Это очень важное свойство, но не оно нас сейчас интересует. Рентгеновы лучи проходят насквозь не на сто процентов. Если бы они все проходили насквозь, то и для просвечивания не годились бы. Никакого рентгеновского изображения не получалось: экран светился бы равномерно, а фотографическая пластинка равномерно темнела. Но воздух поглощает рентгеновы лучи очень слабо, мягкие ткани — сильнее, кости еще сильнее. Потому-то снимок дает и контуры тела, и очертания органов, и изображение скелета.
Действие на вещество может оказать не та часть лучей, что прошла насквозь, а та, которая в нем поглотилась. Значит, нужно посмотреть, что происходит при поглощении рентгеновых лучей веществом.
Любая волна обладает свойствами частицы, а любая частица — свойствами волны. При поглощении рентгеновых лучей веществом удобнее рассматривать их как частицы (кванты). С этой точки зрения рентгеновы лучи — поток частиц энергии (не имеющих массы покоя), несущихся со скоростью света. Большинство этих частиц свободно пронизывает вещество, пролетая мимо атомов. Но немногие (а чем плотнее вещество, тем, естественно, таких частиц больше) поглощаются атомами.
При поглощении квантов атомами происходит процесс, обратный тому, что мы видели в рентгеновской трубке при рождении лучей. Атом получает большую энергию, которая является лишней, и освобождается от нее. Энергия передается электрону, который отрывается от атома и начинает собственное путешествие в недрах вещества. Такой электрон носит название фотоэлектрона.
Описанный процесс характерен для рентгеновых лучей со сравнительно невысокой энергией квантов. Если же энергия больше, электрон уже не способен принять ее всю, и избыток снова излучается в виде кванта с соответственно меньшей энергией, который ведет себя так же, как и его «родитель»: летит сквозь вещество, пока не поглотится каким-нибудь атомом. Такой электрон, несущий не всю энергию, полученную атомом, а только часть ее, называют комптоновским (по имени английского ученого, сотрудника Резерфорда, изучившего этот процесс), или просто комптон-электрон. Фото- и комптон-электроны объединяют под общим названием вторичных электронов. По своему поведению в веществе они ничем не отличаются.
При взаимодействии рентгеновых квантов с веществом идут и некоторые другие процессы. Но они существенного значения для радиобиологии не представляют. Например, при взаимодействии рентгеновых квантов очень высокой энергии с тяжелыми атомами (которых в живом веществе почти нет) наблюдается презанятнейший процесс рождения пар. Его трудно понять: ничего подобного в нашем макромире мы не наблюдаем, но процесс идет в полном соответствии с законами физики — законом сохранения и с законом эквивалентности энергии и массы. Невесомый квант при торможении порождает две частицы, обладающие массой: электрон и позитрон (позитрон — частица во всем подобная электрону, но имеющая не отрицательный, а положительный заряд). Энергия превратилась в вещество.
Рождением вторичных электронов процесс поглощения энергии не заканчивается, так как они несут значительную энергию и движутся внутри вещества.
Их путь гораздо короче, чем у рентгеновских квантов, но богаче происшествиями. Это и естественно, электрон отягощен массой и движется значительно медленнее. Ему гораздо труднее продираться через скопище атомов. Но дело не только в скорости. Электрон в отличие от кванта заряжен, заряжены и частицы вещества, через которые он путешествует. А электрические заряды энергично взаимодействуют друг с другом.
Итак, вторичный электрон проходит через вещество. При этом он взаимодействует с атомами, встречающимися на его пути. Каждому он отдает часть своей энергии, а отдав, начинает двигаться медленнее и несколько изменяет направление полета. Чем меньше энергия электрона, тем чаще взаимодействия. Израсходовав весь излишек энергии, электрон останавливается, соединившись с каким-нибудь атомом.
Что же происходит с атомами, которым вторичный электрон отдал часть энергии?
Если энергия, отданная вторичным электроном атому, невелика, она идет на то, чтобы поднять один из электронов на более высокую орбиту. Чем выше полученная энергия, тем дальше электрон уходит от ядра (на одну из разрешенных орбит!). Такой атом называется возбужденным. Он гораздо легче вступает в химические реакции, чем не возбужденный.
Свойством возбуждать атомы обладают не только электроны, рождающиеся при облучении вещества рентгеновыми лучами, но и ультрафиолетовые лучи и даже (хотя и в гораздо меньшей степени) видимый свет.
Но, отдавая энергию атомам, электроны не только возбуждают их. Часто энергия, переданная атому, настолько велика, и его электрон так далеко уходит от ядра, что вообще теряет с ним связь. Атом, потеряв электрон, становится заряженным положительно. Образуется, как говорят физики, пара ионов: отрицательный (ушедший электрон) и положительный (атом, лишенный электрона). Ионы обладают еще более высокой химической активностью, чем возбужденные атомы. Процесс отрыва электрона от атома носит название ионизации. (Наконец-то! До сих пор мне приходилось довольно трудно, потому что часто было нужно слово, которого я не мог употреблять, не объяснив, а теперь смогу это делать.)
Ни свет, ни ультрафиолетовые лучи, ни инфракрасные, ни радиоволны не способны вызывать ионизацию. Для этого им не хватает энергии. А лучи высоких энергий могут. Поэтому их называют ионизирующими.
Радиобиология как раз и занимается биологическим действием ионизирующих излучений.
Электрон невозможно увидеть под микроскопом. И никогда не удастся как раз потому, что он не имеет цвета. Поскольку диаметр электрона во много раз меньше длины световой волны, его принципиально невозможно обнаружить оптическими методами.
Но хотя электрон нельзя разглядеть и под микроскопом, следы его мы можем отлично видеть невооруженным глазом. Если камеру заполнить перенасыщенным паром, а затем быстро изменить ее объем, она наполнится туманом. Если же перед этим внутри камеры пробегал электрон, мы увидим туманный след. Частицы тумана осели на ионизированных (электрически заряженных) атомах воздуха. Каждая капелька воды вдоль следа (такие следы называют треками) соответствует ионизированному атому. Как следы человека-невидимки из романа Герберта Уэллса выдавала налипшая к ногам грязь, так и следы электрона можно обнаружить по капелькам тумана.
Этот прибор есть в любой лаборатории, занимающейся изучением заряженных частиц. Он называется камерой Вильсона — по имени ученого, который ее изобрел. На фотографиях, полученных с помощью камеры Вильсона, видно, что след электрона в начале его пути состоит из ясно различимых капелек и кажется совершенно прямым. Дальше вдоль трека капельки располагаются все чаще, путь все больше искривляется, а в конце его мы видим плотный «хвост» из совершенно сливающихся частиц тумана.
Все это понятно. Ведь по мере движения электрон теряет энергию и постепенно замедляется, а чем медленнее он движется, тем с большим числом атомов успевает провзаимодействовать.
Рассматривая снимок более внимательно, мы замечаем, что трек электрона не вполне гладкий: то здесь, то там от него отходят коротенькие веточки. Они образовались в тех местах, где отрицательный ион (такой же электрон) получал достаточно большую энергию, чтобы, в свою очередь, произвести несколько ионизаций. Это так называемые дельта-лучи.
Итак, в камере Вильсона следы электрона обнаруживаются благодаря тому, что он производит ионизации, то есть создает электрический заряд. И, нужно заметить, большинство способов обнаружения и измерения ионизирующих частиц так или иначе используют электрические методы.
Правда, электрические методы не единственная возможность. Излучение можно обнаружить и с помощью фотографической пластинки и по свечению флюоресцирующего экрана. Но в обоих случаях ионизация не обязательна. И свечение экрана и почернение пластинки вызывается и с помощью простых возбуждений. Потому-то и существует обычная фотография!
Много важных работ в первую пору исследования ионизирующих излучений выполнено с помощью простейшего прибора — электроскопа, который при желании ничего не стоит изготовить собственными руками. В сосуде на металлическом стержне висят два тоненьких листочка фольги. Если к стержню прикоснуться заряженным предметом, листочки, получив одноименный заряд, разойдутся. Но если на электроскоп направить поток ионизирующих лучей, листочки вновь спадут. Это потому, что лучи ионизируют окружающий воздух.
Гораздо более тонкий прибор — счетная трубка: она регистрирует каждый проход ионизирующей частицы. Благодаря ионизации газа трубка на один миг начинает проводить ток, что и обнаруживается прибором: стрелка передвигается на одно деление или вспыхивает сигнальная лампочка.
Очень часто важно определить дозу радиации, то есть количество энергии, поглощенной веществом во время облучения. Определение дозы особенно важно при изучении биологического действия излучений, при использовании их в медицине и в сельском хозяйстве. Для измерения дозы рентгеновых лучей служит международная единица рентген. Она определяется как доза, создающая в одном кубическом сантиметре воздуха одну единицу электрического заряда.
И совершенно естественно, что наиболее ходовой метод дозиметрии заключается в измерении заряда, создаваемого в воздухе при облучении. Конечно при том же облучении доза, получаемая живой тканью, будет значительно больше: примерно в тысячу раз, так как ткань примерно в тысячу раз плотнее воздуха. Но, зная это, нетрудно, измерив дозу в воздухе, рассчитать, какая энергия будет поглощена в облучаемом веществе.
Такой пересчет не всегда бывает достаточно точным. Но теперь существует много методов дозиметрии. Есть дозиметры, меряющие дозу в веществе той же плотности, что и живая ткань, даже имеющем тот же атомарный состав. Разработаны и методы непосредственного измерения дозы в облучаемом объекте.
Был ли рад Вильгельм Конрад Рентген своему открытию? Трудно сказать. Во всяком случае, к потоку работ об X-лучах, о поисках других невидимых лучей он относился очень скептически. В какой-то мере он был прав. Большинство сообщений о новых лучах оказывалось ошибочным. Поэтому и к радиоактивности Рентген вначале отнесся весьма холодно и осторожно. Однако работа Беккереля открыла в науке целую эпоху.
Радиоактивности повезло. За ее изучение взялись крупнейшие ученые. Сам Беккерель был первоклассным ученым. Но на первых же страницах истории радиоактивности мы встречаем сразу несколько титанов. Пьер Кюри… Чаще всего говорят о «супругах Кюри» и говорят в связи с открытием радия. Но если бы Пьер вообще не занимался радиоактивностью, имя его навсегда сохранилось бы в истории физики. Сенсационность открытия радия заслонила для широкой публики его блестящие работы по магнетизму и другим проблемам. Мария Склодовская-Кюри… Эрнст Резерфорд…
В такой компании радиоактивность очень быстро стала раскрывать свои тайны. Оказалось, что радиоактивен не только уран, но и торий, а также несколько других элементов, ранее неизвестных химикам.
Вскоре Резерфорд в простых и убедительных опытах показал, что излучение, открытое Беккерелем, неоднородно. При помещении в магнитное поле пучок расщеплялся на три части. Одна из них отклонялась к северному полюсу, другая — к южному, на третью магнит не действовал. Так родились три брата рентгеновых лучей: альфа-, бета- и гамма-лучи. Забегая несколько вперед, скажем, что все интересующие нас лучи представляют собой поток быстро летящих частиц, которые могут быть заряженными или нейтральными, иметь или не иметь массу.
Долгое время к четырем упомянутым типам лучей ничего не добавлялось. Только незадолго до войны обнаружили нейтроны. Но послевоенное развитие ядерной физики прорвало плотину. Были открыты десятки элементарных частиц, созданы могучие ускорители, с помощью которых можно ускорить, по крайней мере в принципе, частицы любого вещества.
После того как мы подробно разобрались в происхождении рентгеновых лучей и их взаимодействии с веществом, обо всех остальных ионизирующих лучах остается сказать лишь несколько слов, так как в их свойствах очень много общего.
Начнем с радиоактивности, с альфа-, бета- и гамма-лучей. Все эти лучи образуются при самопроизвольном превращении одних элементов в другие, и местом их рождения является атомное ядро.
Гамма-лучи по своей физической природе абсолютно ничем не отличаются от уже знакомых нам рентгеновых лучей. Разнятся они лишь названием и происхождением: гамма-лучи возникают при ядерных реакциях, а рентгеновы получают искусственно. Раньше иногда еще говорили, что гамма-лучи обладают большей энергией, чем рентгеновы. Но теперь это было бы неверно. С помощью ускорителей можно получать рентгеновы лучи с большей энергией квантов, чем у гамма-лучей, а при некоторых ядерных реакциях возникают гамма-лучи с довольно низкими энергиями.
Лучи с более высокой энергией (жесткие) лучше проникают в вещество, чем с более низкой (мягкие). Соответственно и средняя энергия вторичных электронов и длина их пробега у жестких лучей оказывается выше. Ионизации вдоль треков таких электронов расположены гораздо реже. А для очень мягких лучей весь трек состоит из весьма короткого, но густого «хвоста».
С бета-лучами еще проще, потому что это поток электронов. А как взаимодействуют электроны с веществом, уже говорилось в связи с рентгеновыми лучами. Кстати, и катодные лучи, работа с которыми привела Рентгена к его открытию, не что иное, как поток электронов. При желании их можно называть искусственными бета-лучами (хотя это и не принято). Конечно, и катодные лучи относятся к семейству ионизирующих и по своему действию на вещество ничем не отличаются от бета-лучей или вторичных электронов, образующихся в веществе при облучении рентгеновыми или гамма-лучами.
Альфа-лучи, так же как и бета-лучи, представляют собой поток заряженных частиц. Следовательно, они также производят ионизацию сами, а не с помощью вторичных частиц, как рентгеновы и гамма-лучи. В отличие от бета-частиц заряжены они не отрицательно, а положительно, и масса их примерно в восемь тысяч раз больше. Альфа-частицы — это заряженные ядра гелия — одного из легких элементов, который образуется при радиоактивном распаде. А раз масса альфа-частиц велика, значит движутся они через вещество медленно. Длина пробега их совсем мала, но зато ионизации вдоль трека расположены так часто, что создают почти сплошной столб.
Как видите, с естественными радиоактивными излучениями разобраться не сложно. Но в нашу атомную эпоху создали еще и искусственную радиоактивность, построили установки, где можно получать новые виды лучей, открыли множество элементарных частиц…
Мы не будем сколько-нибудь подробно разбирать свойства всех возможных ионизирующих излучений, не станем их даже перечислять. И не только потому, что механизм их действия на вещество в общем-то одинаков, но и потому, что более или менее широко в радиобиологии применяются лишь немногие из них. Но о чем нам обязательно нужно рассказать, о нейтронах. Своеобразен не только механизм их взаимодействия с веществом, но и их биологическое действие.
Нейтроны — тоже тяжелые частицы, они лишь в четыре раза легче альфа-частиц, но в отличие от альфа- и бета-частиц, не несут никакого электрического заряда. Следовательно, сами по себе нейтроны ионизацию производить не могут. С другой стороны, из-за отсутствия заряда они очень глубоко проникают внутрь вещества. Для них, как для электромагнитных излучений (рентгеновы и гамма-лучи), тоже не имеющих заряда, теоретически нет никаких преград: любой слой любого вещества может только в большей или меньшей степени ослабить их поток.
Нейтроны различаются по энергии. Но если для других излучений энергия определяла лишь количественные различия (большая длина пути, менее густая ионизация), то в случае нейтронов различия в энергии принципиальны.
Если подбирать сравнения из далекого детства, из тех времен, когда главное удовольствие для мальчишки заключается в том, чтобы стрелять, швырять, попадать, то быстрые нейтроны (нейтроны высоких энергий) можно сравнить с камнями, а медленные — со снежками. Если первые бьют по цели, то вторые чаще всего прилипают к ней.
Быстрые нейтроны, проходя через вещество, время от времени сталкиваются с атомными ядрами. Большинство ядер значительно тяжелее нейтронов. В результате столкновения ядро лишь слегка вздрагивает, а нейтрон отскакивает и летит в другом направлении. Но совершенно особый случай — ядро водорода. Масса его почти такая же, как и у нейтрона. Поэтому, если быстрый нейтрон сталкивается с ядром водорода, то для последнего удар оказывается весьма чувствительным. Оно не может удержаться на месте и отлетает на довольно большое расстояние. Впрочем, лучше говорить не «оно», то есть ядро, а «он» — протон, так как ядро водорода состоит из одного-единственного протона.
Такие протоны, выбиваемые быстрыми нейтронами, называют протонами отдачи. Протон — заряженная частица, и вдоль своего пути он создает ионизации. Густота ионизаций оказывается хотя и не такой большой, как у альфа-частиц, но гораздо более высокой, чем у всех остальных излучений, с которыми мы успели познакомиться.
Медленные нейтроны, которые я попробовал сравнить со снежками, во время своего путешествия в недрах вещества захватываются атомными ядрами, как бы прилипают к ним. В результате, как правило, образуются неустойчивые ядра, что приводит к ядерным реакциям, сопровождаемым излучением. Реакции идут разные, поэтому и излучение оказывается смешанным.
Глава II
Потомок великого Моурави
Где начало того конца, которым оканчивается начало?
В 1858 году в гостинице «Три императора», в Париже на Луврской площади, знаменитый французский писатель Александр Дюма-отец встретился (довольно случайно) с видным русским вельможей графом Кушелевым-Безбородко…
Нет, я не собираюсь писать о Дюма. Это действительно совсем-совсем другая история, которая уже многократно была рассказана и в большей или меньшей мере читателю известна. Хочу только напомнить об исключительном интересе обоих Дюма (отца и сына) к России. Дело не только в несчастной любви сына к графине Нессельроде и в счастливой и продолжительной к Надежде Нарышкиной, а и в том, что плодовитому перу отца принадлежал роман о русских декабристах: «Записки учителя фехтования» (разумеется, запрещенный в России и сделавший Николая I смертельным врагом Дюма).
Дюма-отец мечтал о путешествии по России — стране, в те времена еще совершенно экзотической для иностранцев. И вот — знакомство с русским вельможей, приглашающим в гости. Да и на престоле сидит уже не Николай I, а Александр II, не питающий столь «личных» чувств к Дюма. Короче, визу удается получить, и Дюма-отец отправляется путешествовать по России.
Описывать путешествия я тоже не буду. Не буду даже рассказывать о том, как писатель встретился в Нижнем Новгороде с графом Иваном Александровичем Анненковым, бывшим декабристом, и его очаровательной женой-француженкой, урожденной Полиной Гебль, добровольно поехавшей с мужем в сибирскую ссылку. А эта встреча особенно примечательна: ведь главными героями «Учителя фехтования», написанного 18 годами раньше, были именно супруги Анненковы.
Перенесемся в Закавказье, в Нуху — уездный город Елизаветпольской губернии. Пребывание Дюма в Нухе меньше всего занимает историков литературы, а для нас с вами интересно как раз оно.
Во время путешествия по России Дюма гостил у людей именитых, для которых пригласить к себе прославленного писателя было делом чести. В Нухе Дюма оказался гостем начальника Нухинского края Романа Тархнишвили. В Закавказье Дюма получил полную дозу романтики и гастрономии, которых искал в своем путешествии. Ущелья, джигиты, древние замки, легенды, южные красавицы, шашлыки, сациви, кахетинские вина…
Насыщенная программа трудоемких развлечений не помешала писателю обратить внимание на одиннадцатилетнего Вано — сына его гостеприимного хозяина. А мальчик действительно стоил этого. Он был не только ловок и смел, этот истинный сын гор, но и на редкость смышлен и любознателен. Несмотря на юный возраст, он вполне свободно владел и русским и французским языками.
Вано не только слушал увлекательные истории автора «Трех мушкетеров», который был блестящим рассказчиком, особенно за столом, после нескольких бокалов доброго вина. Вано и сам многое мог рассказать предмету своего обожания.
— Да, вы правы, монсеньер, наша фамилия действительно грузинская — это ясно по окончанию. Но она не простая. В России любят шутить, что если у грузина есть две овцы, то он уже и князь. Но наш род действительно, один из самых знатных. Вам знакомо имя Георгия Саакадзе? Он был великим полководцем и выдающимся государственным деятелем. Мы зовем его «диди-моурави», что значит великий правитель, le grand régent, хотя и по-русски и по-французски это не совсем передает значение слова «моурави». Он жил в конце XVI — начале XVII века и много сил положил на борьбу за независимость и за объединение Грузии. Именно он возглавил народные восстания в Картли и Кахетии против персидских шахов, захотевших поработить наш народ. И я горжусь тем, что мой отец и я — прямые потомки Георгия Саакадзе.
— Но почему же ваша фамилия не Саакадзе? — спрашивает заинтересовавшийся писатель.
— А дело как раз в том, что Саакадзе получил тарханство, то есть освобождение от «тархана» — феодальных пошлин, les impôts féodales. Отсюда и пошло прозвище моих предков Тархан-Моурави, которое потом превратилось в Тархнишвили.
Недолго пробыл французский писатель в Нухе, но след от этой встречи надолго остался в душе юного Вано. Позже он признавался, что именно это краткое знакомство пробудило в нем страсть к путешествиям и жажду знаний.
Отец, видя способности мальчика, отправил его учиться в столицу — в далекий Санкт-Петербург. В 16 лет Вано, которого теперь звали Ваней, получил аттестат зрелости и поступил на физико-математический факультет Санкт-Петербургского университета. Мальчик из далекой Нухи стал ученым и одним из первых занялся серьезным изучением действия радиации на живые организмы.
И кто знает, если бы Дюма-отец не встретился с графом Кушелевым-Безбородко и не оказался в Пухе, может, не пробудилась бы в грузинском мальчике жажда к знаниям и стал бы он офицером или священником и, уж во всяком случае, не одним из героев нашей книги, где теперь ему по праву принадлежит самое достойное место.
Если вы поедете в Ленинград, то обязательно зайдете в Русский музей. Сюда, как и в Эрмитаж, нельзя не зайти. А в Русском музее вы почти наверняка осмотрите картины Репина. В одном из залов рядом с портретами Бородина, Глазунова и Римского-Корсакова висит портрет интересного брюнета с буйной шевелюрой и дремучей бородой. На нем форменный сюртук, рядом — кафедра. Суровые и пытливые глаза смотрят на изумленного посетителя. Кто бы это мог быть? На этикетке надпись. «И. Е. Репин. Портрет И. Р. Тарханова».
Многие из наших современников, привыкших видеть в форменной одежде преимущественно военных, скажут: «Офицер какой-то» (эти слова и я слышал возле портрета, невольно останавливающего многих).
Нет, товарищи, это не офицер, а крупный ученый, действительный член Российской Академии наук Иван Романович Тарханов, семья которого, кстати сказать, была в близкой дружбе с семьей Репина. Илье Ефимовичу позировал не кто иной, как Вано Тархнишвили, которого во время его жизни в Санкт-Петербурге стали называть на русский манер.
Не ищите в серии «Жизнь замечательных людей» томика «Тарханов». Жизнь Ивана Романовича нигде еще не рассказана во всех подробностях. Он был довольно известен при жизни. Многие писали о нем вскоре после смерти, а потом все реже и реже, да и совсем перестали. Как-то его имя вспомнили в связи с изданием писем Репина.
В 40-х годах нашего века начала бурно развиваться радиобиология. Это был как раз тот период, когда шла борьба с «космополитизмом» и «низкопоклонничеством», когда всюду искали русские приоритеты. Тогда снова появилось имя Тарханова как основоположника отечественной и мировой радиобиологии.
Я горжусь успехами русской науки (благо есть чем гордиться), и меня возмущает, когда иностранные коллеги замалчивают важные работы советских ученых — либо умышленно, либо по незнанию русского языка. Но когда старые добрые и чисто русские «французские» булки вдруг переименовывают в городские («горбулки»), то, простите, мне смешно и обидно. Тем более что другие хлебобулочные изделия, называвшиеся истинно по-французски — батоны, так батонами и остались.
Мне как-то попалась в руки немецкая поваренная книга. Я был поражен, когда в перечне изделий из теста увидел: Bliny, Blintschiki, Oladji, Watruschki, Prianiki, Pliuschki, Pontschiki, Kowrischki, Chworost, Kulebiaka, Rasstegai, Pelmieni, Warieniki и т. д. и т. п. Почти подряд я читал русские слова, написанные на немецкий манер! А раз мы, как видно, стоим на первом месте по «тестяному», стоило ли бороться с французскими булками!
Точно так же и в науке. Мы достаточно богаты, и нет нужды из соображений ложной национальной гордости что-то или кого-то притягивать за волосы.
Каюсь, когда мне стали попадаться ссылки на радиобиологические работы Тарханова, о которых я ничего не слышал и которые нигде раньше не цитировались, я решил, что это именно выдуманный, искусственный приоритет. Но когда значительно позже я познакомился с самими работами, больше узнал о жизни и деятельности Тарханова, мне пришлось изменить свое мнение.
Впрочем, судите сами: выходец из глухой провинции, да к тому же «инородец» (как в те времена шовинисты называли нерусских жителей Российской империи), в 46 лет становится действительным членом Академии наук — для этого, конечно, нужно иметь вполне определенные научные заслуги. Но дело даже не в этом. Достаточно познакомиться с научными трудами Тарханова (что, однако, не так легко — статьи Тарханова напечатаны давно, в редких, подчас малоизвестных изданиях), чтобы убедиться: он действительно был выдающимся ученым. А что теперь снова приходится «открывать» Тарханова, не удивительно — такие случаи достаточно часты.