Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Юный техник, 2003 № 10 - Журнал «Юный техник» на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:


Один из проектов многозеркального телескопа. Цифрами обозначены:

 1 — защитная оболочка; — фрагмент зеркального покрытия; 3 — подложка под зеркалами; — кронштейн подвесной системы зеркала; 5 — сенсор, принимающий изображение со своего фрагмента зеркала и превращающий оптический сигнал в электрический; 6 — кабель для передачи данных; 7 — мотор, приводящий в действие систему управления положением зеркала в пространстве; 8 — блок с аппаратурой управления.

Кто уронил карандаш на Луне?

Еще один вариант получения более детальных изображений Вселенной — заставить работать в одной упряжке сразу несколько инструментов. Такая практика уже довольно часто используется при наблюдении за Вселенной с помощью радиотелескопов. Сейчас удается объединить в одну систему радиотелескопы, расположенные даже на разных континентах. Причем, обработка полученной информации методами радиоинтерферометрии дает такие результаты, как если бы в распоряжении ученых имелся радиотелескоп с антенной размерами в земной шар.

Теперь аналогичный метод ученые хотят применить и в оптическом диапазоне. Поскольку видимый участок электромагнитного спектра имеет волны очень короткой длины, совместить изображения, полученные разными источниками намного труднее, чем радиоволны. Но все же с помощью современной вычислительной техники астрономы надеются справиться с этой задачей. Что это даст? Вот один только пример.

Недавно кембриджские астрономы опубликовали снимки двойной звезды Катеоль — одной из самых ярких в Северном полушарии. Она находится в созвездии Возничего на расстоянии 40 световых лет от Земли. «Двойняшек» разделяет между собой более 1,5 млн. км — расстояние по земным меркам весьма значительное. Однако даже для космического телескопа «Хаббл» или для техасского телескопа это расстояние чересчур мало, чтобы небесный объект можно было наблюдать в виде двух небесных тел.

А вот если, как задумано, в Кембридже удастся построить первый оптический интерферометр, он сделает это без особого труда.

«Мы вполне сможем заметить, если кто-то из астронавтов, гуляя по Луне, вдруг обронит карандаш», — уверяют Джон Болдлин и его коллеги по обсерватории Кембриджского университета в Англии. Специалисты также полагают, что смогут наблюдать поверхность тех планет, что были недавно обнаружены у далеких звезд.

Виртуальная обсерватория

И это еще не все. Примерно год назад большая группа астрономов приступила к созданию инструмента, который они называют лучшим телескопом 8 мире. Проект еще далек от завершения, но недавно ученые решили устроить экспериментальную проверку того, что уже сделано. И к своей радости всего за несколько минут они смогли открыть дюжину новых небесных тел, принадлежащих к семейству коричневых карликов.

Так называются небесные объекты, занимающие нишу между планетами и звездами — они слишком велики для планет, но слишком малы для звезд. Термоядерные реакции в них практически не идут, а поэтому они излучают весьма слабо, почти невидимы, а потому очень трудно обнаруживаемы.

«У меня просто дух захватило от таких возможностей», — сказал по этому поводу астроном Алекс Салуэй из Университета Джонса Хопкинса, один из создателей нового телескопа.

Впрочем, восторг ученого вызвали не коричневые карлики сами по себе — в конце концов, их обнаружены уже сотни. Просто доктор Салуэй и его коллеги полагают, что метод обнаружения новых небесных тел открывает новую эру в астрономии и вообще в науке.

Ведь телескоп, как таковой, здесь вообще не использовался. Открытие было сделано на основании данных так называемой «виртуальной обсерватории». То есть весь гигантский массив данных, собранных с помощью телескопов и искусственных спутников Земли, был помещен в память суперкомпьютера наряду со специальными программами, позволяющими обработать эти данные.

Поскольку в этом случае основным инструментом исследователей становятся компьютеры, а не телескопы, открываются новые возможности для исследований в тех странах, где никогда не было собственных астрономических инструментов. Если данные наблюдений по мере их получения выставлять в Интернет, то в научной работе смогут принять участие ученые со всех уголков мира.

За последние четверть века суммарная разрешающая способность всех телескопов планеты возросла в 3000 раз.

В результате объем наблюдаемых данных ежегодно удваивается. А вот количество людей, анализирующих эту информацию, практически не увеличивается. Поэтому многие данные остаются непроанализированными годами. Теперь положение может заметно измениться. Накопленные данные в 10 различных диапазонах плюс новые компьютерные программы позволяют теперь быстро просматривать массивы накопленных сведений и выявлять в них неизвестные ранее небесные тела и явления.

Публикацию подготовил В.ЧЕТВЕРГОВ

РАЗБЕРЕМСЯ НЕ ТОРОПЯСЬ

Сколько весит килограмм?

С традиционным эталоном массы, хранящемся в Международном бюро мер и весов под Парижем… возникли осложнения. Как свидетельствуют ученые-метрологи, по непонятным причинам он стал легче.

Этот факт взволновал едва ли не весь научный мир: что же это за эталон, который сегодня имеет один вес, а завтра другой! Могут «поплыть» все константы! Под угрозой научные знания, наработанные человечеством за прошедшие века. Эта сенсация, опубликованная в газете «Нью-йорк тайме», тут же облетела весь мир. О «похудевшем» эталоне заговорили многие теле- и радиостанции, печатные и электронные СМИ. Но насколько серьезна проблема?


А был ли эталон?

Представьте, что изготовить эталон килограмма поручено именно вам. С чего начать?

Чтобы задача не походила на сказочную — «Поди туда, не знаю куда…» — даем подсказку: эталоном килограмма в свое время решили считать вес 1 литра воды.

Итак, берем воду — и сразу вопрос: какую? Как известно, масса воды зависит от количества содержащихся в ней солей, изотопов водорода и кислорода и прочих примесей. Что ж, допустим, многократной перегонкой вы получите дистиллированную воду высочайшей чистоты. Но какая-то часть солей в ней все равно останется. Какая именно — удастся узнать лишь с определенным допуском — нет у человечества еще абсолютных методов анализа.

Далее. Плотность воды зависит от температуры. Наиболее тяжелой вода становится при +4 °C. Так что вам нужно выдержать температуру с невероятно высокой точностью, а как эту температуру измерить?

Наконец, нам необходимо с величайшей точностью отмерить этот самый литр. Как? Изготовить строго откалиброванную емкость — тоже проблема. И все же пробуем. Допустим, вы решили сделать ее цилиндрической.

Но объем цилиндра, как известно, равен площади окружности дна, умноженной на высоту.

Площадь окружности определяется через «пи» — величину, равную 3,14142… Далее следует длиннейшая череда знаков, уточняющая эту величину, и просчитать ее можно хоть до бесконечности, но какой смысл, если высоту цилиндра не измерить точно? Эталон метра — пусть даже самая точная в мире линейка, которой вы будете мерить, — тоже изготовлен с определенными допусками…

Добавим к этому, что на плотность воды влияет еще и атмосферное давление, поверхность ее не идеально ровная, и у стенок сосуда образуется мениск, а сила гравитации в различных регионах планеты разная…

В общем, эталон килограмма — платиново-иридиевый цилиндр диаметром 39 мм и такой же высоты, отлитый в Великобритании в 1889 году, — трудно всерьез считать эталоном.

А если при этом учесть, что изменение его веса составило всего 50 микрограммов — вес мельчайшей крупинки соли, — станет ясно, что физическим константам ничего не грозит, да и с наукой ничего не случится.

Это подтверждают и наши специалисты.

Руководитель лаборатории государственного стандарта массы Всероссийского научно-исследовательского института метрологии имени Д.И. Менделеева (ВНИИМа), что в Санкт-Петербурге, Виктор Савельевич Снегов, полагает, что поднявшаяся шумиха не имеет практического значения. «Конечно, хотелось бы для порядка привести эталон массы к современному виду, такому же, например, как эталон метра, — сказал он. — Этим, кстати, специалисты занимаются уже более двух десятков лет, и до сих пор никакой сенсацией тут не пахло».

Эталоны «виртуальные» и материальные

Здесь требуются, пожалуй, кое-какие пояснения. Действительно, килограмм — единственная базовая мера, сохраняющая материальный эталон, принятый еще в XIX веке. За это время эталон метра, например, первоначально базировавшийся на длине земной окружности, и определение секунды, отсчитывавшейся некогда как определенная доля суток, уже приведены к практически более удобным показателям.

Так, метром теперь считается длина пробега светового луча в вакууме за 1/299 792 458 долю секунды. А секундой является промежуток времени, за который атом цезия совершает 9 192 631 770 колебаний. И новый метр, и новая секунда могут быть измерены с исключительной точностью, воспроизведены в любом месте с помощью специально разработанной аппаратуры.

А вот с килограммом получилось так. Отмерив однажды худо-бедно массу литра воды, метрологи тут же заказали английскому ювелиру его металлический аналог. Он и изготовил согласно данным ему инструкциям платиново-иридиевый цилиндр, о котором сказано выше.

Всего было сделано несколько десятков копий килограммового эталона. Они были распределены по одному экземпляру между странами — участницами международного соглашения.

И долгое время никто не видел особой практической надобности в изменении эталона. Хотя теоретически, конечно, хотелось бы иметь также «виртуальный» эталон килограмма, который можно было бы, подобно метру и секунде, воспроизводить с высокой точностью и без особых хлопот. А их пока хватает.

Для контрольного взвешивания того эталона, что хранится в нашей стране, например, пришлось сконструировать и построить специальные весы, которые находятся в строго контролируемом хранилище на фундаменте в 700 т, чтобы исключить по возможности влияние посторонних толчков и вибраций. Причем в помещении выдерживается температура с точностью до 0,01 °C, а процедуру взвешивания ведут дистанционно, с помощью манипуляторов. Человек с массой в 80 кг и температурой 36,6 °C способен серьезно нарушить точность показаний эталонных весов, обычно работающих с допуском плюс-минус 0,002 мг.

Кроме того, с течением времени, как уже говорилось, эталон килограмма то худеет, то полнеет. А стало быть, наблюдается некий непорядок, чего метрологи терпеть не могут. Вот и хотят избавиться от материального эталона, заменив его «виртуальным».

Круглее круглого

Специалисты международной группы исследователей из Германии, Японии, Австралии и Италии хотят сделать воплощением нового эталона килограмма определенное количество атомов специально выбранного химического элемента. Они пытаются изготовить совершенно круглый кристалл из кремния, который будет иметь массу ровно 1 кг.

Идея состоит в том, что, зная, из каких атомов состоит этот кристалл, на каких расстояниях его атомы расположены друг от друга в кристаллической решетке и каков диаметр шара, можно вычислить, сколько атомов в нем заключается. Это число и войдет в новое определение килограмма.

По словам заместителя директора ВНИИМа Ильи Борисовича Нехлюдова, подобная работа велась в СССР еще два десятка лет тому назад. «Наши специалисты провели уточнение числа Авогадро, с помощью которого можно связать между собой количество атомов и массу килограмма, но поняли, что такой эталон вряд ли будет совершеннее традиционного», — сказал он.

Сейчас технология очистки материалов, подсчета атомов продвинулась вперед. Чтобы отделить друг от друга три изотопа кремния, которые могут внести путаницу при изготовлении эталона, зарубежные специалисты обратились за помощью к российским предприятиям, ранее занимавшимся производством ядерного оружия. На них остались центрифуги, использовавшиеся для обогащения урана, отделения его атомов от примесей. Теперь те же установки будут разделять кремниевые изотопы. На российских центрифугах ученые надеются получить изотоп кремния с атомным весом 28 и с чистотой в 99,99 процента.

Первый экспериментальный кристалл уже изготовлен.

В нем кремний еще недостаточно чист. И пока на этой модели отрабатывают технологию изготовления идеального шара, а также методику проверки его формы. Проведены уже 500 тысяч измерений диаметров шара по разным сечениям, и есть уверенность, что это самая точная сфера, когда-либо изготовленная рукой человека.

Силиконовый шар настолько круглый и гладкий, что невооруженным глазом невозможно даже заметить, вращается он или нет. Только если на его поверхность сядет пылинка, становится заметно ее перемещение. Но от пыли шар предохраняет герметичный прозрачный футляр.

«Электрический» килограмм

Другие ученые — из США, Англии, Франции и Швейцарии — полагают, что подсчет атомов в кремниевом кристалле не может дать достаточной для метрологических целей точности и кремниевый эталон не очень удобен для практического использования. Потому они работают над созданием эталона массы, основанном на измерении электрических величин. Иногда его еще называют «ваттным балансом», имея в виду «ватт» — единицу измерения электрической мощности.

Измерять энергию легче, чем считать атомы, считают сторонники ваттного эталона, и ошибка в измерении искомых величин не превысит одной десятитысячной.

Идея ваттного баланса заключается в измерении электромагнитной силы, требуемой для уравновешивания эталонного килограмма. Если напряженность гравитационного поля в месте эксперимента точно известна, массу на весах можно связать с величиной тока строго выверенным коэффициентом.

Впрочем, как для вычисления силы гравитации, так и для определения силы тока тоже требуются точные измерения и вычисления. Приходится, например, учитывать погрешности, вносимые даже Луной. Ведь она дважды в сутки вызывает приливы своим тяготением, а это приводит к изменениям местной силы тяжести.

В общем, хлопот опять-таки немало. Измерения массы электрона, например, проводят в установке величиной с трехэтажный дом.

Так что, какой именно эталон — «ваттный» или кремниевый — победит в соревновании и будет принят за основу нового килограмма, судить пока трудно. Окончательное решение должна принять специальная комиссия. Но эксперты не торопятся и примут свое решение лишь после окончания работ по обоим направлениям. А это, судя по всему, произойдет еще не скоро.

Публикацию подготовил С.НИКОЛАЕВ

Художник Ю. САРАФАНОВ

РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…

Электронные… кружева

Недавно просматривал старые журналы. В «ЮТ» № 10 за 1988 г. нашел статью о том, что петербургские (тогда еще ленинградские) текстильщики разработали уникальную технологию изготовления технических тканей. С помощью обычных жаккардовых машин, на которых плетут кружева или гардины, они начали ткать… электрические схемы, коврики с электронагревом и — вообще фантастика — корпуса ракет.

С тех пор прошло пятнадцать лет. Но о широком распространении этой уникальной технологии почему-то не слышно. Продолжаются ли работы в данном направлении?

Антон САМСОНОВ,

г. Нижний Новгород


Скоро только сказки сказываются. История совершенствования простого карандаша, например, заняла около… 2000 лет. Первые серебряные и свинцовые палочки для письма появились еще в античные времена. А автоматические цанговые карандаши с тоненьким стержнем диаметром в 0,5 мм начали выпускать лишь в последней четверти XX века. Тем не менее, тканые технологии не забыты, они продолжают развиваться и совершенствоваться.

Скажем, недавно наши специалисты сумели соткать полотно из столь тонкой проволоки, что ее даже не видно невооруженным глазом. Специалисты Текстильной академии имени А.Н. Косыгина, работавшие под руководством профессора Льва Кудрявина, виртуозно справились с этой задачей, опять-таки используя стандартные текстильные машины.

В отличие от обычной текстильной нити проволока ведь не очень хорошо гнется, ломается, практически не тянется… Если обрывается обычная нитка, то ткачиха быстренько связывает оборвавшиеся концы. А тут ведь проволока тоньше паутины — ее обрыв и заметить-то трудно. И связать узлом ее весьма затруднительно.

Специалистам пришлось пойти окружным путем. Чтобы проволочку было легче заметить, ее одели в оболочку из специального пластика. Таким образом получилась своеобразная армированная нить, работать с которой гораздо проще.

Такая оболочка защитила проволоку от обрыва, позволила ей легче изгибаться.

А если даже проволочка и сломалась, страховочная оболочка не давала развиться обрыву, и ткань получалась подпорченной в одной лишь точке. Когда же полотно было соткано, пластик удалили, растворив в химических реагентах.

Так получили тканую структуру толщиной в 0,2 мм. Она идеально подходит радиотехникам для изготовления параболических антенн космической связи. Антенны из трикотажа фокусируют до 91 % падающего на них излучения. Кроме того, такие антенны можно компактно складывать в контейнеры, например, при доставке на орбиту. Освобожденные же, они расправляются, словно распускающийся цветочный бутон.

И это по существу лишь начало, обещают специалисты. Дело в том, что в распоряжении современных технологов скоро должны появиться нановолокна, изготовленные из так называемых нанотрубок — микроскопических цилиндрических углеродных молекул — толщиной в человеческий волос и длиной чуть не со взлетную полосу аэродрома. Механические свойства этих волокон просто поразительны. По своей весовой прочности они в 4 раза превосходят паутину и в 20 раз — сталь.

Канаты, скрученные из таких волокон, в самый раз подойдут, например, для космических лифтов (подробности см. в «ЮТ» № 5 за 2003 г.).

А если использовать в качестве основы для трикотажа опять-таки тончайшие металлические или оптоволоконные проводники, то можно, например, соткать рубашку-радиоприемник, а то даже и электрическую схему телевизора или персонального компьютера. Подключив же такую схему к гибкому жидкокристаллическому экрану толщиной в несколько миллиметров — производство таких начато, например, в Японии, — можно получить и изображение.

Впрочем, технологи работают пока не для удовлетворения фантазий. В скором будущем подобные «электрокостюмы» смогут составить основу униформы космонавтов и астронавтов, полярников, спасателей, пехотинцев XXI века. Приемники системы GPS, позволяющие установить свое местоположение с точностью до сантиметров, спутниковый телефон, персональный компьютер, целеуказатель и другое оборудование станут составной частью самого костюма, практически не увеличивая его вес.

Что же касается тканых ракет, о которых упоминает наш читатель, то в настоящее время ведутся эксперименты с так называемой «разумной» обшивкой летательных аппаратов. Такую обшивку, отдельные части внутренней конструкции изготавливают не из металла, а из композитов. А композит — это в простейшем случае слои стеклоткани, пропитанные смолами и спрессованные для придания нужной формы и жесткости. В сердцевину такой ткани несложно запрятать всевозможные микродатчики и схемы их подсоединения к бортовому компьютеру. Обшивка в случае необходимости сама сообщит пилоту или оператору, какова ее температура, велики ли механические напряжения, направлен ли на аппарат луч чужого радара, и другую полезную информацию.

Причем все это опять-таки без дополнительного увеличения массы машины.

Единственное, что пока сдерживает широкое распространение подобных технологий, — их дороговизна. Ведь килограмм современного истребителя и так стоит дороже килограмма золота…

А цена волокон из нанотрубок, которые и пуля не берет, составляет пока 500 долларов за 1 г. Так что даже пуленепробиваемые рубашки получатся дороговатыми. Но это затруднение временное, обещают технологи. С ростом производства цена «разумного трикотажа» с уникальными свойствами будет стремительно падать.

Владимир ЧЕРНОВ

У СОРОКИ НА ХВОСТЕ


БОЛЬШОЙ ВЗРЫВ В ЛАБОРАТОРИИ. Согласно теории в течение нескольких микросекунд после Большого взрыва произошел мощный скачок температуры, при которой материя существовала в виде частиц, часть которых составляли кварки — базовые «кирпичики» мироздания. А соединяли их между собой глюоны — своеобразный «клей». После падения температуры именно глюоны соединили кварки в протоны и нейтроны, из которых образовались ядра, а затем и атомы.



Поделиться книгой:

На главную
Назад