Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Занимательно об энергетике - Юрий Георгиевич Чирков на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Но, кроме эстетики, тут кроется и физика: красители — мощные приемники солнечной радиации, именно они способны превращать ее в иные формы. А. Теренин, всю жизнь изучавший взаимодействие света и вещества, не мог не увлечься красителями и пигментами. Эта тема на долгие годы становится одной из ведущих на его фотохимических семинарах.

И вот в ходе этой работы флёр таинственности начал спадать с хлорофилла. А что, если хлорофилл тоже всего лишь типичный полупроводник? И действует в зеленом листе по тем же прописям, что и его технические собратья? Но как это доказать?

Дело, начатое А. Терениным, было продолжено уже в Москве, в Институте биохимии Академии наук СССР, его сотрудником, ныне академиком, А. Красновским.

Надо было создать простейшие модели тех сложных явлений, которые идут в живом листе, что и сделали советские ученые. И внешне эксперимент выглядел весьма эффектно. Если зеленый лист опустить в спирт, то хлорофилл в нем растворяется, а лист, лишившись хлорофилла, становится бесцветным. Зеленый раствор хлорофилла и в пробирке, как это ни удивительно, служил для ученых моделью живого листа.

А теперь главное. (Научные тонкости и подробности мы опускаем.) Поставим пробирку на окно, на солнце — она вскоре начинает краснеть. Минут через десять жидкость становится совсем красной.

Убрали пробирку снова в темноту — и о чудеса! Красный цвет раствора постепенно вновь сменяется зеленым...

В этих превращениях заключен глубокий смысл. А. Теренин и А. Красновский показали: хлорофилл — всего лишь полупроводник. Это тот «насос», который в зеленом листе, повинуясь энергии солнечных лучей, «перекачивает» электроны.

В сказке про глупых жителей одного города говорится, будто они сначала построили дом без окон, а потом долго и упорно таскали в него мешками солнечный свет.

Абсурд, нелепица! Но хлорофилл и другие пигменты как раз и являются такими «световыми мешками», или лучше «антеннами», способными улавливать излучение солнца и преобразовывать его в химическую энергию продуктов фотосинтеза.

Квант света образует в этой молекуле пару: электрон — дырка. В листе по «электронно-транспортной цеги», словно по медной проволочке, течет микроток. И структура молекулы хлорофилла, обладающей очень развитой системой сопряженных связей, прекрасно приспособлена для этого дела. Поэтому-то для возбуждения электронов молекулы хлорофилла достаточно квантов красного света с довольно скромным запасом энергии.

Другая, не менее замечательная особенность хлорофилла — способность легко отдавать окислителям электрон, возбужденный в результате поглощения светового кванта. Благодаря этой особенности хлорофилл и восстанавливает — конечно, не напрямую, а через множество промежуточных этапов — углекислый газ воздуха до углеводов.

Вот эти замечательные свойства (один из центральных процессов, составляющих суть фотосинтеза) и удалось искусственно воспроизвести А. Теренину и А. Красновскому.

То был крупный успех советской науки. Не случайно работа ученых демонстрировалась в 1958 году в Брюсселе на Всемирной выставке.

Вот наконец мы в состоянии оценить слова, сказанные когда-то Ф. Жолио-Кюри. Энергетика и фотосинтез, оказывается, они не столь уж далеки друг от друга.

Ведь если хлорофилл — полупроводник, то появляется надежда создать особые «зеленые фотоэлементы», в которых под действием света будет образовываться и совершать работу электрический ток.

Природе можно бросить вызов

Ф. Жолио-Кюри скончался в 1958 году. А в 1959-м американские исследователи В. Арнольд и Е. Маклей впервые предложили и сконструировали батарею, содержащую пигменты растений — хлорофилл и каротин. Это устройство уже умело преобразовывать свет в электричество. Правда, оно было еще очень и очень несовершенным.

Работы в этом направлении велись и в СССР в Институте химической физики Академии наук СССР под руководством доктора физико-математических наук Г. Комиссарова.

В 1968 году эта группа построила «фотовольтаическую батарею». Это была модель зеленого листа, способная осуществлять трансформацию световой энергии в электрическую. Ее параметры год от года улучшались. Сейчас КПД уже достиг нескольких процентов. (Любопытно, что в соответствии с заветом Ф. Жо-лио-Кюри советские исследователи вместо хлорофилла использовали его аналог — фталоцианин. Молекулы эти менее капризны, чем хлорофилл, более доступны и лучше вписываются в технику, совместимы с ней.)

В 1961 году американскому химику М. Кальвину была присуждена Нобелевская премия за изучение так называемых «темновых процессов»: в них в зеленом листе из углекислоты воздуха образуются углеводы. (Этот процесс называют «циклом Кальвина».)

А теперь Кальвин предложил использовать хлорофилл (идея Ф. Жолио-Кюри!) непосредственно в технике.

Кальвин и его сотрудники обнаружили, что хлорофилл способен под действием света отдавать свои электроны некоторым полупроводникам, находящимся с ним в контакте.

Использовав в качестве полупроводника окись цинка, ученые создали хлорофилловый фотоэлемент, в котором на свету возникает ток плотностью около 0,1 микроампера на квадратный сантиметр поверхности элемента. Не много! Да и хлорофилл уже через несколько минут «выдыхался» — десенсибилизировался: терял способность отдавать электроны.

Правда, и в растении случается такое, но в листе на смену «сгоревшим» молекулам хлорофилла синтезируются новые.

Тогда, чтобы продлить действие зеленого фотоэлемента, ученые добавили в электролит (вода с примесью солей, в которую был погружен хлорофилл) еще и дополнительный источник электронов — гидрохинон.

Считается, что в такой системе хлорофилл действует как «электронный насос»: он отнимает электроны у гидрохинона, переводит их на более высокий энергетический уровень и отдает полупроводнику.

По оценкам Кальвина, такой вариант «зеленою фотоэлемента» площадью в 10 квадратных метров мог бы уже дать мощность около киловатта.

Ученые полагают: лет через 20—30 может стать реальностью промышленное производство хлорофилла и стеклянных листьев. И те, кто ходит сейчас в школу, возможно, пойдут работать на фабрики, производящие дешевые (раз в сто дешевле, чем нынешние кремниевые батареи) зеленые фотоэлементы.

Подобный прогноз может показаться слишком смелым. Однако не следует забывать, что синтезировать искусственно хлорофилл мы уже умеем.

Давайте помечтаем.

Земной шар опоясан желтой лентой пустынь. Чтобы окинуть взглядом этот пояс, не обязательно быть космонавтом. Достаточно крутануть рукой миниатюрную модель нашей планеты — школьный глобус. Лента пустынь вдоль экватора волнует воображение не только школьников. Она давно уже приковала внимание ученых-гелиотехников, энергетиков.

Как мы представляем себе, скажем, Аравийскую пустыню — безжизненное, выжженное солнцем пространство, покрытое бескрайними песчаными волнами. Редко-редко встретишь здесь закутанных в белоснежный бурнус арабов. Это бедняки. Они пасут скот, ловят рыбу и ныряют в прибрежных водах за жемчугом.

Нефтяной бум смазал идиллическую картинку. Жизнь этих краев резко изменилась. Вот, к примеру, маленький Кувейт, расположенный на западном побережье Персидского залива. Миллион триста тысяч жителей всего, а добывается тут 100 миллионов тонн нефти в год. Каждая тонна стоит 150 долларов — поэтому на жителя Кувейта приходится что-то около 10, а то и 15 тысяч долларов в год.

Но ничто не вечно под луной! Несколько лет назад по Кувейту разнесся слух, будто бы запасы нефти истощатся через 15 лет. Началась паника: кому охота поменять службу в банке на занятие полуголого ныряльщика за жемчугом!

Но, быть может, главное богатство Кувейта и других, расположенных в пустынных областях стран не быстро исчезающие нефть и газ, а неисчерпаемое, вечное солнце? Его горячие, щедрые лучи?

Конечно, при нынешнем уровне техники, чтобы перекрыть пустынные земли гигантской сетью коллекторов солнечного света, потребуется столько металла, сколько не смогут дать все известные ныне месторождения. А сколько потребуется дорогостоящего монокристаллического кремния!

Другое дело, если техника будет опираться на зеленые фотоэлементы, обходящиеся без металлов и полупроводников, действующие по рецептам живой природы, построенные из дешевой органики' и недефицитных материалов.

Не станут ли тогда пустыни и расположенные на них страны самыми богатыми областями Земли? И не сбудется ли тогда пророчество советского академика А. Иоффе, который некогда говорил и писал:

«Солнце, в течение тысячелетий бывшее проклятием пустыни, сделается ее благословением».

ГЛАВА 4

ДИНОЗАВРЫ ЭНЕРГЕТИКИ?

Скажи, как ты используешь топливо, и я скажу в каком веке ты живешь!

Примерно сто миллионов лет назад, в мезозойскую эру, лик Земли был иным.

В это первое великое сплошное лето жизни Земля была покрыта роскошной, сочной растительностью тропиков. Среди оранжерейной флоры бродили сказочные звери. Самыми удивительными среди них были динозавры (буквально: «удивительные, необыкновенные, ужасные ящеры»; название 140 лет назад предложил знаменитый английский палеонтолог Р. Оуэн) — одна из самых разнообразных и загадочных групп рептилий, или пресмыкающихся.

Внешний облик динозавров подчас кажется фантастическим — настолько они непохожи на известных нам животных. Но, пожалуй, больше всего поражает их громадный рост.

То были гиганты с телом длиной до 25 метров и более. Подобная махина могла бы запросто перегородить улицу Горького в Москве или, скажем, Калининский проспект. Динозавр мог свободно заглянуть в окно 5-го этажа...

Развитие гигантизма у хищных динозавров («ящер-разбойник» тиранозавр и другие), по-видимому, было связано с параллельным развитием гигантизма и у растительноядных динозавров — этой пищи хищников.

Для хищников крупный размер означал возможность большой добычи так же, как для растительноядных животных крупный размер был одной из форм защиты от хищников.

Так и началось (а пищи в ту пору был вдоволь!) это соревнование в росте, хотя, конечно, всегда был какой-то предел, определявшийся комплексом биохимических и физиологических закономерностей.

Но вот климат начал меняться, суроветь. И к началу кайнозойской эры (тому 70 миллионов лет, в этой эре живем и мы, люди, уже один миллион лет) произошло «великое вымирание» динозавров: они исчезли. Причины вымирания и сейчас до конца не ясны. Динозавров, видимо, убил холод, но почему им не удалось приспособиться к новым условиям? Почему, скажем, уцелели крокодилы, жившие одновременно и рядом с динозаврами?

На это есть особая теория ортогенеза, или прямолинейной эволюции: эволюция видов по предопределенному прямому пути, направление которой не зависит от естественного отбора.

Согласно этой теории динозавры были тупиком в эволюции, поскольку эволюционный механизм, приводивший к выживанию наиболее крупных животных, вместе с тем закрывал путь для их дальнейшего совершенствования.

Читатель вправе спросить: а какое все это имеет отношение к энергетике? Где они — динозавры энергетики? Что это за странная аналогия?..

Вопросы справедливые — на них нужно отвечать.

Энергетическое похолодание

Вряд ли можно утверждать, что еще вчера на планете царил «энергетический мезозой», но сравнительно недавно имелась масса неиспользованных возможностей и ресурсов, казалось, неисчерпаемых для развития общества.

Экологических и прочих ограничений для научно-технического прогресса было немного. Во всяком случае, эти проблемы не волновали человечество. И, как следствие, энергетика землян была энергетикой расточительной. Потребление энергии неуклонно росло, но геологи открывали все новые и новые кладовые нефти и природного газа. Но аппетит человечества рос стремительно, и сегодня энергетический рай грозит стать энергетическим адом. И теперь за рубежом нередко высказываются (чаще всего спекулятивные и антинаучные) пророчества о наступлении Энергетического Судного Дня человечества. Во всяком случае, получает все большее распространение концепция так называемого «нулевого роста» в производстве энергии на душу населения.

Многие специалисты (в том числе и советские) считают, что рост потребления энергоресурсов уже в ближайшем будущем будет идти медленнее, чем в последние десятилетия, а затем, вероятно в конце XXI века, постепенное замедление роста приведет к практически постоянному уровню мирового потребления энергоресурсов. Еще недавно идею нулевого роста встречали, как некогда приверженцы системы Птолемея встретили теорию Коперника. «Традиционалисты» объявили подобные мысли необоснованными, а высказывающих их ученых — некомпетентными.

Однако число сторонников нового взгляда на развитие энергетики растет. В августе 1979 года школа бизнеса Гарвардского университета, далеко не чуждая интересам деловых кругов США, дала «благословение» экономии энергии.

Свой отчет, озаглавленный «Будущее энергетики», авторы заключили следующими слешами: «Соединенные Штаты способны потреблять на 30—40 процентов меньше энергии, чем сейчас, без каких-либо неблагоприятных последствий для образа жизни американцев. Наоборот, будут сэкономлены миллиарды долларов, меньше бремени ляжет на окружающую среду, воздух будет меньше загрязняться, уменьшится растущая и тревожащая зависимость от нефти ОПЕК, и общество меньше будет страдать от внутреннего и внешнего напряжения».И все же удивительно! Еще недавно энергетики утверждали: пусть нефти мало, да, ее хватит лишь на десятки лет, но угля — уже на сотни, а энергии атомного ядра — на тысячелетия. Природные запасы энергии практически бесконечны. Так в чем же дело? Нет ли здесь противоречия? Оказывается, нет. Оказывается, природные запасы энергии и энергетические ресурсы — это не одно и то же. Тут в дело вступают экономические соображения. Они-то и ограничивают энергетические ресурсы Прежде всего растут затраты на поиск и разработку энергоресурсов и материалов, на преобразование, транспорт и использование энергии. Не последнюю роль играют тут экологические ограничения. Важно принять в расчет и то, что сроки создания и освоения новых, как правило, более сложных и дорогостоящих энергетических технологий и отраслей велики — они исчисляются десятками лет. Огромны также затраты на доведение новых энергетических технологий до степени технической и экономической зрелости. И получается: возможности человека далеко не безграничны, как это может показаться с первого взгляда. Известна, говорят некоторые специалисты, экономическая закономерность: чем выше комфорт, тем дороже он обходится. Та же связь в производстве и потреблении электроэнергии: за потребление весьма удобного и исключительно комфортного вида энергии мы платим при его производстве довольно дорогой и всевозрастающей эколого-экономической ценой.

Проблемы экономии энергии обсуждают члены многих американских обществ. «Союз встревоженных ученых» — организация, объединяющая поборников охраны окружающей среды, «Друзья Земли» — тут изучается экономика энергоресуров, и так далее.

Они говорят: «Экономия обходится вовсе не дешево — просто это дешевле, чем не экономить». И еще: «Экономить куда дешевле, чем строить новые электростанции».

Ну' что ж: на протяжении своей истории человечество множество раз меняло взгляды и привычки, в зависимости от наличия или недостатка того или иного природного ресурса.

Видимо, в будущем нам придется менять свою энергопотребительскую психологию и привычки. Кто знает, может быть, скоро модными станут, как в старину, вечера при стеариновых свечах...

Пока же, если по-прежнему говорить о США, американцы пересаживаются в малолитражные автомобили (они экономнее тратят бензин), улучшают теплоизоляцию в домах, рационализируют (с точки зрения энергетики) технологические процессы и предусматривают в проектах зданий средства для отражения солнечных лучей летом и сбора солнечной энергии зимой. Полагают, что новые небоскребы, которые там сейчас строят, смогут обеспечить комфорт не хуже, чем здания, проектировавшиеся в 60-х годах, но — и это главное! — при вдвое меньших затратах энергии. Среди прочих нововведений в них предусмотрено вторичное использование отработанного тепла компьютеров, ламп освещения и даже тел обитателей! Этих бесценных калорий, которыми когда-то так пренебрегали, хотя бойлеры в котельных не уставали пожирать топливо для их возмещения.

И при социализме

Цена нефти на мировом рынке за последние годы многократно возросла. В богатейших капиталистических странах мира три миллиона человек лишились работы только по причинам энергетического кризиса.

Но мы, люди иного социального строя, не платим дороже за электроэнергию, отопление или за билет в автобусе. И никого это не удивляет. Мы родились при социализме и не можем себе представить, чтобы нас не защитили от любых ударов такого рода.

У нас нет кризиса. Но это не означает, что энергию можно беззаботно транжирить. Тут следует напомнить, чего стоит добыча каждой тонны нефти, каждого кубометра газа там, среди болот, тайги и тундры, на мерзлоте.

Освоение Западной Сибири зовется подвигом не зря. Добывать нефть на тюменской земле — совсем не то, что в Баку и Поволжье. Еще не раз будут писать о подвигах тех, кто добывает нам нефть, уголь и газ. Но никому не придет в голову сочинить оду экономии электроэнергии или, скажем, написать об этом рассказ.

А ведь простое рассуждение показывает: гораздо выгоднее уменьшить расход топлива на тонну, чем на ту же тонну увеличивать ее добычу. Хотя бы потому, что эту тонну невозобновимого природного горючего мы сохраним!

Так что тема экономии энергии вполне достойна пера поэта или прозаика. Нет героизма? Борьбы? Преодоления трудностей? А вот и ошибка: помех и трудностей тут сколько угодно.

Экономия энергии дается гораздо труднее, чем рост энергодобычи. Ведь нужно «перековать» психологию потребительства — а потребители все! (Не то, что добыча энергии — этим делом занимаются немногие.)

Люди никогда не отличались единством взглядов, но в вопросах экономии энергии требуется единодушие. Такое же, как у пассажиров, едущих на одном корабле. Как будет решена проблема экономии энергии, как удастся изменить людскую психологию, сделать экономность непреходящей модой, привить к этому делу вкус. — сказать сейчас трудно. А пока?

Пока в социалистических странах принимаются простые и конкретные меры.

По расчетам ученых, превышение установленной в помещении температуры на 1 градус увеличивает расход энергии на отопление на 3—5 процентов. Поэтому постановлением Совета Министров ГДР введены нормы отопления для зданий разного назначения. Для квартир норма — 19—21 градус. Ночью подача тепла в дома уменьшается.

Другая возможность экономии — сдвигать, сообразуясь с сезоном, ритм жизни людей (время работы, отдыха).

В Чехословакии обычное время начала утренней смены — 6—7 часов, учреждения работают с 7—8-ми. В 6—7 открываются продовольственные магазины.

В ГДР с 1980 года введено «летнее время»: с 6 апреля по 28 сентября все часы переводятся на час вперед. Это ведь и здоровее: пользоваться солнечным светом вместо электрического. А экономия немалая. Четыре таких электростанции, какой станет по проекту Саяно-Шушенская, надо пустить на полную мощность, чтобы в наших квартирах зажглись лампочки по скромной норме — 100 ватт на человека.

В нашей стране, с ее громадными размерами, одним простым переводом часов по сезону не обойдешься. Ведь когда в Москве полночь, во Владивостоке начинается рабочий день.

Более действенная мера — собрать по возможности всю энергию страны, так сказать, в один кулак и, умело маневрируя ею, бороться за экономию.

Такое централизованное энергоснабжение осуществляет Единая энергосистема страны (ЕЭС СССР). Это крупнейшее в мире энергообъединение: оно простирается на территории 7 часовых поясов, охватывая более 700 электростанций общей мощностью свыше 210 миллионов киловатт.

Более того: в ЕЭС СССР на параллельную работу соединены Монголия, а также объединенные энергосистемы Болгарии, Венгрии, ГДР, Польши, Румынии и Чехословакии. Это первый этап образования гигантского энергообъединения социалистических стран общей мощностью около 300 миллионов киловатт.

Кроме того, из ЕЭС СССР электроэнергию получают Финляндия, Норвегия и Турция.

Хозяйство большое и сложное. Организовать такую работу непросто. Но и результат ощутим: уже сегодня ЕЭС СССР выигрывает до 12 миллионов киловатт энергетических мощностей лишь от использования ее маневренных возможностей. Распределение мощного потока энергии, контроль за ним осуществляются из одного пункта — центрального диспетчерского управления (ЦДУ). В ЦДУ всегда знают, какая из телевизионных программ самая популярная. Когда разом включаются все телевизоры нашей страны, надо включить не менее двух Братских ГЭС...

Конечно, в странах СЭВ проводятся и более простые средства экономии энергии. Вот некоторые из них. В Польше для экономии бензина скорость движения автотранспорта на дорогах ограничена. То же сделано и в ГДР. По оценкам, в масштабах ГДР это даст экономию 70 миллионов литров горючего в год. В Польше, кроме того, ограничена и мощность двигателей легковых автомобилей.

Во всех европейских социалистических странах не раз за последние годы повышались розничные цены на бензин.

В Болгарии цена теперь 1 лев за литр — это примерно 1 рубль 10 копеек. Думаете, частники покупают «левый» бензин у шоферов государственных машин? Нет. Бензин для общественных машин подкрашивают. И если автоинспекция обнаружит подкрашенный бензин в бензобаке личной машины, ее тут же конфискуют. А шофера, пойманного на продаже государственного бензина, увольняют с потерей права вождения машины на три года.

В Болгарии же введены ограничения на движение слабо загруженных автомашин и автобусов, легковых служебных машин. Запрещено использование персональных служебных машин в нерабочие дни, кроме поездок для служебных целей с разрешения руководителя.

В Венгрии с января 1981 года в панельных зданиях будет использоваться более толстый слой теплоизоляционного материала. Каждые 10 кубометров такого материала экономят энергию, эквивалентную 1 тонне нефти в год.

Список энергонововведений, экономящих калории и топливо, можно было бы продолжить. (Штрафы за растрату энергии — разбавление бензина водой: бензин, оказывается, в присутствии воды сгорает лучше...) Но полезнее осознать и запомнить простую истину.

Время — это не только деньги, как мы привыкли повторять Ибо в этой пословице ценность времени выражена все-таки недостаточно хлестко. Время — это энергия. Как показывает последний опыт человечества, энергию, как и время, часто не купишь ни за какие деньги.

Телега с восьмицилиндровым двигателем

До сих пор мы рассуждали об экономии уже готовой энергии. Ну а ее получение — насколько эффективны подобные процессы? Насколько рационально используются еще остающиеся в земных закромах органические топлива? Увы, картина тут не очень отрадная.

Костяк современной нашей энергетики — тепловые паротурбинные электростанции — ТЭС. Они работают на угле, нефти, газе, мазуте. Система превращения топлива в электрическую энергию, на которой основаны ТЭС, многоступенчата. Тепло сгорающего топлива нагревает воду в котле, вода превращается в пар высокого давления, пар приводит в движение огромную турбину, которая, в свою очередь, передает вращение на ротор электрического генератора, находящегося в сильном магнитном поле. От этого движения в медных обмотках ротора и возникает электрический ток.

Громоздко, многоступенчато, а значит, и не без потерь. Но современные электростанции создавались во времена, когда считалось, что запасы топлива на Земле практически неисчерпаемы. Не имело особого значения, сколько его будет потрачено, лишь бы получить желаемое — электрический ток. Что и было достигнуто с высокой для тогдашнего положения степенью совершенства.

Sed alia tempora! (Иные времена!) Сейчас, в эпоху энергетического похолодания, когда калории стали считать, должны измениться и требования к ТЭС и другим поставщикам энергии. Эффективность превращения энергии должна поневоле стать в энергетике проблемой номер один.

Чем выше коэффициент полезного действия (КПД) энергетической установки — отношение полученной электроэнергии к теплотворной способности топлива (тому запасу энергии, которое в нем заключено), — тем меньше отходов, меньше загрязняется окружающая среда, меньше расход топлива.

Но ТЭС, говорят нам, доживают свой век. Уже и замена готова — атомные электростанции. У них, видно, все будет по-иному. И вновь увы! Промышленное освоение ядерной энергетики не привело и вряд ли приведет к сколько-нибудь кардинальному снижению расходов на производство электроэнергии. Цены энергии тепловой (ТЭС) и ядерной (АЭС) оказались примерно одинаковы.



Поделиться книгой:

На главную
Назад