste\ признаются отходы, содержащие менее 1 % твёрдого вещества [92], то есть приα ≤ 0,01.
Существуют также "полужидкие отбросы"\sludge\, содержащие от 3 % до 25 % твёрдых материалов:
0,25 ≤ α ≥ 0,03.
Таблица № 1.2.
Природный мусор универсальный и носит неизменный характер независимо от географических, метеорологических или временных характеристик исходных объектов. В отличие от него антропогенный мусор многолик, неоднозначен и носит индивидуальный характер. То, что является мусором для одного предприятия или человека, может представлять потребительский интерес для других объектов. Кроме того, такой мусор по-разному может пониматься и восприниматься в различных географических местах, в разных социальных группах и в различные исторические времена. Таким образом, строго говоря, понятие антропогенного мусора является весьма неопределённым и расплывчатым и трактуется применительно к конкретной обстановке. Подробно это обсуждается в наших книгах [1,90].
Предложим понятие отбросов в широком смысле слова, а не только применительно к человеческой деятельности, учитывая наработки других литературных источников.
— отходы продуктов питания при приготовлении пищи и несъедобная пища;
— отходы жизнедеятельности человека и других живых существ (кал, моча, слёзы, слизи, слюни, сопли, серные образования в ушах, выделения желез внутренней секреции, кишечные газы, выдыхаемый воздух и т. п.);
— отмершие или выпавшие роговые, хитиновые или костные образования (выпавшие зубы, волосы, перхоть, ногти, рога, копыта, …);
— сменяемые кожные покровы или их части (куколки при линьке насекомых, кожа при линьке пресмыкающихся, фрагменты кожи (болячки) при заживлении ран у млекопитающих;
— опадающие листья, увядшие соцветия, обломившиеся опавшие веточки и другие естественно сменяемые объекты флоры;
— погибшие естественной смертью объекты флоры и фауны (за исключением утрат).
Отбросы объектов флоры и фауны необходимы для нормального функционирования биоценозов — совокупности животных, растений и микроорганизмов, населяющих различные участки среды их обитания с примерно однородными условиями жизни. Поэтому отбросы живых организмов в среде их проживания не мусор, а важная составная часть биоценоза, вне среды их обитания отбросы на бытовом уровне рассматриваются как мусор.
Что касается антропогенной составляющей отбросов, то она соответствует определению мусора, являясь его частным случаем (фактически отбросы — это биологический мусор).
Кратко
Отбросы являются необходимым звеном процессов существования живых организмов.
Понятие
При изучении экскретологии целесообразно использовать расширенное толкование этого понятия [94–98]. При этом слово «
В этой книге в зависимости от контекста нами будут использованы оба этих значения.
Что касается выбросов мусора, то нами используется следующее его определение.
В соответствии с этим определением практически все твёрдофазные выбросы объектов народного хозяйства являются мусорными, так как они при работе загрязняют, захламляют и заражают природу продуктами горения, химических реакций или биологическими ингредиентами.
Газообразные и жидкие выбросы могут быть определены так же как выше, то есть как процесс поступления соответствующего продукта в окружающую среду или объём газа или жидкости в ней.
Мусорные выбросы в понимании процесса могут быть подразделены по продолжительности процесса поступления вещества (продукта) на:
— мгновенные;
— кратковременные;
— продолжительные;
— постоянные.
Антропогенный мусор, как правило, имеет сложный состав, то есть является гетерогенной смесью. Он состоит в основном из твёрдых веществ с некоторыми количествами жидкостей и газов. Они представлены в объёме выброса в разных долях и комбинациях.
К категории квазимусора относят мусорные экскреты, обладающие частично или полностью потребительскими свойствами, от которых их владелец избавляется из-за личных предпочтений (эстетических, художественных, престижных и т. п.) или по приказу (в случае других видов собственности на объект).1.2. Разновидности мусорных экскретов и их свойства
Наряду с элементарными экскретами — продуктами выделения и отторжения человеческим обществом и природой веществ, тел или предметов можно говорить об экскретах глобальных, представляющих собой массовые скопления или конгломераты элементарных экскретов. Такие массовые объёмы элементарных экскретов могут возникать на завершающих стадиях процессов диссимиляции живого вещества или деструкции, выпадения и скопления вещества неорганического (минерального или металлического). Если обозначить характерный признак (размер, массу, объём и др.) элементарного экскрета l, а глобального L, то критерий глобальности экскрета можно записать в следующем виде:
l / L «λ,
где λ — малый параметр, определяемый экспериментально или задаваемый из физических соображений.
Другим условием глобальности экскрета должна быть однородность состава в пределах некоторых областей его существования или в целом объёме.
Глобальные экскреты в пределах Земли и её ближайшего окружения — околоземного космического пространства (ОКП) существуют в виде естественных природных образований и в виде техногенных — привнесённых человеком. Рассмотрим вкратце как возникли эти экскреты и что представляют собой в настоящее время. Сами природные среды планеты условно также могут рассматриваться как скопления выделенных отторгнутых тел, веществ, предметов — то есть глобальными экскретами.
Строго говоря, состав подобных образований далёк от однородного, однако в качестве модельного предельного случая такие планетарные «гиперэкскреты» имеют право на рассмотрение.
Глобальные экскреты некогда живых организмов возникают под действием детритофагов — бактерий, простейших организмов, грибов и червей. Примером подобного глобального экскрета может служить почва как результат процессов совместного разложения растительных и животных остатков биосферы Земли, а также минеральных пород.
Именно эволюция живого покрова планеты — биоты является постоянно действующим фактором активного изменения биогеоценоза, а с ним и почвы и других глобальных экскретов.
Подобные процессы возникновения глобальных экскретов наблюдаются и в других природных средах. Рассмотрим механизм возникновения и трансформацию глобального экскрета на примере возникновения залежей подводного метана. Метан является самым «опасным» парниковым газом, так как выбросы этого газа провоцируют очередной этап глобального потепления. На определённом этапе повышения температуры на планете учёные предсказывали начало выбросов метана из океанов и зон вечной мерзлоты в полярных зонах Земли. В частности, в последние годы исследователи обнаружили выбросы значительных запасов метана со дна Северного ледовитого океана [92]. По мере потепления мирового океана вода прогревает его дно, и это провоцирует выбросы этого газа.
Глобальные экскреты в форме гидратов метана обнаружены недавно и на дне озера Байкал [99]. Это озеро очень глубокое и в нём могут реализоваться условия, необходимые для твёрдого соединения газа с водой при низкой температуре и большом давлении. Именно такие условия существуют на дне океанов и морей. Озеро Байкал является единственным местом на Земле, где газовые гидраты обнаружены в пресной воде.
В 40-е годы прошлого века советские учёные высказали гипотезу о наличии залежей газовых гидратов в зоне вечной мерзлоты. В 60-е годы они же обнаружили первые месторождения газовых гидратов на севере СССР. С этого момента газовые гидраты начинают рассматриваться как потенциальный источник топлива. Постепенно выясняется их широкое распространение в океанах и нестабильность при повышении температуры. Поэтому сейчас природные газовые гидраты приковывают особое внимание как возможный источник ископаемого топлива, а также участник изменений климата.
Ещё одним примером глобального экскрета могут служить залежи полезных ископаемых морского дна, имеющие космическое происхождение.
Мировой океан занимает около 71 % земной поверхности. На его дне находятся разнообразные полезные ископаемые, и протекает интенсивный рудогенез (возникновение залежей). Вклад космического материала в океанические осадочные породы (например, накопление таких компонентов, как железо, никель, кобальт) морские геологи и геохимики связывают со значительными поставками на дно океана космической пыли [100], оседающей на дне в виде ила.
Многочисленные измерения, выполненные в различных лабораториях мира, показали, что глубоководные илы растут со скоростью примерно 1 миллиметр за тысячу лет. В масштабах существования нашей планеты такое казалось бы мизерное выпадение космического вещества даёт вполне ощутимые величины: ~1 метр осадков за 1 миллион лет и 1 км — за 1 миллиард лет.
Такие илистые образования находят практически во всех морях и океанах, а также нередко и в озёрах. Однако только глубоководные океанические конкреции залегают с большой плотностью (до 200 кг/м2), образуя рудные поля, перспективные с точки зрения разработки полезных ископаемых.
Захоронения углерода на дне океана в виде панцирей микроорганизмов и моллюсков, а также геологические образования, такие как месторождения нефти и угля, возникшие из растительных остатков, очевидно, также являются глобальными экскретами. С процессами их формирования можно ознакомиться в многочисленных литературных источниках, поэтому они здесь не приводятся.
Ещё одним примером глобального экскрета, появление которого предсказано задолго до его возникновения, являются «рудные тела» мусорных полигонов и свалок.
Некоторые мусорные объекты — такие как крупные свалки и мусорные полигоны представляют собой многотонные скопления разнородных и разнофазных элементов, спрессованных силой тяжести и приобретающих со временем свойства некоторой осреднённой среды — сродни геологической среде. Основное свойство создаваемой на наших глазах геологической среды — мусорной или гарбологической — это её многокомпонентность и первичная неоднородность. Можно считать, что она состоит из бесчисленного множества элементов (горные породы, почвы, отходы человеческой деятельности, микроорганизмы, растворы, газы, элементы структуры, физические поля и т. д.).
Со временем под воздействием диффузионных и гравитационно-полевых процессов формируется относительно однородное по составу свалочное «тело». Его «созревание» занимает десятки лет, после чего можно говорить о возникновении глобального мусорного экскрета. Более подробно о мусорных экскретах как сырьевой базе цивилизации можно прочитать в разделе 2.5. нашей книги.
Важным глобальным экскретом может стать околоземное космическое пространство (ОКП), наполненное орбитальными мусорными экскретами естественного и техногенного происхождения. Несмотря на то, что плотность вещества в объёме ОКП относительно низкая и распределено оно не вполне равномерно в занимаемом объёме, в нём в настоящее время можно выделить отдельные области, которые условно можно причислить к глобальным экскретам. В первую очередь — это зона максимума техногенных отходов (высоты от 850 км до 1500 км) и зона так называемой свалки орбитального мусора, захватывающая внешнюю часть ОКП от геостационарной орбиты до траектории Луны.
Ещё одной зоной с наивысшей концентрацией орбитального мусора является слой ОКП на высотах от 100 км до 200 км, в котором происходит интенсивное торможение и частичное сгорание мусорных объектов.
В настоящее время эти три зоны отличаются повышенной концентрацией твёрдых объектов, однако при теперешних темпах загрязнения ОКП плотность их вещества в обозримой перспективе может выровняться и корректно будет говорить об одном глобальном мусорном экскрете — орбитальном с высотами от 100 км до 384 тыс. км.
Конечно, такой разреженный и эфемерный глобальный экскрет вряд ли станет источником полезных металлов — слишком трудоёмкий это процесс в масштабах ОКП. Однако, использование наиболее ценных узлов и агрегатов из вышедшей из строя орбитальной техники вполне вероятно. Более подробно эта проблема обсуждается в разделе 2.2. нашей книги.
В глобальном околоземном экскрете очевидно будут происходить процессы взаимодействия между различными электромагнитными и физическими компонентами ОКП и межпланетной среды, естественных космических и техногенных излучений с веществом и полями. Эти процессы будут сопровождать загрязнение ОКП продуктами дезинтеграции астрономических тел (экскретов космического мусора) и отходами и отбросами техногенной деятельности.
При этом физические характеристики ОКП и глобальный орбитальный экскрет, представляемый в виде суперпозиции элементарных мусорных экскретов, выйдя из состояния динамического равновесия, очевидно уже в него не вернётся. ОКП, наполненное орбитальными мусорными экскретами с временами существования в сотни и тысячи лет, обладающее новыми физическими параметрами, может иметь совершенно иные свойства, что непредсказуемо скажется на земной природе.1.3. Неоднозначность характеристик формирования экскретов
Необходимо отметить сложность экскретологической классификации всего многообразия и изменчивости природных и антропогенных источников экскретов. Видимо этим можно объяснить смешение понятий и путаницу в этом теоретически слабо разработанном разделе нарождающейся науки.
Напомним, что экскретология — наука о выделениях, отторжениях и потерях материальных объектов в человеческом обществе и в природе. Объектами её изучения — экскретами — являются отходы, отбросы, мусор и квазимусор, газообразные и жидкие выбросы, потери, находки и утраты, виктимы и девиаты. Попытки создания логически непротиворечивой науки, включающей в себя перечисленные выше объекты оказались непростыми. Неоднократно исследователями предпринимались попытки рассмотреть, упорядочить и классифицировать отдельные выделяемые и отторгаемые объекты природы и общества в виде некоторых научных и псевдонаучных учений и теорий (например, мусорология, мусороведение, гарбология).
Подобные подходы к этой проблеме, на наш взгляд, не увенчались успехом потому, что феномен экскретов как конечных выделений и отторжений объектов природы и общества должен рассматриваться воедино и в комплексе, учитывая его неоднозначные проявления.
Дело в том, что классификация экскрета по принадлежности к антропогенному или природному, мусорному, отходному или отбросному, утратному, девиатному или виктимному является многофакторной [1]. Она не является абсолютной, а зависит от эколого-географического, социального и временного факторов. В частности, один и тот же экскретный объект «мусорного блока» (см. Схему 1.1.1) в зависимости от времени и места его появления в конкретных случаях может рассматриваться как антропогенный или природный мусор, отход или отброс, а также как естественный элемент биоты.
Например, опадающие листья — в городских условиях рассматриваются дворниками как мусор и убираются не только с дорог и улиц, но и с газонов, лужаек и других участков озеленения. На дорогах и улицах листья действительно — мусор, а в озеленяемой части городской инфраструктуры, как и в лесу, опад является необходимым растениям укрывным и питательным материалом.
Один и тот же предмет, вещество, изделие может менять свой «статус» в зависимости от места нахождения и времени содержания (хранения). Отходы, хранившиеся на складе сверх нормативного времени формально превращаются в мусор, а объекты мусора после сортировки становятся сырьевыми отходами и могут быть использованы для утилизации.
Важным фактором признания того или иного экскретного объекта отходом или мусором является социально-географический фактор. Известно, что в последние годы развитые капиталистические страны превращают целые континенты в свалки своего мусора. В Африку и Юго-восточную Азию огромными кораблями привозится электронный хлам, состоящий из отслуживших свой век компьютеров, телевизоров, магнитофонов, телефонов и других электронных изделий. Кроме того, везут отслужившие свой век габаритные сложные механизмы, содержащие пластик и металлы.
Разборка и утилизация таких изделий в странах-производителях весьма затратна, так как связана с использованием дорогого ручного труда, а для «нищих азиатов или африканцев» представляет интерес. Они извлекают из электронного мусора ценные металлы и таким образом ценой потери здоровья добывают средства на пропитание. При этом «цивилизованный Запад» нисколько не заботит умерщвление природы этих стран и увеличение заболеваемости их населения. Этот пример показывает, как мусор Америки и Европы превращается в сырьё и отходы, пригодные для использования в слаборазвитых странах.
Следует отметить, что несмотря на такие возможные трансформации экскретов, в каждый конкретный момент времени и в каждом конкретном месте рассматриваемый объект может быть однозначно идентифицирован отдельным индивидуумом.
Каждый конкретный i-ый экскрет φi может быть однозначно идентифицирован для конкретного лица Mi (собственника, хозяина и т. п.) в конкретном месте δ и в конкретный момент времени t. Математически можно записать эту зависимость в функциональном виде:φi = f (Mi, δ, t), (1)
причём значения экскретов φi однозначно определяются при задании параметров Mi, δ и t.
В соотношении (1) i = 1,2… — количество действующих экскретов.
Что касается объектов неорганического мира, то они являются чуждыми для сложившихся веками и десятилетиями сообществам живых организмов; их появление в биоценозах в качестве экскретов связаны либо с разрушительной деятельностью человека, либо с природными явлениями катастрофического характера.
В заключение этого раздела отметим, что путаница и кажущаяся неопределённость при экскретологической классификации изделий, веществ, продуктов в большой степени связана с субъективными факторами. Относительный характер экскретов проявляется особенно ярко применительно к антропогенной его составляющей. То, что является мусором или квазимусором для одного человека, для другого может иметь потребительскую привлекательность.
Предметы, изделия или продукты могут попасть в категорию мусорных экскретов не только, потеряв заложенные в них производителем свойства и качества, но и устарев технически, эстетически или морально. Например, автомобиль не той фирмы-производителя, юбка не того кроя или помада не того цвета могут служить основанием для перевода модницей или пижоном вполне работоспособных и качественных изделий в разряд квазимусора — выбросить их или уничтожить.
Ещё одним наглядным примером субъективности экскретов могут служить наши жилища, которые периодически приходится освобождать от захламления вещами, ещё не потерявшими потребительских качеств, но воспринимаемых нами как надоевший ненужный хлам и мусор. (Если их выбрасывают, то они тоже становятся квазимусором).
Отметим, что подобное расточительное отношение к сырьевым ресурсам характерно для капиталистического мироустройства с его идеалами наживы, сверхпотребления и перепроизводства. Никакие доводы социологов и расчёты учёных с призывами сократить потребление истощающихся природных ресурсов в условиях капитализма не способны остановить эту «гонку к смерти».1.4. Природные и антропогенные экскреты, источники их появления и порождаемые ими проблемы
Для удобства использования в справочных целях информация о естественно-природных и связанных с деятельностью человека экскретах представлена ниже в табличном виде. Таблица составлена с использованием материалов литературных источников [1] и [16].
Глава II Полезное использование мусорных экскретов
2.1. «Новая пища» из мусорных экскретов в преодолении мирового кризиса продовольствия
Человечество переживает глобальный экологический кризис, связанный с перестройкой мировоззрения отношений природы и общества. Одним из проявлений такого кризиса стала проблема возрастания численности населения планеты и производства достаточного количества продуктов питания для него.
Ограниченность мировых запасов физических ресурсов — таких как пахотные земли, минеральное сырьё, пресная вода, природные экосистемы, атмосфера, океан и т. п. — задаёт пределы экономического роста на Земле [41]. Особенно болезненно воспринимается надвигающаяся угроза кризиса продовольствия, обусловленная ростом населения Земли выше 7 млрд. человек при ограниченном ресурсе земель, пригодных для ведения сельского хозяйства площадью ~ 3,2 млрд. гектаров. Оказалось, что мировое производство зерна больше не в состоянии поддерживать рост численности населения, и проблему надо искать неординарными способами.
Однако зерновой фактор не может полностью изменить ситуацию. Важным аспектом продовольственной проблемы является понимание невозможности её решения потреблением только растительных организмов. Чтобы полноценно питаться, необходимо мясо!
Для получения мяса и мясопродуктов, например на мясокомбинате, следует учесть уровень развития, как животноводства, так и растениеводства. Оно призвано обеспечить животных при выращивании и откорме полноценным рационом питания. В состав рациона питания животных входит в качестве основного компонента кормовой белок пшеницы, кукурузы, сои, люцерны. В организме животного растительный белок перерабатывается в животный белок, т. е. в мясо.
Следует иметь в виду, что при откорме животного «коэффициент полезного действия» (КПД) превращения растительного белка в белок мяса составляет всего от 6 до 38 %. Иными словами, при производстве животноводческой продукции теряется большая часть растительного белка. Поэтому белок, например, говядины, т. е. мясо, стоит в десятки раз дороже, чем белок продуктов растениеводства, например хлеба.
Человечество давно освоило технологию выделения чистого белка из сои, хлопка, рапса, подсолнечника, арахиса, риса, кукурузы, гороха, пшеницы, зелёных листьев, картофеля, конопли и многих других растений. Но это неполноценные растительные белки, не содержащие некоторые незаменимые аминокислоты. А в питании человеку необходим в достаточном количестве и полноценный животный белок. Но вопрос — где его взять в достаточном количестве — так и остаётся без конструктивного ответа. Здесь своё веское слово должны сказать учёные-исследователи, и некоторые из них обратили своё внимание на отбросы как перспективный источник животного белка.
Что касается продуктов питания в целом, то в пищевых рационах населения многих стран мира отмечается большой дефицит полноценного белка, в результате чего более 60 % населения земного шара испытывает хронический недостаток в пищевом белке, особенно в белке животного происхождения. В частности, в современной России существует 3-кратная нехватка мяса.
В ходе научно-технической революции человек пытался решить проблему питания путём повышения продуктивности животноводства, птицеводства и рыболовства, совершенствования существующей технологии переработки сырья и его более полного использования. Однако ежегодный разрыв между необходимым количеством пищевых продуктов и потребляемым населением Земли (в белке) не позволил успешно реализовать эту задачу. Стало ясно, что никакие темпы развития животноводства, очевидно, не сумеют сократить разрыв в дефиците пищевого белка.
Одним из возможных альтернативных способов решения продовольственной проблемы является разработка и воплощение в жизнь технологий создания так называемой искусственной пищи, создаваемой из относительно дешёвого сырья промышленными методами.
Прежде чем обсуждать тему искусственной пищи рассмотрим, как и чем питается современный человек с позиций экскретологии. Традиционные продукты питания человека ограничивались в допромышленную эпоху потреблением натуральных продуктов из категории виктимов. Напомним, что в общем случае виктимами
Природные виктимы составляют наиболее массовую долю природных экскретов, являясь элементами устоявшихся пищевых «цепочек» земных организмов. Они являются необходимой составной частью жизни на планете, сменяя друг друга в непрерывной череде насильственных смертей. Однако для питания человека виктимы этого вида представляют второстепенный интерес.
Основными источниками пищи современного человека, всё в меньшей степени зависящего от «дикой природы», становятся
Примерами виктимов являются используемые человеком для питания многочисленные представители флоры и фауны. В первую очередь — это копытные животные, рыбы, птицы, а также плоды, корни и зелень растений, заготовленные для питания.
Огромное количество
Что касается объектов флоры, то представителями антропогенных виктимов этой категории организмов являются собранные на полях и в садах плоды и семена растений, заготовленные в хранилищах, элеваторах, холодильниках. Эти продукты составляют основу питания современного человека.
Мясо на этапах становления и развития цивилизации добывалось на охоте, затем на подсобных хозяйствах и, наконец, в крупных агрокомплексах. Некоторые страны сумели обеспечить себя белком животного происхождения. Но в мировом аспекте — это скорее исключения, чем правило. Мяса по-прежнему не хватает. Очевидно, теперь наступает пора более внимательно присмотреться к экскретам отбросов — отторгаемым и выбрасываемым биологическим продуктам, — и попытаться более рационально использовать заложенные в них ценные питательные вещества.
Между тем, мясо животных и птицы по современным представлениям многих исследователей является необходимым продуктом питания [84]. Как известно, мясные продукты помогают поддерживать уровень гемоглобина на должном уровне, а строгая овощная диета и чрезмерные физические нагрузки приводят проблемам со здоровьем.
Рассмотрим, какая «новая пища» уготована человечеству, чтобы оно не погибло от голода (или от отвращения к этой пище). При этом неминуемо затрагивается не только продовольственный вопрос, но и вопрос, морально ли убивать животных?
Мясо, выращенное в загоне для скота (
Утверждается [30], что съедобное мясо можно и нужно выращивать в лаборатории, и учёные уже предложили технологии культивирования такого мяса. Речь идёт о крупномасштабном производстве говядины, курятины, свинины без какого-либо участия животных и птиц. Цыплёнок без курицы — научная фантастика!?
Конечно, на сегодняшний день — фантастика. Теперь о реальности. Исследователи группы учёных под руководством докторанта Джейсона Матэни (Jason Matheny) из университета Мэриленда (University of Maryland) предлагают методы создания проектируемых биологических тканей, которые однажды могут привести к производству в лаборатории мяса, по всем параметрам пригодного для человеческого потребления.
«У культивируемого мяса есть масса преимуществ, из него можно извлечь большую выгоду, — убеждён руководитель проекта Матэни. — С одной стороны, вы сможете управлять питательными веществами. Например, в обычном мясе содержится много жирной кислоты омега-6, из-за которой повышаются уровни холестерина и возникают другие проблемы со здоровьем. С „пробирочным“ мясом омегу-6 можно заменить менее вредной омегой-3. С другой стороны, культивируемое мясо решит массу вопросов, связанных со скотом» [30].
Проведённые исследования уже показали учёным, что одна-единственная клетка мускула (миоцит) коровы или курицы может быть изолирована и масштабирована на многие тысячи новых миоцитов.
Способ культивирования нового продукта, предлагаемый исследователями университета Мэриленда, заключается в выращивании клеток на тонких мембранах — больших плоских листах. Получившиеся в результате листы «мяса» могут быть сняты с мембран и уложены друг на друга, чтобы увеличить общую толщину «продукта».
Речь идёт о клетках, помещённых в питательную среду, которым придаётся плоская или объёмная форма, впоследствии становящаяся чем-то вроде мяса. Для того чтобы псевдомясо максимально походило на оригинал, необходимо совместить в пробирке клетки нескольких различных видов ткани и придать выращиваемому продукту соответствующую структуру и форму фрагментов мяса.
Исследователи признают, что помимо проблем, связанных с культивированием мяса, придётся потрудиться, чтобы убедить потребителей есть продукт, произведённый искусственно. Они считают, что …«С этим мясом можно будет обратиться ко всем заинтересованным в безопасности пищи, беспокоящимся об окружающей среде, к вегетарианцам и просто людям, сочувствующим животным. Есть также люди, которые хотят иметь возможность приспособить пищу к собственным вкусам»…
…Выгода может быть колоссальной. Спрос на мясо растёт по всему миру, например, в Китае он удваивается каждые десять лет, а потребление домашней птицы в Индии удвоилось за последние лет пять.
— … Обладая единственной клеткой, вы теоретически сможете удовлетворить мировой спрос на мясо и сделать это наилучшим из возможных способов, как для окружающей среды, так и для здоровья человека. В долгосрочной перспективе всё это — выполнимо» [30].
В настоящее время организация «Новый урожай» (New Harvest) проводит испытания псевдомяса, произведённого из миоцитов цыплёнка, во вращающемся биореакторе Synthecon. «Новый Урожай» — некоммерческая исследовательская организация, работающая над развитием новых заменителей мяса, включая культивируемое мясо, произведённое в пробирке, в клеточной культуре, а не взятое от животного.
«Одна-единственная клетка может произвести столько мяса, что его хватит, чтобы кормить население планеты в течение года», — утверждают сотрудники «Нового Урожая».
Отметим, что выращивать мясо из мышечных клеток животных умеют уже и в других лабораториях [39]. Группа учёных из Амстердамского университета под руководством Виета Вестерхофа довела эту технологию почти до коммерческого уровня. Голландцам недавно удалось вырастить несколько 50-килограммовых кусков говядины. По утверждению создателей полученный продукт — это самое что ни на есть нормальное мясо, в котором представлены все необходимые компоненты: 20 аминокислот, 12 витаминов, разнообразные микроэлементы и ферменты по вкусу. Себестоимость его, правда, пока ещё слишком высока — несколько сотен долларов за килограмм.
Для сравнения, например, сегодня оптовые цены на аргентинскую говядину колеблются в районе $3÷4/кг. Куриные окорочка дешевле — $0,7/кг. Но учёные уверяют, что лет за десять они опустят цены до приемлемого уровня. К тому же для начала можно заняться производством самых дорогих и экзотических сортов мяса или рыбы — для “пробирочного” хозяйства это безразлично.
Как сенсацию преподнесли учёные из университета Маастрихта (Голландия) [47] новость о разработке способа получения мяса без убийства животных. Они смогли создать и представить общественности первый в своем роде гамбургер, выращенный «в пробирке», для которого использовался мясной фарш, полученный из стволовых клеток. Исследователи сообщили, что для изготовления такого «мяса» требуется примерно 10 000 стволовых клеток крупного рогатого скота. В специальных лабораторных условиях число этих стволовых клеток затем увеличивается более чем в миллиард раз, и в результате получается продукт, практически идентичный натуральному говяжьему мясу по составу и внешнему виду.
Специалисты считают, что их разработка имеет большое значение, так как население планеты растёт, и со временем возникнет колоссальный дефицит натурального мяса. Сейчас продукт, который получил название
Объёмы производства искусственных продуктов питания постоянно возрастают, но это вовсе не означает, что аналоги мясопродуктов в скором времени вытеснят натуральные изделия. Очевидно, произойдет (и уже происходит) распределение этих видов мясопродуктов в рационах богатых и бедных, причём в первую очередь путем более полной и более рациональной переработки белковых отходов мясной промышленности в искусственные мясопродукты для бедной части населения.
Однако искусственное мясо давно уже существует и пользуется неплохим спросом в нашей стране. Правда, это
Оказывается, в составе десятков сортов колбасы, от которых ломятся прилавки магазинов, массово используются различные “заменители мяса” (структурированные растительные производные сои или риса) и всякая прочая “химия”.
Другим источником псевдомяса, а вернее псевдоколбасы, стало использование отходов мясопереработки, скарливаемых ранее животным.
Производство аналогов пищевых продуктов — область сравнительно молодая, но уже дающая колоссальные прибыли и обеспечивающая продуктами питания миллиарды потребителей во всём мире, включая и Россию [49]. Именно разоривший своё сельское хозяйство СССР внёс во второй половине ХХ века особый научный и технологический вклад в развитие этой новой отрасли пищевой промышленности.
Производство колбас можно разделить на две группы: первые выпускаются по ГОСТу (в этом документе чётко оговорены все характеристики основных видов колбас), вторые — по ТУ (техническим условиям) [49]. Это позволяет делать их практически из чего угодно, «лишь бы народ не отравился».
Назвали колбасу новым именем, и можно выкладывать на прилавок. Сколько в ней мяса и сколько заменителей никого волновать не должно, это коммерческая тайна.
Ещё вариант создания «нового продукта» — внести в его рецептуру побольше отбросов. Российские «мясных дел умельцы» придумали машину, которая дочищает жилки и хрящики с неудобных для разделки мест костей фрагментов туши животного. Туда же попадают содранные кусочки кости, плёнки, сухожилия, при разделке курятины — ещё и шкурка, кусочки перьев. Вся эта «труха» замораживается в блоки и продается под названием «мясо механической дообвалки» или сокращенно «мехобвалка». Другое название — тримминг (в просторечии зачастую говорят про куриные блоки).
Это самое дешёвое сырьё для производства современной колбасы. Из такого тримминга делают дешёвые сардельки, добавляя сою, шкурку свиную, манку, крахмал и шпиг. Есть, конечно, и не такие «экстремальные» рецептуры. Иногда добавляют каррагинан, сою [49], но тогда цена продукта будет выше.
Существуют способы изготовления мяса вообще из объектов другой категории, используя микробиологический синтез; при этом животный белок получают с использованием микроорганизмов.
Человек научился с помощью дрожжей, бактерий, одноклеточных водорослей и микроорганизмов превращать углеводы, спирты, парафины, нефть и траву в дешёвый полноценный пищевой белок, содержащий все незаменимые аминокислоты. Оценки показывают, что переработка всего 2 % ежегодной мировой добычи нефти позволяет произвести до 25 миллионов тонн белка. Этого количества белка достаточного для питания 2 миллиардов человек в течение года. Подобный метод переработки доступного дешёвого сырья в дефицитный животный белок с использованием микроорганизмов называют микробиологическим синтезом.
Технология производства микробной биомассы как источника ценных пищевых белков была разработана ещё в начале 1960-х годов. Тогда ряд европейских компаний обратил внимание на возможность выращивания микробов на таком субстрате, как углеводороды нефти, для получения, так называемого белка одноклеточных организмов (БОО). Технологическим триумфом метода было получение продукта, состоящего из высушенной микробной биомассы, выросшей на метаноле. Процесс шёл в непрерывном режиме в ферментере с рабочим объемом 1,5 млн. л.[49].
Однако в связи с ростом цен на нефть и продукты её переработки этот проект стал экономически невыгодным, временно уступив место производству соевой и рыбной муки. К концу 80-х годов заводы по получению БОО были демонтированы, что положило конец бурному, но короткому периоду развития этой отрасли микробиологической промышленности.
Более перспективным способом оказался другой процесс — получение грибной биомассы и полноценного грибного белка микопротеина с использованием в качестве субстрата смеси парафинов. Использовалась нефть самых дешёвых отходов нефтеперерабатывающей промышленности, растительные углеводы из пищевых отбросов, минеральные удобрения и отбросы птицеводства.
Задача промышленных микробиологов состояла в создании мутантных форм микроорганизмов, резко превосходящих своих природных собратьев, т. е. получение сверхпродуцентов полноценного белка из сырья. В этой области были достигнуты большие успехи. Например, удалось получить микроорганизмы, которые синтезируют белки вплоть до концентрации 100 г/л. Для сравнения — микроорганизмы «дикого типа» накапливают белки в количествах, исчисляемых миллиграммами на литр.
В качестве продуцентов микробного белка исследователи выбрали два вида всепожирающих микроорганизмов, способных питаться даже парафинами нефти: мицелиальный гриб Endomycopsis fibuligera и дрожжеподобный грибок Candida tropicalis (один из возбудителей кандидозов и кишечных дисбактериозов у людей). Каждый из этих продуцентов образует около 40 % полноценного белка.
Учёные подобрали и условия предварительной обработки отбросов, добавляемых к парафинам нефти для оптимального роста грибковой микрофлоры. Куриный помёт разбавляли и гидролизировали в кислых условиях; пивную дробину тоже гидролизуровали серной кислотой. После такой обработки никакие посторонние микроорганизмы, бывшие в отбросах, не выживают и не мешают расти посеянным на субстрат микроскопическим грибам.
Технологи подобрали и условия фильтрации размножившейся биомассы микроорганизмов из питательной среды. Проведённые испытания показали, что получаемый продукт не токсичен, а значит, из смеси парафинов нефти, куриного помёта и растительного углеводного сырья можно получать полноценный микробный белок. Таким образом, одновременно найден путь эффективной утилизации помёта, что составляет важную проблему развития промышленного птицеводства. Получился искусственный “круговорот пищевых веществ в природе” — что из желудка вышло, в него же и вернётся.
Белки, выделяемые из выросших на субстрате грибков и поставляемые на пищекомбинаты под названием “биомасса”, не имеют вкуса и запаха, бесцветны и представляют собой порошок, пасту или вязкий раствор. Едва ли найдутся желающие употреблять их в таком виде в пищу, несмотря на все достоинства по показателям пищевой и биологической ценности.
Учёные решили создать, а вернее — сконструировать, искусственные продукты питания, внешне не отличающиеся от привычных для нас традиционных продуктов, на базе использования имеющихся ресурсов белка. Использование специальной технологии и оборудования позволило воссоздать структуру, внешний вид, вкус, запах, цвет и все остальные свойства, имитирующие привычный продукт. Короче говоря, конструирование пищи заключается в выделении белка из сырья различной природы и превращении его машинным способом в аналог пищевого продукта с заданным составом и свойствами.
Изготовляют искусственные мясопродукты несколькими путями, позволяющими получить изделия, имитирующие мясо, рубленые котлеты, бифштексы, кусковые полуфабрикаты, колбасные изделия, сосиски, ветчину и многое другое. Конечно, создать неотличимую имитацию куска мяса невозможно — слишком сложна его структура. Другое дело — фарш и изделия из него — колбасы, сосиски, сардельки и т. п. Состав этих продуктов питания не афишируется; они, как правило, покупаются беднейшими (или не информированными) слоями населения.
Кстати сказать, в СССР могли делать качественную колбасу и прочие мясные изделия, но не для всех. Такая «эксклюзивная» колбаса, какая производилась в СССР, сейчас бы стоила не менее 1000 рублей за килограмм.
Читателям, наверное, будет интересно узнать, что кроме искусственных мясопродуктов изготовляют искусственные молоко и молочные продукты (на основе эмульсий дешёвых растительных жиров). «Конструируют» также крупы, макаронные изделия, “картофельные” чипсы, “ягодные” и “фруктовые” продукты, “ореховые” пасты для кондитерских изделий, подобия устриц и даже чёрной зернистой икры. В частности, на банках с искусственным сгущённым “молоком” пишут не “Сгущённое молоко”, а “Сгущёнка” — будьте внимательны при выборе; смотрите на этикетках указания о наличии растительных жиров, которых в настоящих молочных продуктах быть не может [49].
Другой перспективной разработкой искусственного мяса может рассматриваться исследование японских учёных [48]. Профессор Икеда, представляя искусственное мясо, созданное на основе белков человеческих экскрементов, отметил, что его изобретение призвано оказать большую помощь в преодолении грядущего глобального кризиса продовольствия.
Икеда утверждает, что ему удалось выделить питательные вещества из экскрементов и создать на их основе «дерьмобургер». По результатам испытаний, благодаря таким добавкам как пищевой краситель (красный) и соевый белок, искусственное мясо по вкусу напоминает говядину. Питательная ценность «дерьмобургера» сомнений не вызывает. Его состав: 25 % углеводов, 63 % белка, минеральные вещества и липиды — в точности соответствуют натуральному продукту. Однако, по признанию Икеда, желающих продегустировать его новое «блюдо» пока нет. Да и цена «дерьмомяса» смущает — стоит оно в 10 раз дороже, чем натуральное.Исследовав накапливаемый канализацией ил, Икеда нашёл в нём высокое содержание бактерий, перерабатывающих нечистоты в протеины. Выделив белки и добавив к ним усилитель реакции, был получен искомый продукт. В "мясе" содержатся требуемые количества белков, углеводов, жиров и минералов. Для лучшего сходства с настоящим мясом к продукту добавляют натуральный красный краситель, а также усилитель вкуса на основе сои. Первые добровольцы, рискнувшие попробовать результат работы учёных, утверждают, что по вкусу продукт действительно напоминает мясо.
Найденный японцами способ решения продовольственной проблемы имеет определённые преимущества перед другими способами, — отмечает сайт Inhabitat. В настоящее время около 18 % выбросов, создающих парниковый эффект, приходятся на долю мясной промышленности. Кроме того, скотоводство потребляет слишком много ценных ресурсов, а также даёт общественности повод рассуждать о жестокости к животным.
Шитбургеры, как их уже условно прозвали японцы, способны разрешить все эти проблемы (кроме естественной брезгливости). К тому же продукты из такого квазимяса содержат меньше калорий, чем привычные гамбургеры. Отметим, что пока на вопрос, заданный сайтом Inhabitat, о готовности отведать шитбургеров большинство читателей отвечают отрицательно. Однако имеются и в духе японского «харакире» и патриоты-добровольцы.
Учёные не теряют надежды, что со временем потребители преодолеют психологический барьер, и у шитбургеров найдётся достаточно покупателей, который поймут все преимущества такого безотходного производства.
В случае массового распространения продукта стоить он будет столько же, сколько сейчас — гамбургеры из натурального мяса. Пока же, учитывая расходы на научно-исследовательскую работу, они обходятся в 10 ÷ 20 раз дороже традиционной продукции.
Отметим, что полностью отвергать эти разработки японских учёных не следует, так как они вполне могут быть использованы после доработки, если не для людей, то по крайней мере, для корма животным.2.2. Экскреты в решении проблем космонавтики
Успешные полеты космонавтов вокруг Земли на космических кораблях и орбитальных станциях и высадка человека на Луну, запуски автоматических межпланетных станций к Луне, Венере и Марсу создают реальные предпосылки полётов человека к другим планетам. Чтобы осуществить такие полёты, которые будут длиться многие месяцы и, возможно, годы, необходимо решить очень сложные инженерно-технические и медико-биологические проблемы [50].
Одна из таких проблем — разработка и создание системы, неограниченно долго обеспечивающая людей в космическом корабле и в случае высадки на другие планеты всем необходимым для нормальной жизни: кислородом, пищей, водой. Эта система должна, кроме того, очищать среду от углекислого газа и токсичных продуктов жизнедеятельности.
При нормальном функционировании организма человеку необходимо в сутки около 1 кг кислорода, 2,2 кг воды (для питья), около 0,5 кг сухой пищи и примерно 1,8 кг воды для санитарных нужд; всё вместе это составляет около 5,5 кг.
Получается, что годовой запас жизненно необходимых веществ для одного космонавта составляет около 2 т! Вес системы жизнеобеспечения растёт пропорционально увеличению числа членов экипажа и длительности полёта. Например, для экипажа из 5 космонавтов при трехгодовом полёте он составляет около 30 т без учёта аппаратурной части системы. Ясно, что стартовый вес корабля будет слишком большим. Такие корабли пока невозможно оторвать от Земли и вывести на межпланетную траекторию. Кроме того, взятые с Земли продовольственные запасы могут в конце концов истощиться и время полёта и пребывания космонавтов на других планетах окажется несовместимым с жизненными потребностями людей.
Возникает вопрос — может ли быть создана система, которая достаточно длительное время обеспечит жизнь людей в космическом полёте? Учёные пришли к выводу, что теоретически такую систему можно создать при использовании мусорных экскретов человека — отбросов, отходов, мусора и газов. Кроме того, на борту межпланетного корабля и на планетных станциях необходимо разместить и рационально скомпоновать сообщества различных организмов, которые обеспечивали бы полный биологический круговорот веществ, подобный тому, который существует на Земле. Зелёные растения на борту корабля при использовании солнечного света или бортовых источников ядерной энергии теоретически позволяют создать такие замкнутые экологические системы [50]. Они должны включать и экипаж космонавтов, благодаря чему в непрерывном круговороте будет находиться одно и то же взятое с Земли количество веществ. Человек, поглощая кислород, будет выдыхать углекислый газ, растения же, поглощая его, а также усваивая воду и минеральные соли, будут вновь и вновь создавать пищевые вещества и выделять кислород. Движущей силой этого процесса явится световая энергия. Твёрдые и жидкие отбросы жизнедеятельности человека после их биологической трансформации могут быть использованы для получения животного белка, для минерального питания растений и для получения чистой воды. Таким образом, замкнутый экологический комплекс позволяет непрерывно циклически воспроизводить на борту космического корабля все необходимые для жизни человека условия.
Строго говоря, материальный баланс твёрдых, жидких и газообразных веществ на борту космического корабля выдержать не удастся. Неизбежны потери газов и жидкостей через микроскопические щели в конструкции летательного аппарата (ЛА). Потери будут также при шлюзованиях экипажа во время выполнения наружных ремонтных работ, при выходах и входах в жилой блок с поверхности осваиваемой планеты, при удалении накопившегося мусора и лишних отбросов. Уменьшение или увеличение массы содержимого ЛА может произойти при заборе проб материальных тел с осваиваемой планеты или при удалении из него тела погибшего космонавта. Все возможные ситуации заранее учесть невозможно…
Какие же растения целесообразно выращивать в квазизамкнутом пространстве космолёта? Особенный интерес представляют одноклеточные зелёные водоросли, например хлорелла, имеющая небольшие размеры, очень быстро размножающаяся и отличающаяся высокой активностью фотосинтеза. Эта водоросль может культивироваться в питательных средах, поглощая за короткий срок большое количество углекислого газа, выделяя кислород и накапливая значительные количества питательной биомассы. Биомасса хлореллы содержит до 50 % белков, до 20 % жиров, углеводы, витамины и другие ценные вещества. Важно, что процесс выращивания водорослей может быть автоматизирован.
Отмечается [50], что достигнутая в лабораториях интенсификации роста и биосинтеза микроскопических водорослей, позволяют уже сейчас обеспечить с их помощью воспроизводство воздуха и пищи на одного человека. Найдены и пути управления качественной стороной фотобиосинтеза водорослей. Можно получать от них биомассу, которая по соотношению белков, жиров и углеводов практически полностью копирует соотношение этих веществ в пищевом рационе человека. Это не значит, конечно, что в составе замкнутого экологического комплекса будут только одноклеточные водоросли. В него, безусловно, должны быть включены привычные для человека высшие растения, а также животные белки и некоторые микроорганизмы.
Работа по созданию замкнутого экологического межпланетного комплекса связана с большими трудностями. Все звенья замкнутого биологического сообщества должны быть строго согласованы друг с другом, в определённой зависимости соподчинены и взаимно обеспечивать друг друга веществами и энергией. Должны быть учтены возможные негативные воздействия на отдельные организмы изолированной экологической системы. Потоки космической радиации, действие перегрузок, невесомости и всех тех факторов, с которыми неизбежно столкнётся живой организм в специфических условиях космического полёта, не должны разрушить это хрупкое биологическое сообщество.
Однако эти трудности не описывают всех проблем. Одной из новых проблем длительных космических полётов при освоении планет солнечной системы является проблема образования твёрдых и жидких отходов, не утилизируемых традиционными способами [87]. Иными словами, как и на земле в ограниченном объёме космического аппарата неизбежно возникнет вопрос — куда девать мусор? Причём мусорные экскреты могут частично быть токсичными и трудноутилизируемыми на земле, а в условиях ограниченных по объёму и техническим возможностям космолёта — вообще неутилизируемыми.
Опасными и токсичными отходами, которые в настоящее время считаются трудноутилизируемыми [59], являются:
— ртутьсодержащие отходы, приборы;
— лабораторные отходы и остатки реактивов;
— органические растворители, в том числе галогенсодержащие;
— оксиды, соли, щёлочи;
— неорганические и органические кислоты;
— лакокрасочные отходы, масла, отходы нефтепереработки;
— гальваношламы, электролиты;
— отходы средств защиты растений (пестициды);
— лекарственные средства, отсевы лекарственного сырья; лекарственные неликвиды;
— другие высокотоксичные и трудно утилизируемые вещества, возникающие при полёте межпланетного корабля.
Именно мусорная проблема, а не проблемы создания и надёжного функционирования навигационных, пилотажных, двигательных установок или систем жизнеобеспечения космолёта может остановить развитие космонавтики!
Парадоксально, но именно темпы «производства» мусорных экскретов в конечном итоге могут диктовать не только количество участников полёта, но и размеры летательного аппарата и его конструктивные особенности.
Проблема включает ряд задач, решение которых пока не найдено и может затормозить освоение небесных тел солнечной системы. Одна из задач — формирование технологий и конструкций, приводящих к минимизации отходов. Вторая задача — разработка конструкций космического оборудования, включая служебные системы и научную аппаратуру, приспособленного для использования в Космосе после истечения своего ресурса. Третья задача — выбор наиболее эффективных направлений применения в космическом полёте экскретов, образующихся в результате функционирования оборудования и жизнедеятельности экипажа. Фактически это та же задача избавления от отходов, отбросов и мусора, которая с переменным успехом решается человечеством на поверхности нашей планеты.
Важной информацией для анализа эффективности использования возникающих экскретов служат сведения об их возможном составе и количестве на борту летательного аппарата. Приближённо можно выделить следующие группы экскретов:
— отбросы жизнедеятельности экипажа (экскременты и другие отходы жизнедеятельности, биологические средства личной гигиены, отбросы медицинского, микробиологического и «садово-огородного» обеспечения);
— отходы функционирования служебных систем и научной аппаратуры;
— производственный и бытовой мусор.
Перечислим возможные источники мусорных экскретов космического летательного аппарата в период его межпланетного полёта. Источники отбросов — это экипаж космического аппарата и биологические системы его жизнеобеспечения. Источники отходов: узлы и агрегаты летательного аппарата, его энергетические и служебные системы.
Источниками мусора могут быть: упаковка рационов питания и объекты после уборки жилых и служебных помещений, ремонта аппаратуры и бытовой техники, включая систему жизнеобеспечения, систему обеспечения теплового режима и другие системы.
Возможные направления использования мусорных экскретов экипажа включают в себя:
— изготовление из отбросов подсобными средствами некоторых продуктов питания экипажа, а также использование отбросов для культивирования «огорода»;
— ремонт и формирование из отходов интерьера жилых отсеков;
— изготовление из мусора и отходов дополнительных средств радиационной и метеоритной защиты;
— доработка вышедшего из строя оборудования (отходов) для нецелевого его использования или возможного применения на других небесных телах.
Каждая из перечисленных выше задач требует тщательной теоретической и практической проработки, и подготовка экипажей для их решения потребует многолетних усилий мирового научного сообщества. Ни одна из стран, очевидно, не в состоянии в одиночку решить столь трудоёмкий и финансово затратный комплекс проблем.
Рассмотрим для примера, как мыслится решение задачи жизнеобеспечения экипажа космолёта. Независимо от того, когда начнется непосредственное исследование человеком далёких планет системы жизнеобеспечения (СЖО) пилотируемых космических кораблей должны быть рассчитаны на работу в течение очень продолжительных периодов времени. Между тем, современные СЖО способны работать лишь в течение нескольких недель [88].
Считается, что СЖО больших орбитальных космических станций и для полётов к Марсу будут значительно отличаться от СЖО современных кораблей типа «Аполлон» и «Союз». Полузамкнутая СЖО не удовлетворяет требованиям продолжительных полётов в космос. Когда начнётся исследование космического пространства за Луной или в районе ближайших планет, просто невозможно будет работать, непрерывно используя запасы продуктов СЖО, взятых на борт корабля.
Один из вариантов решения этой проблемы состоит в том, чтобы в какой-то, степени дублировать экологическую замкнутую систему, частью которой является на Земле человек. Для исследования открытого Космоса человеку, вероятно, потребуется создать микроклимат, в основе которого лежит непрерывный материальный и энергетический обмен между животным и растительным миром и круговорот воды. «Сердцем» такой системы является блок фотосинтеза, в котором выделяемый человеком углекислый газ преобразуется в кислород и углерод, являющийся составной частью питательных веществ для растений. Схема такой системы приведена на рис. 2.2.1 [88]. Основными узлами экологической системы являются источник энергии, блок фотосинтеза, устройство для обработки отходов жизнедеятельности, блок для обработки воды, регулятор состава атмосферы и блок получения продуктов питания.
Каждый из этих узлов состоит из нескольких подсистем, и все они должны быть связаны друг с другом системой автоматического контроля и регулирования, с тем чтобы, например, постоянно поддерживать в космическом корабле заданную температуру, влажность и давление (в том числе и парциальное давление отдельных газов). Удерживать такую систему в состоянии требуемого динамического равновесия — задача поистине огромной трудности. Подробно вся сложность такой системы на примере блока фотосинтеза рассмотрена в работе [88].
Отмечается, что может быть, самым критическим фактором в замкнутой экологической системе космического корабля является сохранение равенства между дыхательным коэффициентом экипажа RQ (отношение объёма выделенного человеком углекислого газа к объему поглощенного кислорода) и коэффициентом ассимиляции водорослей AQ (отношение объёма усвоенного углекислого газа к выделенному кислороду). Это равенство должно соблюдаться с точностью до 1 %. Любое отклонение, превышающее эту величину, приведёт к уменьшению количества кислорода для дыхания космонавтов на 1 % в день. Поскольку коэффициент AQ зависит от количества подводимого к водорослям азота, то система, которая должна непрерывно регулировать состав атмосферы в космическом корабле и поддерживать требуемое соотношение RQ/AQ, будет весьма сложной, если не сказать больше.
Питанием для водорослей будут отходы жизнедеятельности космонавтов. Водоросли же в свою очередь будут служить пищей для экипажа космического корабля.
Помимо воды и углекислого газа для образования новой клеточной массы водорослям необходимы также связанный азот и определённые минеральные соли. Если предположить, что потребность космонавтов в пище будет покрываться только водорослями, то достаточно будет около 600 г сухих водорослей на 1 человека в день. Очень сомнительно, чтобы человек мог потреблять в пищу такое количество водорослей в течение продолжительного периода времени, хотя они и богаты необходимыми аминокислотами (за исключением серосодержащих метионина и цистина) и витаминами и содержат 40–60 % белков, 10–20 % жиров и 20 % углеводов. Эксперименты показали, что в суточной диете человека может содержаться около 100 г водорослей, большее количество водорослей в рационе вызывает у человека желудочно-кишечные расстройства.
Как в России, так и в США учёные считают, что в замкнутой экологической системе жизнеобеспечения в качестве компонентов или звеньев цепочки питания можно использовать промежуточные формы жизни. Среди них: дрожжи, плесень, грибы, водяных блох, улиток, полевых слизней, угрей и другую рыбу, кроликов, цыплят и коз. Берут в расчет также картофель, капусту и ряску. Водоросли будут поедаться рыбами или другими животными, которых в свою очередь будет употреблять в пищу экипаж космического корабля. Однако такие предложения упускают из виду огромные трудности, связанные с переработкой в замкнутой СЖО шерсти, когтей, рогов, требухи животных и т. п. То есть опять практически на каждом этапе реализации этого проекта возникает проблема избавления от неизбежно возникающих мусорных экскретов.
По словам известного микробиолога Роберта Г. Тишера, для космических кораблей «необходимо карликовое жвачное животное, размером, может быть, с кошку, не имеющее рогов, копыт, когтей, шерсти и т. п., которое можно было бы целиком употреблять в пищу».
И здесь с успехом могут быть использованы наработки учёных по производству искусственного мяса [30]. В частности, NASA разрабатывает продукты для долгосрочного космического путешествия, и в 2002 году уже провело эксперименты с тканями рыбы, доказав саму возможность выращивания в искусственных условиях вполне съедобного псевдомяса, правда, в очень небольших количествах.
Более масштабные эксперименты провели японские исследователи, предложившие синтезировать «квазимясо» из канализационных стоков, — пишет издание Digital Trends [48]. Этот способ после целенаправленной доработки, безусловно, может быть использован на космическом корабле.
Заметим, что это не первая попытка переключить человека на замкнутый пищевой цикл. Сообщается, например, что космонавты на Международной орбитальной космической станции «с удовольствием»? пьют воду, синтезированную из их пота и влаги, конденсируемой в результате дыхания, а также из мочи.Остро стоящую проблему утилизации лишних отбросов на борту космического летательного аппарата можно будет частично решить, использовав их в качестве топлива. Американские учёные из Флоридского технологического института вывели особый вид бактерий, способных перерабатывать человеческие экскременты в биотопливо. Исследователи уверены, что на таком топливе в ближайшее время будут летать спутники, а в дальнейшем и межпланетные космические корабли [89].
В ходе исследования учёным удалось генетически модифицировать бактерию вида Shewanella MR-1, которая может производить водород из любого вещества биологического происхождения. Модифицированные бактерии стали вырабатывать водорода больше обычного, а также оказались устойчивыми к невесомости. Как полагают исследователи, созданный бактериями водород в топливных элементах будет превращён в электроэнергию и данная технология в ближайшее время может быть опробована на практике.
Особую роль экскретологические разработки призваны сыграть в «экскретологической космонавтике» — научном направлении, призванном изучать объекты конечного выделения космонавтов и астронавтов, осваивающих ОКП, планеты солнечной системы, ближний и дальний Космос. Как выше указывалось, особенностью космонавтики является особенно жёсткий подход к феномену мусора. От него на борту космического летательного аппарата следует избавляться как можно скорее, так как бортовой мусор в любых проявлениях — это лишний расход топлива и опасность «застрять в пути» на необъятных просторах.
Непременное правило, которым руководствуется космический конструктор, гласит: любая деталь или часть ракеты должна, по возможности, освоить несколько «смежных профессий», то есть выполнять сразу несколько назначений [190]. Например, пусть кресло для космонавта станет одновременно и аварийным запасом пищи. Специалисты фирмы «Грумман» считают, что за счёт съедобной внутренней отделки космического аппарата можно в десять раз уменьшить пищевые запасы на борту корабля.
Нечто в этом роде предложили специалисты американской фирмы «Грумман». Они запатентовали съедобный космический материал. Спрессованная при высокой температуре смесь из кукурузной крупы, молочного порошка, крахмала, муки и банановых хлопьев напоминает фибровый картон. Если такой материал покрыть снаружи фольгой или полиэтиленом, получатся прекрасные приборные доски и щиты, переборки между каютами, облицовочные плиты и панели, мебель и другие предметы внутреннего убранства космического корабля. При острой необходимости астронавтам придётся в буквальном смысле съедать свой корабль.
Другая проблема астронавтов связана с вопросом о «бренном теле». В связи с наметившейся в не столь отдалённом будущем перспективой длительных космических полётов специалисты аэрокосмической отрасли уже сейчас столкнулись со сложной экскретологической и морально — этической проблемой [101]. Её суть в вопросе — как поступить с телом космонавта, скончавшегося при выполнении космической миссии в дальнем Космосе, когда отсутствует физическая возможность доставить покойного на землю, чтобы похоронить согласно обряду той религии, которую он исповедовал. Это только в фантастических фильмах тело погибшего героя в сверкающей капсуле красиво удаляется от межгалактического звездолёта на фоне клубящейся туманности…
В действительности, как бы цинично это ни звучало, тело погибшего космонавта станет на борту корабля мёртвым грузом без кавычек, то есть экскретом. Это незапланированный дополнительный вес и занимаемый объём. Даже если на космических кораблях будут устроены специальные криогенные камеры для сохранения тела, работа подобных установок потребует дополнительных затрат энергии. Так что рациональный выход видится один — избавиться от трупа при первой же возможности скорее всего — через шлюзовую камеру.
Между тем, мёртвые человеческие тела в космолёте, даже формально, не могут рассматриваться как лишний груз или мусорные экскреты. Умершие астронавты скорее — герои нации, погибшие при выполнении важной национальной или общечеловеческой задачи, то есть —
Напомним, что «экскретами
Как и обычные люди, космонавты, по крайней мере — часть из них, являются и, возможно будут являться в будущем, приверженцами разных религий. И чтобы космические похороны не выглядели кощунством, хотя бы часть традиционных погребальных обрядов над телом утраченного героя должна быть совершена. Но у разных религий разный подход к похоронам и сохранению или удалению останков.
Например, христианство дало однозначный ответ на этот вопрос. В таких случаях хоронить человека надо там, где его застигла смерть — в море, во льдах, в Космосе. Существует даже особый обряд погребения «на водах», который по аналогии может быть адаптирован и для «моря внешнего» — Космоса.
Сложнее дело обстоит в иудаизме, где существует незыблемое положение — останки должны быть захоронены в земле. В древности тела путешественников, умерших во время морских переходов, специально сохраняли тем или иным способом. Для иудеев (как и для мусульман) понятие смерти и мёртвое тело неразрывно связаны с понятиями сакральной нечистоты. Кроме того, большинство требований иудейского погребального обряда, например, открыть окна, чтобы впустить свежий воздух и вылить воду из всех сосудов в доме умершего, в условиях космического полёта заведомо невыполнимы.
Выход из, казалось бы, тупикового положения может быть найден, если космонавты возьмут с собой «миниатюрное кладбище» — символическую горсть родной земли в крошечном контейнере. Захоронение в нём части тела покойного, например, пряди волос, позволит решить этот вопрос. Погребальный контейнер может быть перезахоронен затем на Земле или другой планете. Такой обряд, по-видимому, может удовлетворить религиозные чувства большинства землян.2.3. Мусорные экскреты в решении проблем энергетики
Во многих литературных источниках, описывающих состояние мировой энергетики, делаются выводы о неизбежном кризисе в этой области — в первую очередь из-за ограниченности источников энергопотребления или трудностей доступа к ним. Между тем имеются поистине неограниченные энергоисточники в виде мусорных экскретов. Отходы, отбросы, мусор, жидкие и газообразные выбросы постоянно «генерируются» людьми — причём в избыточных количествах, и если хотя бы их часть полезно использовать, то выгода будет двойная.
Основным массовым методом получения энергии отбросов в настоящее время, очевидно, является превращение их в биологический газ (биогаз). Биогаз — это газ, получаемый метановым брожением экскретов биомассы — в основном отбросов объектов флоры и фауны. Разложение биомассы происходит под воздействием бактерий трёх видов, причём в цепочке питания последующие бактерии питаются продуктами жизнедеятельности предыдущих. Бактерии первого вида — гидролизные, второго — кислотообразующие, третьего — метанообразующие. В производстве биогаза участвуют не только бактерии класса метаногенов, но и все три вида.
Использование навоза крупного рогатого скота для переработки в биогаз, может обеспечить электроэнергией многие миллионы жителей нашей планеты, а также значительно сократить парниковые выбросы. Навоз крупного рогатого скота при бесконтрольном разложении выделяет два парниковых газа — окись азота и метан. По данным Межправительственной группы экспертов по изменению климата (Intergovernmental Panel on Climate Change — IPCC) оксид азота способствует парниковому эффекту в 310 раз, а метан — в 21 раз сильнее, чем углекислый газ, который считают главным виновником этого эффекта. Поэтому, утилизация навоза может существенно снизить выбросы парниковых газов. Безусловно, сжигание биогаза, полученного из навоза, также приводит к выбросу в атмосферу углекислого газа, но в значительно меньшем количестве, чем при сжигании, например, угля.
Переработанный навоз многих миллионов голов скота, культивируемых в аграрных странах, может в виде биогаза обеспечивать миллиарды киловатт-часов электроэнергии, что хватит для снабжения миллионов домов. В этой области изобретать ничего не надо, — всё новое это забытое старое. Ведь действительно высушенный навоз (кизяк) с древних времён использовался как топливо. Его и сейчас используют в некоторых регионах, где с топливом имеются трудности: в горных районах Гималаев, в пустынях Сахары, степях Монголии. Причём при горении кизяка не чувствуется неприятного запаха. А использование старой идеи и современных технологий дают результат, — уже повсеместно стали появляться биогазовые установки для животноводческих комплексов.
Данная технология получения энергии из навоза позволяет переработать любые отбросы в кратчайшие сроки с получением биогаза и дополнительно из переработанного вещества удобрения, превосходящего по своим показателям удобрения практически всех других видов. Полученный газ можно использовать на отопительные нужды хозяйства и получения электроэнергии, а удобрительную массу — в выращивании растений.
Надёжность бытовых биоустановок, простота и их обслуживания, доступность комплектующих позволяют успешно использовать их в различных регионах и странах.
В нашей стране далеко не везде есть газовое отопление, а отапливать сельский дом дровами или углем довольно хлопотно и накладно, не говоря уже об электрическом отоплении. В такой ситуации можно попробовать самостоятельно сделать биогазовую установку.
Для производства биогаза в домашних условиях могут быть использованы дешёвые примитивные биогазовые реакторы. Как правило — это герметичная ёмкость обшитая сверху утеплителем и накрытая непроницаемым для газа куполом [56]. Так же можно реактор размещать под землёй. Топливом для реактора служат любые отбросы, в основном навоз.
Приведём рецепт получения газа «в домашних условиях» [56]. Смешать 1,5 тонны коровьего навоза и 3,5 тонны сгнившей листвы, ботвы и прочих бытовых и приусадебных отбросов. Добавить в смесь воды до 60 ÷ 70 процентов влажности. Заложить смесь в яму и с помощью змеевика разогреть до 35оС. Смесь начнёт бродить и без доступа воздуха сама разогревается до 70 градусов. Время готовности газа из навоза — две недели.
Чтобы купол под давлением газа не сдвинулся с ямы, к нему с помощью тросов необходимо прикрепить противовес. Такой газогенератор в сутки способен вырабатывать до 40 кубометров «голубого топлива». Пяти тонн смеси отбросов ему хватает на генерирование топлива в течение шести месяцев. Побочные продукты в виде переработанных отходов из биогазовой установки — это высококачественное удобрение, которое можно использовать на огороде для выращивания сельскохозяйственных культур.
В настоящее время разработаны и успешно функционируют устройства термохимической конверсии углеродсодержащего сырья — попросту говоря — отбросов. Внедрены технологии, позволяющие перерабатывать навоз, отбросы животноводства, помёт в синтетический или генераторный газ (смесь СО и Н2 с теплотворной способностью 1200 Ккал/кг). Такие установки создают альтернативу природному газу, мазуту и углю в паровых котлах, дизельному топливу в дизельных генераторах. Получаемый на выходе синтез-газ из установок утилизации навоза — универсальное сырьё для производства продуктов органической химии, включая моторные топлива (бензин и дизельное топливо) второго поколения.
Наиболее «продвинутые» технологии [44] реализуют идею взвешенного взаимодействия с природой при утилизации и переработке навоза — отходов свиноферм, животноводческих комплексов. Технологии термохимической конверсии мусорных экскретов занимают лидирующие позиции в сфере переработки углеродсодержащего сырья и получения энергоносителей как по цене оборудования и выходу товарных энергоносителей, так и по экологической чистоте и компактности.
Основой технологической линии является реактор высокоскоростной высокотемпературной конверсии с воздушным дутьём и обращенным отбором газа [44]. Основные конструктивные элементы реактора представлены на Рис. 2.3.2..
Один реактор способен переработать до 500 кг навоза в час при влажности до 65 %. При снижении влажности сырья производительность реактора может достигать 750 кг сырья в час. Модуль комплекса включает пять реакторов [44] общей производительностью 2 570 кг сырья в час, вырабатывающий 4112 м3 горючего газа в час с тепловым эквивалентом 6612 КВт.
Синтез — газ производимый такими реакторами пригоден для подачи в дизельный генератор, модифицированный — для работы на газе или для сжигания в водогрейном котле, а также для сжигания в газовой горелке. Благодаря низкой температуре отбираемого газа и обращённому процессу газификации образование окислов азота, серы, хлора или фтора идёт не активно, и содержание вредных веществ находится в пределах ПДК. В частности, сера присутствует в газе в восстановленныхнелетучих формах (H2S, COS), которые проще поглотить, чем SO2. При конверсии происходит частичное разложение азотсодержащих органических соединений в бескислородной среде, что даёт меньшее количество окислов азота в дымовых газах. Выгружаемая из реактора зола имеет низкую температуру, не более 300 0С, и практически не содержит остатков углерода. Состав синтез-газа представлен в следующей таблице.Таблица
Реактор полностью герметичен. После сушки навоз поступает на брикетирование (см. Рис. 2.3.3.).
Весьма перспективной признана фотокаталитическая топливная установка (ФТУ) получения электрической энергии из отбросов. Её основу составляет ячейка, электродами в которой являются анод из системы титаноксидных (TiO2) нанотрубок и катод из платины. Она способна разрушать органические соединения в сточных водах [26], производя электричество. Для её работы используется энергия коротковолновой части спектра солнечного света. При очищении возникает направленное движение электронов к катоду, которые преобразуются в электрический ток. Химическая энергия отбросов, таким образом, превращается в энергию электрическую.
По оценкам создателей этой установки, полная переработка всех органических соединений, находящихся в сточных водах, способна обеспечить около трети общемировой ежегодно потребляемой энергии. Отмечается, что сточные воды являются весьма перспективным источником получения энергии, а предложенный способ выработки электричества из канализационных отбросов не представляет опасности для окружающей среды.
Оказалось [26], что при модификации электродов в фотокаталитической ячейке полупроводниками, например, сульфидом кадмия, очистительная система может использовать для разложения органики свет видимой области спектра вместо ультрафиолета. Этот факт открывает новые возможности для использования системы, так как при этом пропадет необходимость в специально приспособленных камерах с ультрафиолетовым излучением. Такая модифицированная система может успешно работать под «открытым небом».
Мусорное биотопливо или свалочный газ — одна из разновидностей биогаза. Газ мусорной свалки не является ископаемым горючим сырьём, а возникает при микробиологическом распаде органического материала (отбросов) свалок. Получение свалочного газа может решить сразу две проблемы: получить биотопливо и очистить планету от мусора. Данные ООН, полученные в результате исследования соотношения выброса мусорных экскретов и потребности в энергии 173 стран и обнародованные в Интернете, показали большую перспективность этого способа. Оказалось, что теоретически из имеющихся в мире свалок могут быть выработано около 83 млрд. литров целлюлозного этанола [42]. Энергии полученного топлива хватило бы на функционирование всего существующего автобусного городского транспорта.
Обустроенная для получения газа свалка может иметь вполне респектабельный вид и легко может быть вписана в жилищную структуру поселения городского типа (см. Рис. 3.3.4.). Свалочный газ такого «завода» способен на многие годы обеспечить энергией небольшой городок или крупный район мегаполиса.
Оценки [43] показывают, что каждая тонна свалочного мусора содержит приблизительно от 150 кг до 250 кг биологически разлагаемых органических веществ с выходом энергетически ценного метана. Один кубический метр мусорного газа имеет энергетический эквивалент от 4 до 5 кв. ч, что соответствует тепловой энергии приблизительно 0,5 л топливного мазута. Если предположить, что 1 тонна бытовых отходов имеет потенциал производства 180÷250 м3 газа за период 15÷20 лет, то энергетический потенциал, скрытый в мусорных свалках становится воистину бесценным!
В условиях ограничения кислорода бактериальное разложение органических веществ свалки условно можно подразделить на 4 фазы [43], после чего «свалочный газ» возникает как конечный продукт биоразложения. В ходе первой фазы «созревания» газа собранные на мусорной свалке экскреты содержат ещё достаточно много кислорода, что приводит к их аэробному биологическому разложению. Кислород постепенно удаляется в атмосферу в виде CO2, и позднее, когда кислород становится практически исчерпанным, наступает вторая фаза процесса.
Эта вторая фаза может быть определена как стадия кислотного брожения в процессе разложения отбросов и наступает в зависимости от окружающей температуры примерно через 2 недели после начала разложения. В это время вещества, такие как целлюлоза, белки и жиры разлагаются, давая выход субстратам, которые далее биологически разлагаются в короткоцепочные жирные кислоты, углекислый газ CO2 и водород H2. В ходе этой фазы образование CO2 и H2 достигает максимума. В стадии кислотного брожения при практически полном отсутствии кислорода в толще мусора начинают активизироваться микробы, ответственные за образование метана. Третья фаза реально начинается через 3÷4 месяца после засыпки свалки. Скорость образования газа при этом стабилизуется в пределах 2÷3 лет, после чего начинается четвертая — самая продуктивная фаза.
В четвертой фазе "свалочный газовый реактор" будет поставлять газ постоянного состава на протяжении длительного периода. Время работы такого источника энергии и его расходные характеристики зависят от многих факторов — в первую очередь от состава тела свалки и условий окружающей среды.
Безусловно, процесс биологического разложения мусора отличается от свалки к свалке и зависит от ряда существенных переменных: состава отходов, их рыхлости или слеживания, влажности, материала покрытия свалки и т. п. Эти параметры тела свалки оказывают заметное влияние на доступность и качество «питательной смеси», которую используют производящие метан микроорганизмы.
Состав и процентное содержание основных компонентов свалочного газа приведены в Таблице № 2.3.1. Кроме указанных в таблице газов в незначительных количествах имеются и некоторые другие газы, часть которых — токсична.Таблица № 2.3.1.
Таблица № 2.3.2. иллюстрирует экономический эффект при использовании отопительного газа 20 летней мусорной свалки с общим количеством собранного мусора 3 миллиона тонн. Расчёты [51] показали, что её полный расход Q (количество генерируемого ею газа) составляет приблизительно 2300 м3/ч, утилизируемая его часть q — около 1500 м3/ч. При этом потенциал свалки как источника энергии оценивается более 5 тысячами тонн топочного мазута в год на протяжении 15 лет.
Следует отметить, что наряду с достоинствами получения энергии от модифицированных мусорных свалок, имеются и негативные факторы их эксплуатации, бесконтрольность которых может привести к большой беде. Состав вредных газов из мусорных свалок ясно иллюстрирует его потенциальную опасность для живых организмов. Потенциальный вред, который может быть вызван свалочным газом, может быть разделён на категории физиологической опасности и взрывоопасности.Таблица № 2.3.2.
Отмечается [43] высокий риск нахождения в непосредственной близости от объёмов мусорной свалки из-за опасности удушения, вызываемого замещением насыщенного кислородом воздуха газом свалки. Вдыхание токсических компонентов газа могут вызвать тошноту и угар. Свалочные газы, кроме того, негативно воздействуют на растения, приводя к разрушению зелёного покрова не только на рекультивированной площади мусорной свалки, но и вокруг неё.
Опасность взрыва свалочных газов объясняется образованием смесей метана с воздухом в пределах взрывоопасных концентраций метана (5 ÷ 15 объёмных процентов метана в воздухе). Подобные взрывы случаются при подземных работах в канализационных сетях, дренажной системе ливневых вод и других системах трубопроводов. Такие трубопроводы проходят через тело свалки и рядом с ней.
Таким образом, система трубопроводов «свалочного завода», работающая при избыточном давлении системы контроля вод, просачивающихся в грунт из свалки и из прилегающих пространств на свалке или рядом с ней, являются зонами высокого риска!
Метан не только взрывоопасен, но и представляет определённую пожарную опасность. Поэтому при отборе свалочного газа могут происходить загорания и пожары.
Опасности взрывов и пожаров часто непредсказуемы из-за различий в путях и скорости миграции мусорного газа через слои мусорной свалки. Зафиксировано документально [43], что мусорный газ собирался в сотнях метров от площади свалки в подвалах строений и вызывал мощные взрывы. Газ мигрирует при заливании водой мусорных свалок, либо из-за изменения барометрического давления при перемещении атмосферных фронтов и вообще при других изменениях погоды в зоне мусорной свалки.
Кроме всего прочего, газ мусорных свалок дурно пахнет из-за примесей сероводорода и других соединений серы.
Состояние мусорных свалок в России нельзя признать удовлетворительным; большая их часть — дикие или неорганизованные мусорки или помойки, некоторые считаются нормативными, но полностью требованиям закона удовлетворяют единичные экземпляры. Небольшое число свалок в настоящее время подвергается обустройству с учётом современных технологий по утилизации и переработке мусорных отходов [43].
Отмечается, что оценённое специалистами-экологами вредное воздействие газов, образующихся в мусорных свалках под воздействием бактерий, часто превышает вредное воздействие промышленных предприятий на окружающую среду. И это только без учёта всякого рода опасностей самого нахождения таких свалок вблизи проживания людей. В то же время, использование таких технологий, как выделение свалочного газа из мусорных свалок, даёт колоссальный экономический эффект от производимой из него электроэнергии и ещё больший эффект от снижения вредных выбросов в окружающую атмосферу.
При обсуждении энергетических возможностей различных мусорных экскретов нельзя не упомянуть о таком «энергетическом концентрате» как испражнения человека или животных или экскременты [3]. В борьбе за энергетическое выживание человечества немало внимания уделяется проблеме переработки отходов жизнедеятельности человека [52]. Уже проводятся проверки технологий, с помощью которых эти отходы, с помощью различных биохимических методов, перерабатываются в жидкое и газообразное топливо, приводящее в движение автомобили и отапливающее жилые помещения. Например, в печати сообщалось, что жители 200 домов британского городка Дидкот отапливают свои дома газом, полученным из собственных канализационных отходов.
Фонд Билла Гейтса призывает превращать экскременты в биодизельное и метановое топливо, пишет газета The Christian Science Monitor. Проект, получивший грант на 1,5 млн. долларов от Фонда Билла и Мелинды Гейтс, разрабатывается профессором Колумбийского университета Картиком Чандраном совместно с Waste Enterprisers в Гане.
Человеческие экскременты являются "концентрированным органическим материалом с высокой энергетической ценностью", отмечается в Фонде Билла Гейтса. Чандран и его партнёры изучают способы превращения органических составляющих этих отбросов в полезное топливо. Авторы разработки считают, что это не только создаст альтернативный источник топлива, но и предотвратит попадание отбросов, являющихся одним из источников инфекций, в окружающую среду, говорится в статье, содержание которой приводит сайт InoPressa.ru.
По данным фонда Гейтса, у половины жителей развивающихся стран — это примерно 2,5 млрд. человек — нет доступа к санитарно-гигиеническим удобствам. 1,2 млрд. человек осуществляют "открытую дефекацию", то есть у них вообще нет санитарных удобств, а 1,3 млрд. человек пользуются небезопасными удобствами. Поэтому полезное использование экскрементов является для стран «третьего мира» весьма актуальным и перспективным.
Вполне естественно, что специалисты из космической отрасли тоже обратили свое внимание на эти технологии, ведь утилизация продуктов жизнедеятельности экипажей космических кораблей и станций в околоземном пространстве и в Космосе является достаточно сложной операцией. Во многих случаях отбросы космонавтов обезвоживаются, замораживаются и сбрасываются за борт, где они сгорают подобно метеоритам при входе в плотные слои земной атмосферы. Последние разработки аэрокосмической техники предусматривают возвращение отбросов на землю в грузовых космических кораблях. Это нерационально и требует больших затрат. Почему бы не получить из этих экскретов лишнюю энергию или топливо для двигателей космических аппаратов?
Исследования в этом направлении проводятся группой учёных из Флоридского технологического института. Учёные взяли за основу бактерии вида Shewanella MR-1, которые способны вырабатывать водород, перерабатывая любой материал биологического происхождения. С помощью генной инженерии учёные сконструировали новый геном этих бактерий, благодаря чему они стали вырабатывать большее количество водорода и приобрели устойчивость к неблагоприятным факторам космического пространства.
Жизнеспособность нового штамма бактерий и их способность вырабатывать водород, который потом будет перерабатываться в водородных топливных элементах в электроэнергию, будет вскоре проверена на практике.
Осуществление этого новаторского проекта планируется на спутнике, являющемся результатом реализации проекта ООН и ЮНЕСКО, стоимостью 5 миллионов долларов. На этом спутнике предполагается разместить специальный биореактор, в котором будут находиться бактерии, вырабатывающие водород. Если бактерии Shewanella MR-1 приживутся в ОКП, то спутник ООН будет в течение пяти лет получать энергию от водорода, выработанного бактериями из отходов жизнедеятельности астронавтов экипажа Международной космической станции, пишет http://mobilnik.ua.
Важное значение экскретов в решении энергетических проблем человечества в скором времени приобретёт освоение месторождений горючих сланцев и использование их органического содержимого.
Горючие сланцы — породы, содержащие в большом количестве органическое вещество, являются продуктом окончательного выделения и разложения доисторических живых организмов. Они в земной коре повсеместно встречаются в виде залежей, то есть являются глобальными экскретами. Из этого природного материала получают нефть. Для этих же целей подходят и пески, насыщенные густой, вязкой нефтью.
По данным геологической службы США мировые запасы горючих сланцев и нефтеносных песков оцениваются в 700÷800 млрд. т, что в 7÷8 раз больше всех выявленных запасов нефти в мире. Только в районе Скалистых гор (США) в подобных породах концентрируется 270 млрд. т нефти, что в 2÷3 раза превышает мировые запасы нефти и в 67 раз — оставшиеся запасы нефти Соединенных Штатов. Американские геологи подсчитали, что при коэффициенте извлечения 50 % и современном уровне потребления нефти этих ресурсов хватило бы, чтобы удовлетворять запросы страны в течение 140 лет. Большие запасы горючих сланцев найдены и в нашей стране.
Казалось бы, выход из топливного тупика найден, однако высокая стоимость работ препятствует интенсивной переработке горючих сланцев и нефтеносных песков. По оценке Национального совета США, разработка битуминозных пород рентабельна при цене на нефть не менее 100÷120 $/т. До топливного кризиса о промышленной разработке сланцев не могло быть и речи. Тем не менее, в ряде стран мира несколько лет тому назад приступили уже к практическому осуществлению этой задачи.
Взоры многих нефтепромышленников мира обратились к битуминозным сланцам и нефтеносным пескам после 1973 года, когда цены на нефть резко выросли. Однако крупномасштабная переработка тяжёлой нефти и горючих сланцев — дело относительно далёкого будущего. По оценке компании „Шеврон", она начнётся в третьем тысячелетии. Причём, стоимость добычи тяжёлой нефти и битумов прогнозируется в размере $220 ÷ 314/м3, а получение синтетической нефти из горючих сланцев — $346 за кубометр.
В России проблема извлечения нефти из насыщенных нефтью песков решается по-иному, а именно путём шахтной добычи. Впервые нефтяная шахта была сооружена в районе города Ухта в 1939 г. Глубина её не превышала 500 м. Разработка вязкой нефти производится следующим образом. Шахта проходит продуктивный пласт, который дренируется несколькими скважинами. Нефть под действием силы тяжести идёт самотеком и попадает в специальные канавки, расположенные на дне шахты и имеющие небольшой уклон для стока в нефтехранилище. Если продуктивный пласт находится ниже шахты, то нефть извлекается насосами через специальные скважины. Из подземного нефтехранилища на поверхность нефть подается также насосами.
Предлагается воздействовать на нефть в шахте горячей водой или паром. По расчетам, таким образом можно получить дополнительно в нашей стране не менее 50 млн. т нефти за год, причём глубина шахт не будет превышать 1 км.
Аналитики утверждают, что эра „дешёвой нефти" подошла к концу. То, что сейчас считается дороговизной, через некоторое время покажется необычайно дешёвым продуктом. Даже современная стоимость нефти в 100÷150 $/м3 через 30÷35 лет будет выглядеть мелочью по сравнению с 300÷350 $/мз.
Нефть будущего станет ограниченным для использования и чрезвычайно дорогостоящим ресурсом, который не рационально использовать в качестве топлива.
В заключение этого раздела книги отметим, что во многих литературных источниках отмечается, что производство биогаза из отходов сельского хозяйства и пищевой промышленности станет возобновляемым источником топлива и способно решить энергетическую проблему цивилизации. Кроме того решается другая проблема переработки мусорных экскретов — бытового мусора, сельскохозяйственных, бытовых и промышленных стоков. Подобные разработки способствуют сбережению окружающей среды. Продукт анаэробного метанового сбраживания может служить удобрением. Доказана способность анаэробного сбраживания отходов обеззараживать их.
Сущность большинства разработанных и используемых проектов заключается в оптимизации и усовершенствовании методов получения биогаза. При этом токсичные бытовые и промышленные отходы сбраживаются в анаэробной среде до горючего газа метана с целью решения экологической проблемы их утилизации c различными добавками или при различных физико-химических условиях.
Приведём в качестве примера проект [56], новизна которого заключается «в оценке влияния стимулирующих добавок растительной массы, например, фитомассы амаранта багряного (Amaranthus cruentus), на метаногенез в процессе производства биогаза».
По мнению проектировщиков сущность проекта заключается в том, что «органическое сырьё (навоз, пивная дробина, свекловичный жом, осадки сточных вод) в анаэробной среде сбраживается до горючего газа метана. Растительная масса применяется как стимулирующая добавка, увеличивающая выход метана в 10 раз. Для получения биогаза используются ферментаторы, непрерывно термостатируемые при температуре 35–37 °C, а для измерения объёма выделяющегося газа — газометры. Состав выделяющегося газа исследуется методом газовой хроматографии».
Предлагаемая анаэробная переработка отбросов имеет преимущество по сравнению с аэробной, поскольку не только способствует их утилизации, но и позволяет параллельно решать топливную проблему путём выработки горючего биогаза. Присутствующие в исходных мусорных экскретах тяжёлые металлы (свинец, ртуть, кадмий, мышьяк) в процессе анаэробного сбраживания превращаются в сульфиды, нерастворимые в воде, и поэтому нетоксичные. Известно, что в процессе анаэробного сбраживания погибают болезнетворные микроорганизмы и яйца гельминтов, присутствующие в отбросах. Наконец, выработка биогаза приводит к утилизации метана, который в ином случае выделяется из стоков и свалок в атмосферу, создавая угрозу парникового эффекта.
Известно, что сбор и улавливание метана рекомендованы положениями Киотского протокола. Таким образом, выработка биогаза решает сразу несколько самых насущных проблем цивилизации: энергетическую, экологическую, а также косвенно — проблему голода в странах третьего мира. Биогаз производится не из пищевых продуктов, а из отходов.
К мусорным экскретам, способным генерировать биогаз, относятся осадки бытовых сточных вод и активные илы водоочистных сооружений, фекальные массы, пищевые отбросы, а также навоз и помёт сельскохозяйственных животных и птицы, который выгодно подвергать метаногенезу, прежде чем увозить на поля.
Следует отметить, что современные технологии производства биогаза сложны и требуют больших затрат [56]. Их массовое применение эффективно пока только в высокоразвитых странах.
Например, в Швеции еще в 1991 году правительство выделило 120 миллионов крон на исследование, создание и показ биотоплива (технического спирта и биогаза) для транспортных средств. В 2000 году в Германии существовали 850 биогазовых фабрик — маленького фермерского масштаба и крупного промышленного, — оказывающих благотворное влияние на экономику страны. В последующие годы планировалось создание ещё нескольких сотен новых биогазовых фабрик. В 1997 году в странах Европейского Союза была учреждена программа THERMIE, поддерживающая концепцию энергетической переработки бытовых, индустриальных и сельскохозяйственных стоков. После этого исследования биогаза пережили второе рождение.
Например, в Индии в ближайшем будущем планируется создание до 38 миллионов метаногенных биореакторов, работающих на бытовых отходах, для газификации сельских частных хозяйств; предполагается использование энергии биогаза в промышленности.
В России потенциальным пользователем подобных разработок может стать сельское хозяйство, в том числе частный сектор, животноводческие и птицеводческие комплексы и мясоперерабатывающая промышленность, водоочистные сооружения.
Китай на сегодняшний день является мировым лидером по внедрению технологии производства биогаза в сельских районах. Более 31 млн. китайских семей уже установили биогазовые установки в своих домах, и эта цифра продолжает стремительно расти, увеличиваясь ежегодно на несколько миллионов. Суммарный выпуск биогаза составляет 10,2 млрд. м³/год (эквивалентно 13,5 млн. т условного топлива), что ставит КНР на уверенное первое место в мире по этому показателю [32].
Анализ причин китайского феномена убеждает, что это, во многом, заслуга грамотной и сбалансированной системы государственной поддержки. Первые попытки развития биогазовой энергетики Китай сделал ещё в 1958 г., когда появилась программа комплексного использования биогаза для утилизации навоза и улучшения санитарных условий в селе. Однако первые серьёзные шаги китайского правительства, осознавшего выгоды от использования этого ресурса, как механизма модернизации сельского хозяйства, были сделаны в середине 1970-х годов. Именно тогда в сельских районах «Поднебесной» стали появляться установки переработки канализационных стоков, получившие название “китайский купол” (см. рисунок 2.3.7.). Всего было построено более 6 млн. таких установок.На сегодняшний день китайский биогазовый комплекс развивается при непосредственной поддержке государства. Начиная с 2003 г., в стране действует семилетняя “Национальная программа развития сельской биогазовой энергетики” — масштабный проект, призванный увеличить число семей, использующих биогаз, до 40 млн. Уже через полгода после реализации этой программы 30 % крестьянских хозяйств использовали биогазовые технологии для минимизации своих затрат на тепло, электроэнергию и удобрения. Кроме этого к 2010 г. построено около 4тысяч крупных биогазовых станций, функционирующих на основе отходов животноводческих ферм, а доля сельхозпредприятий, использующих биогазовые технологии, выросла до 52 %.
Китайские власти всерьёз рассчитывают на биогаз как на существенный источник электроэнергии для сельских районов. К 2030 г. удастся полностью обеспечить деревенских жителей электроэнергией и теплом собственного производства. Ожидания китайских властей подкрепляются постоянно растущими инвестициями в отрасль.
Анализ российского сельскохозяйственного сектора показывает, что биогазовые технологии не только экономически оправданы, но и могут создать условия для более интенсивного развития сельского хозяйства РФ, решить проблему отходов АПК и слабого развития энергетической инфраструктуры в сельских районах [58].
Агропромышленный комплекс России сегодня сталкивается с проблемой утилизации огромного количества отбросов и отходов. Чаще всего они просто вывозятся с территорий ферм и складируются. Это приводит к проблемам закисления почв, отчуждению сельскохозяйственных земель (более 2 млн. га сельскохозяйственных земель заняты под хранением навоза), загрязнению грунтовых вод и выбросам в атмосферу метана — парникового газа. Если на государственном уровне ставится задача интенсивного развития сельского хозяйства с высоким уровнем эффективности и глубины переработки, эту проблему необходимо решать.
Согласно планам Правительства РФ, установленная мощность электрогенерирующих установок на биогазе и биомассе к 2020 г. должна вырасти в 5,5 раз по отношению к сегодняшним показателям — до 7850 МВт [33]. Однако существенных шагов пока не предпринято и участие биогазовой энергетики в программе надбавок к цене оптового рынка затруднено в силу технологических причин — обычно электроэнергия и тепло установок когенерации используется для собственных нужд и не продаётся в сеть, а реальных альтернатив этой системе поддержки не предложено.
Подводя итог обсуждению, можно сделать выводы, что отходы агропромышленного комплекса (АПК), которые необходимо утилизировать, сами по себе являются существенным энергетическим ресурсом, так как с разной степенью эффективности возможно получение биогаза почти из всех видов сельскохозяйственных отбросов и отходов. Таким образом, развитие биогазовой энергетики — это не только возможное решение проблемы избавления от мусорных экскретов, но и ещё решение энергетических проблем сельского хозяйства.
Существуют следующие проблемы: большая часть регионов с развитым сельским хозяйством, соответственно, с высокой концентрацией ресурсов для производства биогаза (Белгородская область, Краснодарский край, Алтайский край и др.) являются энергодефицитными, и энергоснабжение сельхозпроизводителей здесь осуществляется по остаточному принципу [34]. Во всех сельскохозяйственных регионах существует проблема низкой степени доступности объектов энергетической инфраструктуры, в частности, только 37 % крупных и средних сельхозпроизводителей имеют доступ к сетевому газу.
Суммарный энергетический потенциал отходов АПК РФ в количественном выражении достигает 81 млн. т условного топлива. Суммарные потребности экономики могут быть обеспечены, если весь биогаз будет перерабатываться на когенерационных установках. Это позволит на 23 % удовлетворить потребности в электроэнергии, на 15 % — в тепловой энергии и на 14 % — в природном газе или же полностью обеспечить сельские районы доступом к природному газу и тепловой мощности [34].
Помимо сказанного выше, биогазовая энергетика — это ещё источник дешёвых комплексных органических удобрений, которые образуются как побочный продукт при производстве биогаза. В целом для сельского хозяйства такие дешёвые и доступные удобрения — это интенсификация производства и повышение конкурентоспособности отечественной продукции. Для фермера — независимость от конъюнктуры закупочных цен на рынке минеральных удобрений и высокие урожаи.
Такие разработки являются не только эффективными бизнес-проектами, но и должны стать неотъемлемым элементом государственной политики в отношении села. Ведь как показал китайский опыт развития биогазовой энергетики, подобные технологии могут стать не только источником инноваций, но и методом повышения уровня жизни в сельских районах.2.4. Мусорные экскреты как сырьевая база цивилизации
Мусор привычно считается одним из главных проклятий современной цивилизации. Только в России ежегодно образуется до 130 млн. тонн твёрдых бытовых отходов. На долю среднего города (с количеством жителей около миллиона человек) их приходится около 400×500 тыс. т в год, и ежегодно это количество увеличивается. Ясно, что при таком положении вещей утилизация мусора безоговорочно признается важнейшей социальной проблемой, требующей для решения серьёзных материальных вложений. Именно в таком свете государственные деятели преподносят её обществу, отодвигая в сторону другой аспект — коммерческую выгоду от подобной деятельности.
Захоронение на свалках — наиболее старый и самый распространенный вид избавления от отходов. Большинство стран мира практикуют именно его: 84 % мусора гниет на мусорных полигонах в США, 90 % — в Великобритании, 57 % — в Японии. То есть в среднем — 74 % от общемирового количества отходов. В то же время во многих развитых странах бытовые отходы, мусор и отбросы являются источником вторичного сырья и энергии, который даёт возможность экономить технологические «прорывы» позволяют говорить о реальности превращения мусорных экскретов в сырьевую базу нашей страны.
Особого внимания заслуживает утилизация пищевой части мусорных экскретов в виде отбросов в виде компостирования. В пищевых отбросах содержится значительное количество органических веществ, необходимых для улучшения структуры сельскохозяйственных земель, и питательных веществ для роста растений и скармливания животным. Эти вещества могут быть использованы в качестве естественного удобрения сельскохозяйственных полей и должны сократить использование фермерами химических удобрений. Кроме того, компостирование позволяет объединить решение проблем утилизации твёрдых и жидких (канализационных) отходов больших городов.
Другие направления утилизации мусорных экскретов состоят в сжигании оставшейся части отходов на мусоросжигательных заводах для получения электроэнергии, экономии существенных объёмов традиционного топлива и быстрого уничтожения скапливающегося мусора. Однако такие заводы требуют высоких капитальных затрат, их необходимо оснащать сложной и дорогостоящей (до 50 %-ной стоимости завода) системой очистки выбросов, нейтрализации и утилизации токсичных золы и шлака.
В России этот процесс идёт медленно и болезненно. Тем не менее, в последние годы возрастает популярность технологий переработки отходов мусоросжигательных заводов для получения энергии и продукта, который может быть использован как сырьё для земляных и дорожных работ.2.5.Глобальные мусорные экскреты свалок и горных выработок как отсроченные залежи полезных ископаемых
К концу XX века человечество накопило такое количество техногенных мусорных экскретов в грунте, что их можно условно назвать новыми месторождениями полезных ископаемых. Горные выработки рудников, свалки и мусорные полигоны, где хранится это богатство, зачастую содержат больше полезных компонентов, чем природные месторождения [85,103]. Большинство мусорных экскретов относится к возобновляемым ресурсам, что неизбежно приводит к снижению эксплуатации природных источников.
Рудные отвалы и промышленные свалки уже можно в определенной степени рассматривать как техногенные месторождения, и они в ближайшие годы способны обеспечить потребности промышленности в ценных элементах и их соединениях. В таких техногенных месторождениях содержатся не только минеральные составляющие, применяемые в стройиндустрии, но и ценные металлы, пригодные для чёрной и цветной металлургии.
Учёные утверждают, что себестоимость извлечения и переработки ценных металлов из таких месторождений будет ниже, чем извлечение их из природного сырья [19], особенно, когда его запасы в стране ограничены или вообще отсутствуют.
Повторное использование этих объектов освободит большое количество почв и грунтов от навалов использованных пород и позволит их рекультивировать. Известно, что почвы не только наследуют элементный химический состав почвообразующих пород, но и аккумулируют различные виды внешнего загрязнения, выполняя при этом роль буфера, препятствующего его дальнейшему распространению. Оказалось, что уровень накопления токсичных веществ в почвах зависит от многих природных факторов, а также от интенсивности, продолжительности и специфики антропогенеза. Эта тема получила научную разработку.
В частности, в работе [51] для Горного Алтая установлены и предварительно изучены природно-техногенные литохимические ореолы рассеяния в почвах элементов, содержащихся в отвалах геологоразведочных выработок на месторождениях угля, железных и руд редких металлов. Выявлена зависимость размеров, формы и интенсивности литохимических аномалий от природных условий их нахождения и факторов миграции. Цель исследования заключалась в выявлении и предварительной характеристике создаваемых их отвалами вторичных литохимических ореолов рассеяния.
Исследование показало, что отвалы горных выработок оказывают специфическое антропогенное воздействие на эколого-геохимическое состояние почвенного покрова. Исследовались штольни, шахты, канавы и пр., пройденные при детальном геологическом изучении месторождений полезных ископаемых.
Масса перемещённого из выработок на дневную поверхность материала горных пород и содержащих тяжёлые металлы, токсичные и радиоактивные элементы руд достигает на отдельных месторождениях десятков и сотен тысяч тонн, что с учётом длительности хранения позволяет считать их значимым фактором природно-антропогенного воздействия на окружающую среду. Полученные данные указывают на высокую подвижность и вынос из них элементов (Cu, Zn, Se, Pb, As, Sb и пр.), и инертность лигогенных элементов — кремния, магния, алюминия, кальция, щелочей и основной части железа, связанных в породообразующих минералах.
Предварительно оцененная опасность полезных ископаемых изученных месторождений позволяет отнести их к 5-му неопасному) и к 4-му малоопасному классу опасности для окружающей среды [52].
На участках размещения отвалов изученных месторождений выявлены вторичные литохимические ореолы рассеяния указанных металлов в почвах. Размеры, форма, положение и интенсивность ореолов совпадают для большинства химических элементов и дают представление о масштабах и характере влияния этой специфической группы отходов на эколого-геохимическое состояние почвенного покрова.
Краткая характеристика выявленных вторичных литохимических ореолов рассеяния химических элементов в почвах на участках размещения отвалов геологоразведочных выработок свидетельствует об их эллипс обидной морфологии и относительно небольших размерах, а также об относительно невысокой степени накопления как рудных, так и литогенных элементов.
Примечательно, что максимальное накопление в почвах (до 4–6 раз) характерно не для профилирующих элементов руд и углей, а для их элементов-спутников, ассоциации которых специфичны для каждого из изученных месторождений.
Сделан вывод о том, что крупные геологоразведочные выработки и их группировки являются заметным фактором антропогенного воздействия выработок на окружающую среду. Он, проявляется механическими нарушениями природных ландшафтов, активизацией опасных экзогенных геологических процессов, а также загрязнением природных сред на участках размещения отвалов.
Вопросы утилизации и переработки промышленных отходов постоянно и везде остаются актуальными. Правда, усилия специалистов в нашей стране и за рубежом направлены, в первую очередь, на минимизацию образования отходов, а уже потом на создание технологий окончательной переработки, вторичного использования и обезвреживания. В итоге остаётся лишь то, что не загрязняет окружающую среду. Например, Полтавский ГОК добывает руду с содержанием железа 37 ч- 40 %, а металлургические предприятия вывозят в отвалы отходы производства с содержанием железа 47–55 %. В составе отходов металлургического производства содержатся, кроме того, такие ценные элементы как сера, цинк, кремний, щёлочи.
Другим важным потенциальным источником получения полезных ископаемых могут стать свалки и мусорные полигоны — вернее их «тела», спрессованные временем и силой тяжести и ставшие однородный! с относительно высокими концентрациями полезных ингредиентов. Анализ положения дел с утилизацией мусора в России пока не даёт оснований утверждать, что многие виды мусорных экскретов уже цивилизованно используются. Количество современных санитарных и мусорных полигонов не удовлетворяет всё возрастающие потребности в них, и мусор продолжают без разборки навалом сваливать в смердящие и тлеющие свалки. Но, очевидно, не всё так плохо будет после «созревания» этих объектов…
В этой связи интересной и весьма перспективной становится идея использования вещества «созревших» мусорных свалок для получения пенных минеральных и металлических компонентов. Литосфера под телом свалки как геологическая среда нового типа может рассматриваться в форме техногенной геохимической аномалии. Рассмотрит этот вопрос подробнее, выясняя взаимное влияние человека и литосферы.
Человек, являясь закономерным этапом развития биосферы, а значит, и планеты в целом, взаимодействует с ней как непосредственно через основу своей жизнедеятельности литосферу, так и через факторы её развития, т. е. через компоненты природной среды: атмосферу, гидросферу, биосферу. Как и любой компонент биосферы, человек забирает из литосферы определенные вещества, преобразует их и возвращает в литосферу с изменённым составом, концентрацией и местоположением.
Воздействия литосферы формируют минерально-сырьевую базу человека, условия его жизни и деятельности, а также условия развития природных сред — атмосферы, гидросферы, биосферы. С общих экологических позиций представляется необходимым рассмотреть воздействия на литосферу (геологическую среду) со стороны человека и её ответной реакции.
Техногенные воздействия на литосферу можно характеризовать, используя терминологию инженерной геологии и геоэкологии. Техногенное воздействие в данном случае представляет собой изменение структуры геодинамического комплекса — его компонентов или взаимосвязей между ними. Это может быть изменение каких-либо факторов геологических процессов или условий их протекания.
Источником воздействия может быть инженерная или хозяйственная деятельность человека любого вида — в том числе и связанная с размещением в литосфере (на поверхности земли или в грунте) мусорных экскретов. Примером подобного размещения мусора, отходов и отбросов в литосфере являются мусорные свалки и санитарные полигоны. В первое время после начала функционирования мусора его воздействие практически никак не проявляется, так как глобальный мусорный экскрет, представляющий тело свалки, ещё не уплотнился и не принял некоторые осреднённые характеристики. Однако, через месяцы или годы — в зависимости от содержимого мусора и характеристик внешней среды можно говорить уже о некотором однородном объекте. Этот объект — свалочное тело — приобретает физико-химические характеристики, существенно отличающиеся от аналогичных характеристик его окружения. В этом смысле можно говорить о техногенной геохимической аномалии.
Техногенные геохимические аномалии (ТТХА) — (от греч. anomalia) могут быть определены [86] как объекты литосферы с отклонением от нормы содержания химических веществ, свойственной данному участку биосферы (или одной из её составных частей). В отличие от природных геохимических аномалий (месторождений, рудопроявлений) техногенные аномалии возникают в результате деятельности людей. В классификации ТТХА, предложенной А.И. Перельманом в 1978 году, выделяются техногенные аномалии как с повышенным (положительные), так и с пониженным (отрицательные) геохимическим фоном [62]. Размеры ТГХА колеблются в широких пределах. Аномалии, охватывающие весь земной шар или значительную его часть, могут быть названы глобальными. Их примером служит повышенное содержание CO2 в атмосфере в результате сжигания угля и нефти или накопления стронция после ядерных взрывов.
Заметим, что понятие «Техногенная геохимическая аномалия» является частным случаем понятия «техногенный мусорный экскрет», выделяя только концентрационную характеристику биологического или геофизического объекта и не связывая другие характеристики этого объекта с процессами его отторжения, эволюции и деструкции.
В этой же части и глобальные ТГХА фактически тождественны глобальным мусорным экскретам, являясь их частным случаем.
Отмечается также [104[, что региональные ТГА распространяются на часта материков, отдельные страны, зоны, области, провинции. Они возникают в результате применения минеральных удобрений, ядохимикатов и т. д. Локальные аномалии связаны с конкретным эпицентром (рудником, заводом и т. д.), и их радиус не превышает десятков километров. К локальным геохимическим аномалиям относятся, например, повышенное содержание металлов в почвах и водах вокруг некоторых металлургических комбинатов и других предприятии\'! промышленности и энергетики. Свалочное мусорное тело также, очевидно, можно рассматривать в качестве локальной геохимической аномалии.
Согласно классификации А.И. Перельмана ТТХА образуются в различных средах, и по этому признаку их можно разделить на педогеохимические (в почвах), литогеохимические (в породах), гидрогеохимические (в водах), атмогеохимические (в атмосфере) и биогеохимические (в организмах). Последние, в свою очередь, представлены фито, зоо, — и антропогеохимическими аномалиями [62]. Обычно ТГХА захватывают в сферу влияния техногенного потока несколько сред и образуют сложно построенные по форме, протяжённости, составу и характеру дифференциации веществ техногенные ореолы и потоки рассеяния. По отношению к окружающей среде все техногенные геохимические аномалии делятся на три типа: полезные, нейтральные и вредные.
Полезные аномалии улучшают среду, делают её более пригодной для жизнедеятельности человека и других живых организмов. Примером служат геохимические аномалии карбонатов щелочноземельных металлов вокруг предприятии\'! строительных материалов, в частности, вокруг цементных заводов, расположенных в таёжной зоне с сильнокислыми и кислыми почвами [86]. При возникновении такой аномалии почвы в зоне воздействия предприятия становятся нейтральными и слабощелочными, что более благоприятно для использования их в сельском хозяйстве.
Вредные ТТА (например, с повышенной концентрацией токсичных веществ) ухудшают условия существования человека, растений и животных. Эти аномалии привлекают большое внимание исследователей в связи с возможными загрязнениями ими окружающей среды.
Нейтральные ТГХА не оказывают определённого влияния на экологические свойства окружающей среды, на здоровье людей и самочувствие других живых организмов. Так, концентрация железа и алюминия в почвах городов, по-видимому, не служит непосредственной причиной, влияющей на здоровье человека [86].
Безусловно, сформировавшиеся свалки и мусорные полигоны, являющиеся глобальными мусорными экскретами, должны быть причислены к вредным техногенным геохимическим аномалиям. Они выделяют токсичные газообразные и жидкие вещества. Однако это не означает, что свалки и мусорные полигоны не могут иметь полезного использования. В теле свалки в виде ТГХА складировано огромное количество ценных веществ и продуктов.
Предпосылкой формирования вышеперечисленных аномалий является морфологический и химический состав мусорных экскретов. Усреднённые данные химического состава мусора в умеренной климатической зоне показывают преобладающее содержание в мусоре свалки азота, фосфора, калия и кальция. В состав мусора, кроме того, входят следующие компоненты: бумага, картон, пищевые отходы, дерево, металл чёрный, металл цветной, текстиль, кости, стекло, кожа, резина, обувь, камни, фаянс, пластмасса и прочее. Концентрации этих веществ меняются от свалки к свалке, но везде представляют интерес утилизации. Особенно велики сезонные колебания пищевых отходов — с 28 % весной до 45 % и более 45 % — летом и осенью.
Вокруг каждого населённого пункта стихийно возникают «дикие» свалки и мусорки. Они пополняют огромное количество официальных мусорных полигонов, и если сложить по стране имеющуюся гору мусора, то объём суммарного потенциального полезного ископаемого примет поистине геологический масштаб.
Следует отметить, что экологический и эстетический вопрос, который касается свалочного мусора, является актуальным во всех городах России. При этом Москва, будучи крупным мегаполисом, не является исключением. Столица — это город, где свалочный и бытовой мусор выступают в роли основного фактора, оказывающего отрицательное воздействие на внешнюю среду, а также на условия жизни людей. Поэтому, по словам представителей власти, сегодняшнее решение проблемы утилизации городских отходов стоит довольно остро.
Как показывает статистика, в Москве за 1 год формируется почти 10 миллионов тонн отходов. При этом на каждого жителя Москвы и Подмосковья приходится около 3,5 центнеров в год выработанных бытовых отходов. А вывоз мусора осуществляется на специальные полигоны, предназначенные для сбора и захоронения мусорных экскретов. В столице ежегодно формируется большое количество мусорных экскретов, из них промышленные отходы составляют приблизительно 3 миллиона тонн, мусор от сноса ветхого жилищного фонда составляют 1 миллион тонн, твёрдые бытовые отходы составляют 3,8 миллиона тонн, а осадки очистных сооружений станций аэрации составляют 3,5 миллиона тонн. Строительный комплекс ежегодно испытывает надобность в захоронении приблизительно 2-х миллионов тонн загрязненных грунтов.
Вывоз такого огромного количества мусора производится за территорию Московской кольцевой автодороги, где, по периметру Москвы находится большинство полигонов, предназначенных для сбора и захоронения отходов, причём на каждый официальный санитарный полигон приходятся десятки диких (несанкционированных) свалок. Скоро не останется места для новых захоронений мусора, и город вынужден будет избавляться от него другими способами. Люди, безусловно, найдут решение этой проблемы, а через несколько десятилетий «мусорный пояс» вокруг Москвы может превратиться в рукотворный «полиметаллический Клондайк».
Такого мнения придерживаются не только журналисты, но и некоторые научные сотрудники, считающие, что в истории Земли началась новая геологическая эпоха, и рельеф местности теперь меняется преимущественно в результате экономической деятельности человека [105]. Более точно его отражает мнение геологов-стратиграфов из университета Лестера (University of Leicester).
Они объявили, что вместе с коллегами по стратиграфической комиссии Лондонского геологического общества пришли к выводу — Земля вошла в новую геологическую эру развития, называемую «антропопен». Следы изменений, происходящих на планете, буквально, на наших глазах, можно будет найти и миллионы лет спустя. И если смен}’ предыдущих геологических эр и эпох связывают с катаклизмами и катастрофами! (наподобие столкновения Земли с гигантским астероидом или глубинных изменений внутри планеты), то наступление новой эпохи учёные связывают с деятельностью человека. Здесь и глобальное потепление, вызванное увеличением выбросов углекислого газа, и повышение кислотности Мирового океана, и изменение рельефа планеты, и исчезновение многих видов флоры и фауны. Но самая яркая «визитная карточка» антропоцена — это залежи антропогенных ископаемых в форме техногенных геохимических аномалий или глобальных мусорных экскретов.
Относительно момента начала новой эпохи у стратиграфов единства нет. По мнению одних специалистов, антропоцен начался всего 200 лет назад с индустриальной революцией. Другие говорят, что ему уже 5 тысяч лет — именно тогда в породах стали скапливаться первые результаты металлообработки. Так или иначе, индустриализация настолько изменила Землю, что имеется всё больше оснований для того, чтобы говорить о начале новой геологической эры. Символом этой эры или эпохи, безусловно, является не только мусор, но и месторождения полезных ископаемых на его основе в форме техногенных геохимических аномалий.
Детальное изучение элементного состава крупных техногенных геохимических аномалий и анализ многочисленных публикаций показали практически одинаковый их состав (Pb, Cu, Zn, Mo, Ba, Co, Mn, Fe, Ni) [18].
Такой вывод был получен при всём разнообразии антропогенных загрязнителей (предприятия самых различных отраслей промышленности, сельского хозяйства, отрабатываемые различными способами месторождения различных полезных ископаемых и т. д.). Варьировались также климатические и ландшафтно-геохимические условия в процессе образования таких аномалий.
При этом в каждом конкретном случае приоритетными веществами могут быть различные элементы или их соединения. Однако следует ожидать, что состав основных химических элементов в свалочном месторождении следующего века будет отличным от существующего. Такой же вывод делается в работе [18].
Отметим, что ещё более мощные по запасам полезных веществ месторождения будущего могут появиться на дне водоёмов. Огромное количество мусора подводных свалок практически не контролируется и сырьевой источник полезных веществ и элементов уже в скором времени. Вопрос о точном времени «созревания» таких глобальных экскретных мусорных источников остаётся открытым и может быть решён экспериментально.
Глава III. Роль мусорных экскретов в планетарном цивилизационном кризисе
Всё необходимое человек получает из биосферы, туда же он сбрасывает бытовые и промышленные отходы, отбросы и мусор, вернее так называемые мусорные экскреты. Долгое время очистительные силы природы справлялись с многочисленными нарушениями, которые человек вносил в её деятельность, и сохраняла относительное равновесие и стабильность своих сред.
В настоящее время созидательная, а особенно разрушительная деятельность человека соизмерима с деятельностью Природы, и она уже не способна локально выдерживать напор вмешательств человека в ход естественных процессов. Это приводит к формированию цивилизационного кризиса человечества, сопровождающегося обострением, так называемых глобальных экологических и социальных проблем. К ним относятся:
— проблема народонаселения;
— изменение состава атмосферы и климата;
— изменения состояния водных систем;
— истощение природных ресурсов;
— мусорное захламление природных сред.
По мнению многих учёных наиболее остро в последние годы перед человечеством стала проблема мусорных экскретов — мусора, отходов и отбросов, а также газообразных и жидких выбросов в буквальном смысле заваливших людей отходами его хозяйственной деятельности.
Мусорные экскреты отравляют и захламляют землю и грунты, плавают и оседают на дне водных объектов, переполняют свалки и мусорные полигоны, дестабилизируют работу космической техники на борту искусственных спутников Земли и международных космических станций.
В этом разделе книги обсуждаются вопросы негативного влияния мусорных экскретов на природные среды и социальное благополучие людей.3.1. Мусорные экскреты губят земли и грунты
Организованные и стихийные мусорные свалки являются неотъемлемыми атрибутами любого человеческого сообщества независимо от его географической принадлежности или степени развития. В некотором смысле мусорные свалки — это «метка», позволяющая сразу определить время действия и эпоху конкретного события. Между тем, свалки, помойки и мусорки, которые каждый старается обойти стороной, неприятны не только запахом гниения и неприглядным видом, но и могут принести вред здоровью и необратимо воздействовать на землю, выводя её из хозяйственного оборота.
Разлагающиеся мусорные экскреты свалок представляют собой эпидемиологическую опасность, захламляют и загрязняют природные среды. Суть такой ситуации в том, что органические отходы, не имеющие доступа воздуха, выделяют биогаз. Кроме того, что газ взрывоопасен, он ещё негативно воздействует на здоровье человека, животных и отравляет природу, включая флору, воздушные массы и водоёмы. В состав биогаза входит метан, давно объявленный одним из виновников разрушения озонового слоя планеты и других бед, которые могут повлечь за собой катастрофические изменения на Земле.
Вообще, мусор свалок — это источник попадания в атмосферу множества токсичных химических соединений, вредящих живым организмам биосферы. Случается и так, что свалки горят и тлеют, и ядовитый дым распространяется на многие километры, что влечёт за собой отнюдь не радужные последствия.
Кроме того, свалки бездарно губят землю. Полигоны для складирования мусора нуждаются в огромных площадях, а территорий не хватает подчас для сооружения других, не менее важных объектов. Что касается так называемых «полигонов для утилизации ТБО», то для их технологического обустройства и нормального функционирования приходится тратить внушительные средства. При закрытии полигона после исчерпания его ресурса свозить на него мусор больше не представляется возможным, он закрывается и объявляется закрытым, требующим рекультивации.
Рекультивация подразумевает под собой проведение целого комплекса мер для блокирования негативного влияния процессов, происходящих в почве, среди которых имеется и воздействие на почвенный состав земли, и на подземные воды. Для того чтобы рекультивировать всего один гектар мусорного полигона, требуется потратить около шести млн. рублей.
Рассмотрим особенности негативных воздействий на природу санкционированных свалок или мусорных полигонов. Анализ мирового опыта в области исследований процессов, происходящих в массиве свалочного мусора показал, что санитарный полигон является сложной антропогенно-геологической системой, и его жизненный цикл, то есть время существования вредного (или потенциально вредного) воздействия на окружающую среду, измеряется в геологическом времени. Так, по данным исследований P. Baccini, для полной стабилизации массива ТБО в условиях санитарного полигона и полной ассимиляции его окружающей средой, необходимы временные интервалы, измеряемые несколькими сотнями лет [78].
Существование потенциально вредного воздействия санитарного полигона на окружающую среду неизменно связано с образованием в его теле фильтрационных (отжимных) вод — фильтрата полигона. Фильтрат — это водный раствор, образующийся при контакте складированных в массиве экскретов с любой влагой. Фильтрат содержит ряд токсичных химических соединений, выщелачиваемых из тела свалки, а также выделяющихся при биологическом разложении органических фракций в нём. Таким образом, знание качественного состава фильтрата во многом определяет правильность выбора тех или иных проектных, эксплуатационных, административных и других решений в области проектирования, строительства и эксплуатации полигонов захоронения ТБО.
Для практического исследования химического состава фильтрата и процессов его изменения были исследованы пробы, взятые из массива мусора 4-х различных свалок, расположенных на территории Пермской области:
— свалка ТБО п. Полазна [79];
— свалка ТБО д. Страшная гора [80];
— городская свалка г. Перми "Софроны";
— закрытая городская свалка г. Перми "Голый мыс" [81].
Химические анализы отобранных проб фильтрата выполнялись с использованием современных методов исследования (атомно-абсорбционного, фотометрического, спектрофотометрического и др.). Анализировались следующие компоненты: кислотность фильтрата pH, сухой остаток, ионы сульфатов, хлориды, нитраты, нитриты аммония, калия и натрия, кальций, магний, железо, свинец, кадмий, медь, никель, хром, марганец, цинк.
Полученные данные химического анализа были классифицированы в зависимости от стадии биологической деструкции экскретов, в которой находится каждая конкретная свалка в данный момент (молодой и старый фильтрат). Был проведён анализ полученных экспериментальных данных, показавший индивидуальность состава фильтрата конкретного полигона. Оказалось, что фильтрат является индивидуальным в каждом случае и определяется процессами, происходящими в теле полигона, которые зависят от нескольких факторов. Основные из них:
— первоначальный состав ТБО;
— время нахождения ТБО в массиве мусора;
— температура в массиве мусора;
— количество свободного кислорода;
— количество свободной влаги.
Однако наблюдалась и некоторая общая зависимость состава фильтрата от времени нахождения ТБО в массиве свалки.
Авторами научных исследований при изучении состава фильтрата было отмечено, что через пять лет после начала складирования мусора минерализация фильтрата достигает максимального значения, а потом постепенно снижается [82]. На Рис. 3.1.1. представлена общая схема изменения качественного состава фильтрата во времени, построенная на основании изучения исследований свойств фильтрата реальных полигонов, проводимых различными авторами [101–103].
Было установлено, что наибольшее количество загрязняющих веществ в теле свалки приходится на период кислой фазы, характеризуемый значениями pH = 4,5÷ 7,5 и продолжающийся первые 5÷7 лет. По данным исследований P. Baccini [78] и Christensen & Kjeldsen [84] период стабильной генерации метана, т. е. метановой фазы продолжается на протяжении 20 ÷ 40 лет.
После фазы стабильной генерации метана наступает период пассивной стабилизации массива экскретов, на протяжении которого наблюдаются незначительные флуктуации концентраций загрязняющих веществ в составе фильтрата. Содержание концентраций неорганических соединений (Fe, Ca, Mg, Mn, Zn, Sr) показало снижение во времени. Его связывают с изменением показателя pH.
Исследования на полигонах, срок эксплуатации которых больше 15 лет, показали, что такие параметры, как электропроводность, концентрации NH4-N, орг. Cl, K, Na, незначительно увеличивались [83].Таблица № 3.1.1.
Практически по всем химическим соединениям наблюдалось превышение ПДК в воде водоёмов рыбохозяйственного назначения (от нескольких единиц до нескольких сотен и тысяч раз), что говорит о его высокой опасности для объектов окружающей среды и необходимости организации контролируемого сбора и очистки фильтрата. Результаты натурных исследований представлены в Таблице 3.1.1. Практические данные, полученные с различных свалок Пермской области представлены достаточно "пёстрым" составом, однако, в целом, соответствуют теории изменения состава фильтрата во времени [85].
Так, наблюдается значительное снижение концентраций компонентов по целому ряду соединений при переходе от "молодого" к "старому" фильтрату (ХПК, ионы сульфатов, хлоридов, кальция, магния, марганца).Таблица 3.1.2.
По некоторым соединениям, входящим в состав фильтрата, между практическими данными четырёх полигонов Пермской области и усреднёнными данными полигонов Германии и Швеции наблюдается хорошее соответствие.
Как было указано выше, одним из проявлений геохимической аномалии полигонов мусора является образование биогаза (свалочного газа). Гниение мусора происходит под воздействием бактерий: асидогенов и метаногенов. Первые производят первичное разложение мусора на летучие жирные кислоты, а вторые перерабатывают эти летучие жирные кислоты в метан CH4 и диоксид углерода CO2. В результате образуется свалочный газ, состоящий из примерно 50 % метана CH4 и 50 % CO2, включая небольшие примеси H2S и органических веществ.
Геохимические аномалии свалок и полигонов ТБО проявляются следующими негативными последствиями:
— в свалочном грунте накапливаются в опасных концентрациях соединения тяжёлых металлов;
— грунты свалок обладают аномальными геофизическими характеристиками;
— в свалочном грунте образуется токсичная газовая смесь (биогаз).
Концентрации химических элементов в теле свалки, а значит и её опасность для живых организмов зависят от времени её эксплуатации. Наиболее отрицательно на окружающую среду влияет свалка после 3÷4 лет от начала эксплуатации и впервые 15÷20 лет после её закрытия [59].
Необходимо отметить, что для выявления конкретных значений элементов химического состава фильтрата и закона их изменений во времени необходимо проведение анализа достаточно большой выборки объектов, но на данный момент отсутствуют многие необходимые исходные данные. Эти данные нужны для проектирования и оценки воздействия на окружающую среду полигонов захоронения ТБО, строительство которых в России приобретает значительные масштабы.
В заключение можно сделать выводы, что химический состав фильтратов не является постоянным даже для одного конкретного полигона, он зависит от многих факторов: первоначального состава мусора, возраста полигона, температуры в массиве мусора, наличия свободного кислорода, воды и т. д. Главным определяющим параметром является время нахождения мусора в теле полигона, что подтверждается экспериментальными данными. Основным этапом, характеризующим изменение состава образующегося фильтрата, является переход от кислой фазы к метановой, который наступает для отдельного участка полигона через 5÷7 лет после попадания содержимого свалки в анаэробные условия.
Отмечается необходимость проведения исследовательских работ, направленных на уточнение химического состава фильтрата, образующегося на полигонах захоронения ТБО в России, а также возможности использования предложенных данных для проектирования более современных мест содержания мусора.
Подведём итог обсуждения этой темы. Места складирования огромного объёма мусора требуют больших территорий. Эти территории не могут быть полностью реабилитированы для проживания людей и культивирования объектов флоры и фауны. Отмечается [59], что по отношению к вмещающим породам и окружающим почвам такие свалки являются техногенными геохимическими аномалиями.
Очистив населённые пункты от мусора, мы создаём огромные полигоны ТБО в пределах других экосистем, нарушая естественную концентрацию химических элементов и их миграцию в почвенном покрове.3.2. Аномальные скопления мусора в водных объектах
Засорение водоёмов мусорными экскретами является в настоящее время актуальной проблемой практически для всех стран мира. Это связано, в первую очередь, с широким использованием изделий из пластиков во многих областях человеческой деятельности. Именно пластмассовые изделия составляют основную долю мусора водных объектов. Одна из главных проблем современности — всё возрастающее количество бытовых и промышленных отходов и отбросов, сжигаемых или захоронённых на свалках, а также попадающих в водные объекты [14]. Этот процесс связан с увеличивающимся производством продукции широкого потребления и ростом благосостояния людей, повышением потребительского спроса.
Важно научиться решать проблему увеличивающегося объёма мусора цивилизованно, перерабатывая крупногабаритные отходы и мусор путём утилизации, однако эта цель далека от реализации не только в нашей стране, но и во всём мире. По оценкам природоохранных организаций во все моря мира к 1988 году было сброшено примерно 20 млрд. т мусора, в настоящее время эта цифра возросла на порядок. Подсчитано, что на 1 км2 океана приходится в среднем 17 т отбросов, причём существенная доля плавающего мусора имеет «сухопутное» происхождение.
Заметное загрязнение водоёмов началось с тех времен, когда изобрели пластик и стали изготавливать из него изделия широкого потребления. Сегодня пластмассовые вещи стали незаменимыми. Они неимоверно облегчили жизнь людей и придали ей другое — более функционально насыщенное содержание. Однако это облегчение заметно лишь до тех пор, пока пластиковое изделие не выбросят. Выброшенный пластик на воздухе и на поверхности земли разлагается более ста лет, а попав с речными потоками в моря и океаны, разносится водяными течениями и образует огромные «мусоровороты», которые могут рассматриваться как глобальные экскреты.
Плотность пластикового мусора в таких скоплениях мусорных экскретов относительно невелика и напоминает «пластиковый суп». Один такой «мусороворот» размером более чем американский штат Техас плавает между Калифорнией, Гавайями и Аляской — миллионы тонн мусора [11÷13]. Это образование быстро растёт за счёт ежедневно сбрасываемых в океан со всех материков миллионов тонн относительно лёгкого мусора.
Пластиковые изделия и их фрагменты под действием силовых и поточных воздействий воды, Солнца и ветра медленно разрушаются, мелкие кусочки пластика и прочего мусора разлагаются, нанося серьёзный вред окружающей среде. Птицы, рыбы, планктон и прочие обитатели океана страдают больше всего. Например, пластиковые отбросы в Тихом океане являются причиной гибели миллионов морских птиц в год, а также более сотни тысяч особей морских млекопитающих. В желудках павших морских птиц находят шприцы, зажигалки и зубные щётки — все эти предметы птицы заглатывают, принимая их за еду. С начала 50-х годов прошлого века к гниющим водорослям прибавились пластиковые пакеты, бутылки и упаковки, которые, в отличие от водорослей и другой органики, плохо подвергаются процессам биологического распада и длительное время загромождают водную толщу. Сегодня, так называемый, Великий тихоокеанский мусорный участок на 90 процентов состоит из пластика, общая масса которого в шесть раз превышает массу естественного планктона, а площадь всех «мусорных пятен» и «мусорных полей» превосходит даже территорию США! Каждые 10 лет площадь этой колоссальной свалки увеличивается на порядок [11÷13].
Кроме бытового мусора сначала во внутренние водоёмы, а затем в моря и океаны переносятся практически все отходы, отбросы и мусор отраслей народного хозяйства, начиная с сельского хозяйства и кончая промышленным производством. Сточные воды, содержащие растительные волокна, животные и растительные жиры, фекальные массы, остатки плодов и овощей, отходы кожевенной и целлюлозно-бумажной промышленности, сахарных и пивоваренных заводов, предприятий мясомолочной, консервной и кондитерской промышленности, являются причиной органических загрязнений водоёмов.
Считается, что в сточных водах обычно около 60 % веществ органического происхождения, к этой же категории органических относятся биологические загрязнители в коммунально-бытовых, медико-санитарных водах и отходах кожевенных и шерстомойных предприятий. Большая часть этих отходов плавает на поверхности водоёмов, ухудшая эстетическое восприятие населением и подрывая туристическую привлекательность местности. В некоторых водоёмах масштабы захламления стали аномальными и приняли характер техногенного бедствия.
Казалось бы тупиковая ситуация с мусорными экскретами водоёмов частично разрешается благодаря природной способности внутренних и внешних вод к очищению. В частности, морские и океанские воды частично освобождаются от плавающего мусора за счёт физико-химических и биологических механизмов самоочищения, однако эти процессы имеют свои пределы и не являются безграничными.
Внутренние водоёмы: ручьи, реки, озёра, каналы и болота оказываются более уязвимыми для мусора, чем моря и океаны из-за своих относительно маленьких размеров и менее интенсивно протекающих физико-химических процессов. Если в морях и океанах происходит «расползание» мусора со сравнительно слабой концентрацией загрязнителей, то во внутренних водоёмах кое-где уже достигнут предел насыщения мусорных экскретов.
Экспериментально установлено, что изделия из пластмасс в природе разрушаются со скоростью существенно зависящими от физико-химических и температурных характеристик окружающей среды, а также от вида пластика. Полиэтиленовые
пакеты, пластиковые бутылки и другие полимерные изделия при попадании в почву практически не разлагаются, создавая преграды на пути нормального функционирования земли, блокируя доступ воды, воздуха и света к определенным её участкам. Инертность пластиков обусловлена высокой кинетической стабильностью к процессам разрушения — бактериям и кислороду просто не подступиться к прочным химическим связям полимеров. Так что органические полимеры имеют склонность лежать в нейтральном слое земли сотни лет.
Совсем иначе ведут себя пластики в водных объектах. Японские учёные обнаружили [5] высокую токсичность продуктов их распада в морской воде. Отобрав пробы воды и песка в 200 контрольных точках на территориях 20 стран, сотрудники Японского университета (Nihon University) обнаружили там значимые концентрации бифенола А (BPA). Концентрации вредного вещества составляли от 0,01 до 50 миллионных долей (приблизительно 50 граммов на один кубический метр воды). Было показано, что бифенол-А может попасть в воду и песок из поликарбонатов, очень твёрдых пластиков, которые, вопреки традиционным представлениям, разлагаются в обычных условиях в океане.
Бифенол А входит в состав ряда пластиков и добавок в них. По последним данным, даже низкие концентрации BPA могут повредить моллюскам, ракообразным и амфибиям. В рамках исследования [6] учёные подвергали пластиковые образцы воздействию условий, которые присутствуют в океане. В частности, это были частые смены температуры и воздействие воды. В результате им удалось установить, что, например, полистирол начинает разлагаться уже примерно через год.
Кроме этого исследователям удалось определить, что при разложении пластика в воду выделяется большое количество вредных веществ. Некоторые из них могут приводить к появлению рака. До настоящего времени считалось, что пластик представляет только "механическую опасность", и в океане он пребывает в состоянии взвеси мелких частиц, которые могут попадать в организм рыб и повреждать их внутренние органы.
Отметим, что не только разложение пластика вредно для окружающей среды. В старые никому ненужные рыболовные сети попадаются морские черепахи и дельфины, что, конечно же, угрожает численности их популяций. Птицы по ошибке скармливают пластиковые куски своим птенцам, которые не только давятся, но и травятся продуктами разложения вредных веществ в организме. Медузы и некоторые другие существа путают те же "конфетти" с планктоном и также заболевают (а ведь известно, что медузы играют важную роль в глобальном перемешивании вод океана). Постепенно пластик встраивается в пищевые цепи, отравляя всё больше морских существ, а вместе с ними и человека!
Часть мусора выбрасывается обратно на берег, негативно влияя на существование прибрежных видов животных. Экологические организации бьют тревогу, но на практике мало что делается.
Интернет и другие средства массовой информации буквально завалены информацией — в том числе и не проверенной сенсационной — о захламлении мусором морей и океанов. Одним из таких физически сомнительных сообщений была статья об обнаружении в Мировом океане нового морского образования в виде относительно плотного мусорного поля [4]. Сообщалось, что около Гавайских островов морская исследовательская организация «Альгалита» (Algalita Marine Research Foundation) обнаружила «остров», целиком состоящий из мусора. Подобные сообщения появлялись в прессе ранее неоднократно, но затем оказывались не состоятельными. На этот раз была приведена фотография «острова». Авторы утверждали, что «мусорные экскреты со всего мира, которые попадали в океан на протяжении двадцати лет, течения сбили в «мусорный континент» размером с Украину! Скопления такого мусорного поля занимает около 700 тысяч квадратных километров водного зеркала Тихого океана между Калифорнией и Гавайскими островами. И это только то, что видно на поверхности. Сплошной слой мусора начинает редеть на глубине около 30 метров».
Эта более чем сомнительная информация нуждается в проверке, но из физических соображений плавающий мусор должен «растаскиваться» водяными течениями, а не концентрироваться и локализоваться… Пластиковый мусорный остров у берегов Гавайев, по утверждению авторов сенсации, — новая и очень весомая часть Большого тихоокеанского мусорного пятна, которое простирается на 3,5 миллиона квадратных километров.
Безусловно, Мировой океан в настоящее время перенасыщен мусором. ООН утверждает, что на каждые 2,5 квадратных километров поверхности Мирового океана приходится 48 тысяч пластмассовых предметов. Это и пластиковые бутылки, и одноразовые упаковки, и зажигалки, и тюбики от зубной пасты, футбольные мячи и байдарки, кубики «Лего» и даже крышки от унитазов. Но в пределах «острова» плотность мусора должна была бы быть намного выше, на него могли бы садиться птицы, а около него обитать морские животные…
Между тем, каждый год более миллиона птиц и сотни тысяч морских млекопитающих умирают от отравления, путая пластик с едой, сообщает «Гринпис». Чайки проглатывают крышки и кольца от бутылок, черепахи засасывают полиэтиленовые пакеты, принимая их за медуз. А семь лет назад на берегу Нормандии во Франции был найден мёртвый кит-полосатик с 224 килограммами пластиковых мешков в желудке [7]. По приблизительным оценкам, в Тихом океане на сегодняшний день находится около 100 млн. тонн пластика, 80 % которого попадает в океан с берегов.
Химики из Японии обнаружили, что пластик, который традиционно считается достаточно устойчивым загрязнителем окружающей среды, способен быстро разлагаться в океане [6]. В рамках исследования учёные подвергали пластиковые образцы воздействию условий, которые присутствуют в океане.
В частности, это были частые смены температуры и воздействие воды. В результате им удалось установить, что, например, полистирол начинает разлагаться уже примерно через год.
Кроме этого исследователям удалось определить, что при разложении пластика в воду выделяется большое количество вредных веществ. Некоторые из них могут приводить к появлению рака. До настоящего времени считалось, что пластик представляет только "механическую опасность", — в океане он пребывает в состоянии взвеси мелких частиц, попадающих в организм рыб и механически повреждающих их внутренние органы.
Для оценок процессов загрязнения водоёмов плавающим мусором необходимо знать его концентрацию в них как функцию времени. Такие натурные и расчетные работы проводятся в исследовательских лабораториях. Расчётные методы используют уравнения материального баланса мусорных экскретов. Предполагается, что мусор водоёмов пополняется за счёт его втекания с водами рек и за счёт выбросов с кораблей, летательных аппаратов, промышленных и сельскохозяйственных объектов на берегах водоёмов [14]. Уменьшается количество мусора за счёт следующих природных воздействий:
— механической деструкции (из-за ветра, волн, течений);
— химической (реакции с газами и жидкостями);
— биологической (разложение микроорганизмами);
— радиационной (фотохимическая деструкция).
Результаты исследований процессов захламления водоёмов фрагментами мусора по времени представлены на графиках Рис. 3.2.1. На графиках показаны поведения концентраций мусора в водоёме при различных его суммарных массовых потоках: уменьшающемся, растущем и стабилизированном.
Из рисунка видно, что снижение объёмной концентрации мусора ниже допустимого уровня Сдоп может быть реализовано при увеличении его деградации за счёт указанных выше механизмов: механической деструкции ветровым потоком, волнами и течениями, химических реакции в газовой или жидкой фазах, биологического разложения микроорганизмами и фотохимической деструкции.
Кривая 1 характерна для относительно небольших водоёмов типа озёр или рек в густонаселённых районах с большим поступлением в них антропогенного мусора. Самоочистки таких водоёмов не достаточно для освобождения от мусора, и он быстро накапливается на поверхности и в толще воды. Многие внутренние водоёмы уже находятся в этой стадии загрязнённости.
Кривая 2 иллюстрирует процессы накопления мусора в больших открытых водоёмах типа морей и океанов. Концентрация мусора в них с некоторого момента стабилизируется под действием воздушных и водных потоков, и дальнейший рост поступления мусора приводит к увеличению области водоёма, занятой мусором. Такая картина наблюдается в океанских «мусороворотах».
Кривая 3 рисунка описывает процесс уменьшения концентрации мусора в очищаемом водоёме — механически или другими способами. В таких водоёмах мусор собирается с поверхности и со дна водоёма, утилизируется или уничтожается.
Необходимо указать на отсутствие в настоящее время представительных измерений как физико-химических, так и биологических характеристик компонентов мусора в пресной и в морской воде. Без знания этих параметров невозможно прогнозировать распределение мусора в толще водоёмов, процессы его деструкции и накопления в толще воды. Периодически проводившиеся локальные заборы проб в поверхностном слое «мусорных пятен» океанов не показали заметного увеличения концентрации пластикового мусора в них [10].
По разным оценкам, около 10 % пластика (от тех 260 миллионов тонн, что производятся ежегодно) в конце попадают в океан. Большинство скапливается в северной части Тихого океана, однако и во всех других океанах мира присутствуют такие же мусорные свалки, уверены защитники природы. Маркус Эриксен (Marcus Eriksen) из исследовательской организации AMRF в своё время изучал соотношение пластиковых отходов в океане с производством пластика промышленными предприятиями. В 1999 году в тихоокеанском "мусоровороте" присутствовало около 0,002 грамма пластика на квадратный метр, в 2005-м это же значение возросло уже до 0,004 [9], то есть возросло в 2 раза. За это время только в Северной Америке количество производимого пластика увеличилось в несколько десятков раз. Отметим, что ежегодно на планете производятся 60 млрд. тонн пластика, лишь 5 % которого попадает на вторичную переработку [70].
В настоящее время для разных областей Мирового океана концентрация пластика оценивается значениями ≈ 10-3÷10-1г/м2, то есть наблюдается некоторое возрастание этой характеристики загрязнённости морских водоёмов.
В 2001 году учёные выяснили, что в определённых областях мусорного пятна концентрация пластика уже тогда достигала миллиона частиц на квадратную милю. На квадратный метр приходилось 3,34 куска пластика средним весом 5,1 миллиграммов (5.1. 10-3г/м2) [68, 69].
Во многих местах загрязнённого региона общая концентрация пластика превышала концентрацию зоопланктона в семь раз. В пробах, взятых на большей глубине, уровень пластиковых отходов оказался значительно ниже (преимущественно это были рыболовные лески). Это подтвердило предыдущие наблюдения, согласно которым большая часть пластикового мусора собирается в верхних водных слоях [68].
Состав такого своеобразного "супа" из мусора весьма разнообразен — это и футбольные мячи, и старые байдарки, и кубики от детских конструкторов Lego. Но, конечно же, большая доля мусора приходится на полиэтиленовые пакеты и пластиковую тару.
Концентрация мелких частиц пластика в верхних слоях «мусорного супа» — одна из самых высоких в Мировом океане. Поэтому данный регион был включён в исследования, посвящённые изучению последствий фотодеградации пластика в поверхностных слоях воды. В отличие от отходов, подверженных биоразложению, пластик под действием света лишь распадается на мелкие частицы, при этом сохраняя полимерную структуру. Распад идет вплоть до молекулярного уровня.Всё более и более мелкие частицы концентрируются в поверхностном слое океана, и в итоге морские организмы, обитающие здесь же, начинают употреблять их в пищу, путая с планктоном. Таким образом, из-за высокой концентрации в воде пластиковые отходы включаются в пищевую цепь.
Исследователи отмечают, что, несмотря на существенно возросшее в последние годы использование пластика, данные их измерений не показывают резкого роста засорённости океана в период с 80-х годов прошлого века по настоящее время. Причина этого, по мнению океанологов, может состоять в том, что пластик, попадающий в океан, концентрируется не в поверхностном слое, в котором производился забор мусора, а где-либо в другом месте толщи воды. В частности мусор может оседать на дно, будучи погребённым илом и колонизированным морскими водорослями и микроорганизмами. По другой версии, часть пластиковых фрагментов может захватываться планктонными организмами или более крупными животными. В этом случае исследователям ещё предстоит оценить уровень отравления фауны океана. Кроме того, не исключено, что пластик разлагается на фрагменты размером меньше миллиметра и в итоге проходит сквозь контрольные измерительные сети.
Согласно данным Программы ООН по окружающей среде (UNEP), около 70 % попавшего в океан мусора тонет. Так что пока неизвестно, какие кучи отходов образуются ещё и на дне океана и доберутся ли биологи до них когда-нибудь [9].
Вообще, подводные свалки, на которых скапливается заметная доля мусорных экскретов, привлекают значительно меньше внимания к себе, чем «сухопутные» или плавучие потому, что обнаруживаются только с использованием подводного снаряжения. Например, по сообщению газеты [8] на самую настоящую подводную свалку наткнулись аквалангисты в Днепре неподалеку от исторического центра Херсона. При обследовании дна Днепра в акватории морского торгового порта грунт оказался буквально усеян всякой всячиной. Наряду с обычным мусором вроде жестянок и пластика водолазам попалась целая россыпь обрезков металлических труб и рельсов, автомобильных покрышек вперемешку с обломками бетонных конструкций и даже… ковш от скрепера, погрузившийся в мягкий ил. Примерно таким же загаженным дно Днепра было и у других населённых пунктов.
По данным экспертов, Тихий океан насыщен не только плавающими, но и упавшими на дно фрагментами металлического и минерального мусора. Очень велика в них доля пластика. В частности во время экспериментального замера из акватории площадью 430 км2 океана было выловлено 37000 частиц, из которых 26,6 % пенополистирола, 22,5 % других набухших пластиков, 8,3 % остатков рыболовных снастей. По данным института Океанологии Аляски, на глубине 1,5 км найдены пластиковые мешки, пакеты и чашки из пенополистирола.
Пластмассы негативно влияют на жизнь водных организмов на морских глубинах и на дне. По данным Токийского университета, из 372 выловленных в Беринговом море рыб у 10 % содержались частицы пластиков, а из 17 морских черепах, выловленных вблизи берегов Японии, у 14 имелись куски пластмасс в пищеварительных органах. Отмечается [9], что аномальные скопления мусора в водных объектах наблюдаются практически во всех водоёмах независимо от их географического места. Мусорные экскреты захламили сушу и водные объекты планеты.3.3. Кризис техногенных мусорных экскретов в околоземном пространстве
Техногенные мусорные экскреты в околоземном космическом пространстве представлены орбитальным техногенным мусором, орбитальными отходами и орбитальными отбросами (смотри схему раздела 2.2.). Эти экскреты в последние годы из-за активной ракетно-космической деятельности человечества захламили ОКП до угрожающих масштабов.
С начала освоения околоземного космического пространства и Космоса прошло менее полувека, и человечество за столь короткий срок произвело десятки тысяч запусков ракет-носителей, разместило в этом пространстве несколько тысяч спутников, космических станций и вспомогательных механизмов и устройств. В ОКП по космическим меркам стало тесно.
Ситуация осложнилась из-за аварий и инцидентов, всё чаще происходящих на орбитах и порождающих «неземной мусор». Ближние и дальние окрестности нашей планеты постепенно превратились в свалку мусорных экскретов. Конечно, если сравнивать с земными свалками, то орбитального мусора, отходов и отбросов ничтожно мало. Их масса на низких околоземных орбитах составляет всего около 5-ти тысяч тонн, но и они представляют нешуточную угрозу для человечества. И угроза эта с каждым годом растёт, а эффективных решений проблемы пока не предложено.
Орбитальные отбросы, представляющие собой выброшенные в ОКП продукты жизнедеятельности космонавтов, из-за относительно малой их доли в общем орбитальном хламе можно исключить из опасных экскретных факторов. Однако орбитальные отходы и орбитальный техногенный мусор создали кризис ракетно-технической деятельности.
Напомним, что представляют собой эти экскреты. Орбитальные отходы — это вышедшие из строя, однако оставшиеся на орбите спутники, космические станции, верхние ступени ракет-носителей, а также крупные неповреждённые фрагменты этих объектов, порождённые авариями в ОКП. На их изготовление и доставку на орбиту истрачены огромные материальные ресурсы, и они даже после потери работоспособности представляют значительную сырьевую ценность.
Орбитальный техногенный мусор включает в себя малоценные или повреждённые в авариях объекты РКТ и их фрагменты, включая разгонные блоки ракет-носителей, сброшенные топливные баки, фрагменты разрушенных космических объектов, а также пружины, болты, гайки, заглушки и тому подобная «мелочь». Например, рабочая перчатка или отвёртка, упущенные астронавтами при ремонте орбитальной космической станции.
После завершения работы КА или после аварии на нём объекты техногенного орбитального мусора самостоятельно «покоряют» космические просторы со скоростями в десятки тысяч километров в час. Эти объекты не имеют никакой потребительской ценности и поэтому считаются мусорными.
По оценкам специалистов, сегодня в околоземном космическом пространстве находится свыше 200-т тысяч объектов размером более одного сантиметра и свыше 330-ти миллионов объектов размером более одного миллиметра. Из-за них любая космическая миссия связана с немалым риском [38]….
Особая опасность орбитальных экскретов связана с тем, что они перемещаются в пространстве с огромными относительными скоростями. В ОКП скорости столкновений объектов ~ 10 ÷15 километров в секунду, это десятки тысяч километров в час. Поэтому даже частица, линейные размеры которой составляют лишь 1 сантиметр, может серьёзно повредить космический аппарат. Такая частица обычно летит со скоростью как минимум в 20 раз быстрее пули.
Обычный спутник (например, спутник связи) используется от пяти до десяти лет, за это время он технологически устаревает, и ему на смену запускают новый. Сегодня абсолютное большинство спутников в ОКП могут быть отнесены к экскретам орбитальных отходов. Этот металлолом способен засорять орбитальное пространство веками, поскольку время его баллистического существования на столь удалённом от Земли расстоянии очень велико. На геостационарной орбите оно теоретически может достигать тысяч или миллионов лет, на низких околоземных орбитах составляет от сотен до нескольких тысяч лет.
По расчётам специалистов, при такой тесноте на геостационарной орбите высока вероятность возникновения так называемого «каскадного эффекта», то есть цепи последовательных столкновений, способных привести не только к разрушению действующих космических аппаратов, но и к образованию огромного количества мелкого мусора. Чтобы предотвратить «перенаселённость» геостационарной орбиты, ООН объявила её «ограниченным природным ресурсом», и теперь места там «выдаются» строго по заявкам.
Для решения этой проблемы на международном уровне было предложено уводить вышедшие из строя спутники на так называемую «орбиту захоронения», расположенную на 200 ÷300 километров выше рабочей орбиты. Конечно, со временем и она окажется заполненной, но на сегодня это единственный выход из создавшегося затруднительного положения.
Проблема очистки орбит от орбитального мусора и отходов в том, что для транспортировки спутника на «орбиту захоронения» нужно дополнительное горючее, а доставка каждого лишнего килограмма груза в ОКП обходится в десятки тысяч долларов. Никто не хочет нести эти дополнительные расходы. Поэтому сегодня лишь треть отслуживших свой срок спутников уводятся на «орбиту захоронения», весь прочий «металлолом» остаётся на геостационарной орбите, угрожая безопасности исправных спутников.
Важная проблема состоит в возможном нарушении физико-химического баланса верхней атмосферы, этой тонко сбалансированной среды. Она характеризуется резким падением плотности с высотой, сложным изменением температуры и химического состава, различными вариациями всех параметров в зависимости от времени суток, широты, уровня солнечной активности. После каждого запуска в результате работы двигателей в верхнюю атмосферу выбрасывается огромное количество химически активных веществ. Водорода и его соединений, например, может быть выброшено столько же, сколько его содержится во всей верхней атмосфере. С активных спутников в атмосферу и в ОКП постоянно инжектируются различные газы. Молекулы истекающих газов из-за большой скорости аппаратов имеют значительную кинетическую энергию, что резко увеличивает их химическую активность.
Атмосфера нашей планеты способствует очищению низких орбит, вызывая медленное торможение объектов и постепенное возвращение их в атмосферу, где они сгорают. Однако из-за техногенных вмешательств в ОКП очищающие свойства атмосферы могут претерпеть заметные изменения, и экологическая безопасность ракетно-космической деятельности не будет обеспечена.
Приведём выдержку из Национального стандарта РФ по экологической безопасности ракетно-космической техники [29 ]: « Экологическая безопасность изделий РКТ должна обеспечиваться их конструкцией, технологией их изготовления и эксплуатацией, использованием наиболее экологически чистых конструкционных и расходных материалов, ракетных топлив, а также применением необходимых организационно-технических мероприятий, направленных на выполнение требований по экологической безопасности изделий РКТ». Заметим, что этот стандарт в настоящее время носит декларативный характер и по разным причинам не может выполняться в полном объёме. Поэтому ракетно-техническая деятельность наносит заметный урон биосфере планеты.
Возможные вредные воздействия факторов изделий РКТ на окружающую среду приведены в Таблице 3.3.1 [29].Таблица 3.3.1
Как отмечалось ранее, одной из главных проблем мировой космонавтики становится загрязнение околоземного пространства фрагментами космических аппаратов. За полвека космической эры на околоземных орбитах скопилось немало мусора — несколько тысяч тонн. Это — "отходы" совокупной космической деятельности человечества.
Количество частиц космического мусора размером от 1 до 10 см, отслеживаемых специалистами, составляет свыше двухсот тысяч, а число частиц меньше 1 см превышает десятки миллионов [37]. Каждая соринка представляет опасность для работы космических аппаратов. Средняя скорость взаимных сближений на низких орбитах Земли — десятки километров в секунду, так что маленькая соринка ударяет с энергией хорошей гранаты. Не однажды летящие с огромной скоростью орбитальные «мусорные кучи» вносили коррективы в график работ космонавтов и запуск космических кораблей.
Сегодня можно выделить основных загрязнителей Космоса. На первом месте — Россия (совместно со странами СНГ), которой принадлежит свыше 5 тысяч аппаратов и различных обломков. США заняли второе место (более 4,5 тысяч объектов). Тройку лидеров замыкает Китай. Прирост космического хлама является самым серьёзным за последние годы. По мнению специалистов, его причиной стали столкновения спутников с фрагментами мусора, после которых остаётся множество обломков.
Графики роста разных компонентов орбитальных мусорных экскретов по литературным данным приведены на рисунке 3.3.1.
Как видно из этого рисунка, начиная с 2005 года, наблюдается резкий рост орбитальных мусорных экскретов за счёт увеличения количества обломков КА.
Космический мусор сконцентрирован в основном на высотах от 850 до 1500 км над поверхностью Земли, но много его и на высотах полёта космических кораблей и Международных космических станций (МКС). Этим объектам из-за опасности столкновения приходится периодически совершать орбитальные маневры уклонения от столкновения с фрагментами орбитального и космического мусора.
Если космический мусор, расположенный на высотах ниже 600 км, в течение нескольких лет входит в атмосферу и сгорает в ней, то мусору, расположенному на высотах 800 км, на это требуются десятилетия, а искусственным объектам на высотах от тысячи километров и выше — сотни лет. И всё это время орбитальный мусор и отходы будут нести в себе потенциальную угрозу столкновений.
Опыт эксплуатации космической техники показал, что из-за мусорной угрозы орбиты кораблей "Спейс Шаттл" и МКС приходится корректировать несколько раз в год. А солнечные батареи спутников и станций подвергаются бомбардировке микрочастицами ежечасно, что приводит к снижению эффективности их работы. Причём регулярная замена солнечных батарей в ОКП весьма накладна, а чаще всего — невозможна.
Особая категория опасности — спутники с ядерными источниками энергии. Сейчас известно 54 таких спутника, из них 31 принадлежит бывшему СССР, 7 — США и практически все они сосредоточены в диапазоне высот 800-1100 км. Предлагается [38] запретить запуск в Космос объектов с ядерными установками. Подобные спутники выводятся на малые, то есть на близкие к Земле, орбиты и используются, как говорят наши учёные, в основном для ведения космической разведки за территорией противника. Дело в том, что на малых высотах невозможно использование солнечных батарей, так как сопротивление атмосферы на этих высотах достаточно большое. Поэтому не остаётся ничего другого, как использовать на спутниках-разведчиках (для потенциального противника — спутниках-шпионах) уран или плутоний.
После прекращения активного существования ядерное топливо спутников теоретически должно «высвечиваться» до безопасного уровня, причём времени жизни пассивных спутников на таких высотах вполне достаточно для этого. Но случаются неконтролируемые входы в атмосферу (например, в 1978 г. «Космос-954» с энергетической ядерной установкой упал в канадской тайге). Кроме того, казавшийся ранее безбрежным, Космос теперь уже не гарантирует от возможных столкновений с техногенным мусором, что может породить многочисленные радиоактивные частицы. Это уже экологическая и экскретологическая проблема в масштабах всей Земли.
Опасно, что неизбежное падение этих ядерных спутников не теряет со временем опасности. Многие из них были запущены десятилетия назад и за это время существенно приблизились к Земле. Периодически орбиты спутников работой двигателей «приподнимают». Однако этот процесс стоит немалых денег, а дешёвых методов утилизации вышедших из строя КА на сегодняшний день не существует.
В 1981 г. ООН приняла рекомендации Комитета по мирному использованию космического пространства об ограничении использования ядерных источников в Космосе. Сейчас новые системы безопасности автоматически отстреливают ненужный реактор. Но опасность радиоактивного заражения верхних слоёв атмосферы при его входе остаётся, а значит и возможен выпад радиоактивных частиц на Землю.
Общепризнано, что самым мощным источником искусственного загрязнения околоземного космического пространства являются самопроизвольные взрывы на орбитах, которые могут порождать сразу несколько сотен крупных фрагментов аварийного изделия и гораздо большее количество мелких. Одна из причин таких взрывов заключается в том, что в топливных баках космических аппаратов после завершения их эксплуатации остаётся небольшое количество топлива. Топливные баки со временем разрушаются, иногда пробиваются какими-либо фрагментами орбитального мусора, активные же компоненты топлива, смешиваясь, взрываются. Примером тому служит взрыв второй ступени ракеты «Дельта», произошедший в 1973 году. А вообще с 1961 года, когда было зафиксировано первое в Космосе разрушение объекта, на орбитах их взорвалось более 130.
В ракетно-космической деятельности возникла, казалось бы, безвыходная кризисная ситуация — чем больше запускается аппаратов в ОКП, тем менее пригодным для использования оно становится [58]. О масштабной загрязнённости Космоса учёные заговорили в 1980-х, когда концентрация мусора на орбитах Земли достигла такой плотности, что баллистикам требовалось напряжённо поработать, чтобы безопасно разместить среди мусора тот или иной спутник. В последнее время ситуация только ухудшилась. По заключению экспертов NASA в своём последнем отчёте, посвященном проблеме космических отходов, за минувшее десятилетие количество мусора на орбите удвоилось.
"Мусора стало так много, что в ближайшем будущем проблемы из-за обилия обломков в околоземном пространстве будут расти как снежный ком", — полагает космонавт и эксперт по экологии, аэрокосмической деятельности Сергей Кричевский. Основания для этого у него весьма серьёзные. Он считает, что…«вся аэрокосмическая деятельность человечества представляет собой сегодня возрастающую экологическую опасность для биосферы нашей планеты. Однако данный вопрос мало кого занимает»[58]…
Действительно, эффективных практических мер по уничтожению техногенного мусора на орбитах выше 600 км (где не сказывается очищающий эффект от торможения об атмосферу) на настоящем уровне технического развития человечества не существует. Можно выделить два способа ограничения нового мусора на околоземном пространстве. Один из них — удаление с орбиты фрагментов ракет-носителей, используя остающееся на их борту топливо. Второй метод — увод космических аппаратов, отслуживших свой срок, на орбиты захоронения. По оценкам специалистов, срок существования таких аппаратов в этих точках орбиты может составлять 200 и более лет.
В любом случае экстренные меры по расчистке космических мусорных завалов необходимо принимать уже сегодня. В противном случае в будущем «ОКП остановится»! Такой сценарий совершенно не приемлем для человечества, и, конечно же, выход из тупика будет найден. Вопрос, — какой ценой?
Наиболее радикальной мерой могло бы быть резкое уменьшение количества запусков космических аппаратов, увеличение сроков их полезной жизни и минимизация отходов ракетно-космической техники. Существуют предложения различных научных и правительственных организаций о сокращении количества деталей, сопутствующих выводу спутника на орбиту, но никаких международных норм, направленных на стабилизацию и последующее снижение уровня засорённости околоземного космоса, пока нет.
Существуют также оценки различных возможностей современных технологий искусственной очистки околоземного космоса от техногенных загрязнений, включая проекты экзотических мусоросборщиков с сетями и без, но эти проекты нерациональны и чрезвычайно дороги. Подробно эта тема обсуждается в нашей книге [16].
Судя по отечественным и зарубежным данным, уже в начале этого века следует ожидать существенного возрастания засорения ближнего Космоса, и тогда возникнет реальная угроза столкновения уже между самими элементами орбитального мусора (см. графики Рис. 3.3.1.).
Наибольшую опасность в космосе представляют объекты с диаметрами от 1 до 10 см. Мало того, что их очень много и они носятся вокруг Земли с огромными скоростями, они ещё недоступны для обнаружения Службами контроля, представляя собой настоящие «айсберги» на орбите. Столкновение с ними при условии большой населённости орбит может привести к катастрофическим последствиям.
Засорение ОКП идет всё более нарастающими темпами, поскольку всё новые и новые страны включаются в космическую деятельность. Эти страны, как правило, делают первые шаги в ОКП и для них проблемы его загрязнения оказываются второстепенными.
Следует отметить, что при запусках первых ИСЗ рассчитывалась вероятность столкновения аппаратов лишь с метеорными телами. В наше время необходимо учитывать и возможность столкновения с фрагментами космических аппаратов. Таким образом, засорение ОКП объектами искусственного происхождения — это реальный интенсивный процесс, изменивший фоновую обстановку в ближнем Космосе.
Жизнь современного человека уже не мыслится без космической деятельности и всего связанного с ней. В первую очередь мировая хозяйственная деятельность и экономика зависят от спутниковой связи, связь и прогноз погоды также ориентированы на получение орбитальной информации. Таким образом, повреждение коммуникационных орбитальных устройств негативно повлияет на каждого человека в мире.
Между тем, угроза глобального космического мусорного коллапса — дело не очень далёкого будущего. Космические экскреты и их быстрый количественный рост уже сегодня угрожают не только действующим и будущим космическим программам, но также и сетям глобальной мобильной связи, спутниковому телевидению, GPS и всему хозяйственному развитию цивилизации.
Количество объектов на орбите Земли постоянно и практически бесконтрольно увеличивается. Сегодня 90 процентов из 13 тысяч орбитальных объектов так называемого орбитального мусора, способны разрушить космический аппарат, нарушить связь и нормальную жизнь многих миллионов людей.
Засорённость околоземного космического пространства техногенными объектами оказалось новым и довольно неожиданным явлением для человечества. Все объекты космического мусора потенциально могут взаимодействовать с активными аппаратами, нанося им ущерб различной тяжести в зависимости от размеров частиц и скоростей сближений с аппаратами. Необходимость мер по уменьшению интенсивности техногенного засорения Космоса становится понятной при рассмотрении возможных сценариев освоения космоса в будущем.
Космонавт С.Кричевский считает [17], что … «надо прекратить тупиковое развитие космонавтики, когда создаются крупные объекты, которые затем превращаются в мусор, сжигаются в атмосфере и тонут в Мировом океане, загрязняя Землю. Давно пора понять, что это самоубийственная практика. Космические объекты, материалы, энергию и средства, потраченные на создание и выведение их на орбиту, надо использовать для самих космических полётов. Будет двойная выгода: экологическая и экономическая. Но для этого необходима адекватная экологическая политика в сфере космической деятельности, а не тупая коммерциализация, которая осуществляется с грубым нарушением экологического законодательства в России, США и во всех других космических державах».
И далее:… «Космическая деятельность на сегодня антиэкологична. Я считаю, что необходимо ввести международный мораторий на сжигание в атмосфере Земли и затопление в Мировом океане крупных космических объектов и их фрагментов, разработать и ввести в действие законодательные акты для внедрения безопасных технологий на полном жизненном цикле существования крупных космических объектов, подобных "Миру" и МКС. …Уверен: ужесточение экологических требований к пилотируемым полетам, экологизация ракетно-космической техники дадут новый мощный импульс развитию космонавтики. А если этого не произойдет, неизбежен технологический, экономический, экологический и социальный тупик на космическом пути».
Жизнь так устроена, что невозможно что-либо сделать, не производя мусорные экскреты, то есть не загружая пространство отходами, отбросами и мусором. Космическая деятельность — не исключение. В обществе появилось осознание того, что количество мусора "в небесах" надо как-то сокращать, и уж во всяком случае, не наращивать. Принимаются меры, чтобы с этой задачей справиться. Ежегодно в рамках ООН проходят обсуждения, касающиеся стратегии исследований ОКП и Космоса, и на каждом присутствует вопрос о мусоре.
Уже действует международное законодательство, ограничивающее количество мусора при запусках ракетной техники. Раньше, чтобы освободить запущенный спутник от крышки, болты просто взрывались специальным зарядом, что порождало множество мелких осколков. Теперь — никаких болтов, — только пружины и замковые устройства. В результате крышка просто откидывается в сторону. Летающих частей должно быть как можно меньше: лучше одна отдельная болванка, чем целый поток обломков [37].
Согласно другому международному договору, вышедший из строя спутник обязательно должен быть "убран" с орбиты. Для этого включается специальный механизм, выполняющий функцию отвода спутника в сторону.
Роскосмос планирует в ближайшее время ввести обязательные безотходные стандарты космических программ. Конечно, это приведёт к удорожанию запусков, но все понимают, что проблему надо решать. В противном случае реализуется мрачный прогноз специалистов — ни один космический аппарат не сможет выйти даже на орбиту Земли.