Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Юный техник, 2004 № 06 - Журнал «Юный техник» на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Однако самописец сначала чертил горизонтальную линию, но примерно через час линия пошла круто вверх и снова опустилась к горизонтальному положению. «Это произошло глубокой ночью, — размышлял ученый, — и никак не могло быть объяснено влиянием стальной трубы».

Студенты, участвовавшие в эксперименте, проверили все возможные источники гравитационного воздействия, но ничего странного не обнаружили. А через какое-то время эффект повторился. И тут кто-то случайно обратил внимание, что как раз в это время (около трех часов утра) запускаются поливальные автоматы на лужайке перед зданием лаборатории. Текущая вода и создавала паразитные поля вокруг установки. Однако далеко не все исследователи согласны с таким примитивным объяснением. Некоторые полагают, что экспериментаторам все-таки удалось зафиксировать гравитационную волну. Споры продолжаются, и точку в них должны поставить последующие эксперименты.

Поправил Ньютона?

Тем временем Моти Милгром, физик из Вейцманского института наук в г. Реховоте (Израиль), подошел к той же проблеме с другой стороны. Он заявил, что необходимость в гипотезе существования темной материи отпадет, если немного «подправить» сам закон всемирного тяготения. «А что, если известные нам законы гравитации не применимы к межгалактическим масштабам? — пишет он. — В конце концов, законы Ньютона проверялись лишь 300 лет в пределах Солнечной системы, между тем как типичный период вращения галактик занимает время от момента исчезновения динозавров до наших дней и масштабы воздействия там совсем иные!»


Рассуждения Милгрома поддерживают и некоторые другие исследователи. «Ньютоновское представление о гравитации нуждается в определенной корректировке, — говорит бывший почитатель идеи темной материи доктор МакГауф из Кембриджского университета в Англии. — На Земле ускорение свободного падения любого тела, как известно, равно 9,8 м/с2. А вот наше Солнце и все другие звезды нашей галактики «падают» к ее центру с неизмеримо меньшим ускорением — притяжение центра нашей Галактики слабее земного в десять миллиардов раз!»

Милгром и его последователи уверены, что для таких слабых взаимодействий ньютоновские законы должны быть изменены. По их мнению, при столь малых ускорениях сила гравитации уже будет не прямо пропорциональной ускорению, как утверждает Ньютон, а квадрату этой величины. При таком допущении появляется возможность объяснить и предсказать движение галактик без привлечения ссылок на темную материю.

Впрочем, какая именно концепция строения Вселенной — с темной материей или без нее — окажется справедливой, должно показать будущее. Рассуждения теоретиков должны подтвердить экспериментаторы, которые ищут способы подтвердить (или опровергнуть) наличие темной материи на практике.

Максим ЯБЛОКОВ


СУМАСШЕДШИЕ МЫСЛИ

«Звездные врата» действительно можно построить, полагают современные физики

Знаменитый датский физик Нильс Бор в свое время заметил, что пилотируемая космонавтика с ее героическими экспедициями на Луну или даже просто на орбиту есть «несомненное торжество человеческого интеллекта и… печальная ошибка здравого смысла». На чем основано такое суждение?


Еще недавно не только фантасты, но и ученые считали, что способ путешествия в космосе с помощью космических кораблей — единственно возможный. Некоторые ученые полагают, что путешествовать по Вселенной люди в будущем будут так, как это было показано в фильме «Звездные врата».

Известный космонавт Георгий Гречко, рассказывая о трудностях орбитальных вахт, сообщил как-то, что во время полета космонавтам засчитывают, как на войне, день за три. И того, наверное, мало, поскольку люди в столь экстремальной ситуации выкладываются до конца, «летают с оголенными нервами».

Тем не менее, в последнее время снова заговорили о новых полетах людей на Луну, организации пилотируемой экспедиции на Красную планету. Но стоит ли выкладывать на нее огромные средства, рисковать людскими жизнями? Ведь лететь к Марсу, а тем более на окраины Солнечной системы на обычных химических ракетах довольно бессмысленно.

Обратите внимание, до сих пор в пилотируемой космонавтике используются ракеты, разработанные свыше 40 лет тому назад, и «челноки», первый полет которых был осуществлен еще в 1981 году. Получается, в этой области техники вот уже многие годы мы, по существу, топчемся на месте. «В космонавтике, похоже, складывается примерно та же ситуация, что существовала в поршневой авиации в конце 40-х годов прошлого века, — полагает академик Анатолий Коротеев. — Тогда из тупика авиацию вывел переход на реактивные двигатели, то есть переход на качественно иной уровень»… И теперь одни специалисты видят выход в использовании для дальних экспедиций ядерных ракетных двигателей, другие — в поиске принципиально новых способов преодоления пространства.

Что касается ядерных двигателей, то в той же авиации они не прижились из-за их неэкологичности, опасности для экипажа и обслуживающего персонала. Этот риск возрастает многократно в открытом пространстве, где у людей нет «брони» от жесткого космического излучения.

И это еще не все. Как известно, в космосе люди лишаются привычного веса. А отсутствие гравитации, как показывает опыт, весьма коварно влияет на организм: мышцы, в том и числе и сердечные, резко слабеют, из костей начинает быстро вымываться кальций, и они становятся хрупкими. Из-за этого космонавты, работающие на МКС, вынуждены ежедневно изматывать себя многочасовыми тренировками на тренажерах. Иначе они попросту не смогут вернуться на Землю, погибнут от перегрузок при спуске с орбиты. А они ведь находятся в космосе всего лишь месяцами, но не годами и десятилетиями, как того требуют дальние космические перелеты даже в пределах нашей Солнечной системы. В общем, нужны новые аппараты и иные принципы преодоления расстояний.

Российский физик, профессор Юрий Фомин полагает, что на выручку нам может прийти многомерное пространство. Окружающий нас мир измеряется не только 3–4 векторами, как мы привыкли считать. Многие теоретики полагают, что Вселенная многомерна, число измерений в ней стремится к бесконечности. А стало быть, есть принципиальные возможности для существования бесчисленного множества так называемых «параллельных миров» со своими галактиками, звездными и планетными системами.

Причем, как показал недавно американский теоретик Хьюджет Эверетт, попытка понаблюдать за этими мирами может привести к весьма интригующим последствиям. Каждое наблюдение является взаимодействием, которое меняет состояние и наблюдателя, и самого объекта. И потому при каждом измерении Вселенная разветвляется на ряд параллельных Вселенных. Весь мир — это каскад причинно-следственных цепочек, и не только будущее, но даже прошлое обладает вероятностью в зависимости от того, кто его изучает! Таким образом, говоря проще, в каждом из параллельных миров время может двигаться со своей скоростью и даже в противоположных направлениях.

Тем не менее, можно допустить, что иногда параметры на какое-то время совпадают, и параллельные миры как бы «соприкасаются» друг с другом. Именно в такие периоды и возможен переход по особому «коридору» во времени и пространстве различных живых существ и предметов из одного мира в другой.

Вывод, конечно, смелый. Но если он верен, тогда на смену нынешним космолетам, вероятно, еще в этом веке придут «звездные врата», которые позволят путешествовать в любую точку Вселенной без особых хлопот и затрат времени. Шагнул — и вот ты уже там.

И. ЗВЕРЕВ

УДИВИТЕЛЬНО, НО ФАКТ!

Кибернетика зеленого листа

Недавно, продолжая исследования, ученые пришли к выводу: дате малая травинка способна производить вычислительные операции, которые под силу лишь мощному компьютеру.


Так выглядят устьица зеленого листа под микроскопом.

Автоматика травинки

Со времен К.А. Тимирязева биологи пытаются разобраться в самом сложном и таинственном процессе, присущем только растениям, — фотосинтезе. Уже полвека исследователи пытаются понять, как зеленому листу или травинке удается получать энергию из солнечного света. Однако многое в этом процессе остается тайной за семью печатями. А то, что уже известно, никак не удается смоделировать. Современные фотоэлементы уступают по эффективности молекулам хлорофилла в десятки раз.

Впрочем, что там фотосинтез!.. Совсем недавно выяснилось: каждый зеленый листок — это своего рода кибернетическое устройство.

Началось же с того, что американские исследователи Дэвид Пик и его коллеги из университета Юты обратили внимание: растения способны довольно точно регулировать поглощение и выделение газов через устьица своих листьев.

Устьицами, напомним, называются микроскопические щели на поверхности листа между двумя растительными клетками. Открывая и закрывая их, растение может как потреблять газ из атмосферы, так и «выдыхать» его.

Ночью, когда растение спит, оно, как известно, выбрасывает в атмосферу углекислый газ и потребляет кислород. Днем, когда питается, наоборот — забирает из атмосферы углекислый газ СО2 и превращает его в кислород О2. И при этом ему удается соблюдать оптимальный баланс: потреблять из атмосферы максимально возможное количество газа, испаряя в то же время минимальное количество запасенной корнями влаги. Это, между прочим, не такая простая задача, поскольку микроскопические устьица-щели на одном лишь листе исчисляются многими тысячами, открываются же и закрываются они в строго определенном порядке. Причем процессы идут довольно быстро — в некоторых случаях счет идет на доли секунды.


В общем, получается, что зеленый лист все время как бы решает задачки о трубах и бассейне. Даже на уроках математики в школе с подобными задачами приходится иной раз помучиться. На практике при решении аналогичных задач в автоматических системах управления специалисты вынуждены прибегать к так называемым методам «распределенных расчетов». То есть таким способам обработки информации, при которых приходится учитывать огромное количество факторов, используя мощные быстродействующие компьютеры.

Компьютера, каким мы привыкли его видеть, в зеленом листе, конечно, нет. Да и во всем растении — тоже.

Тем не менее, судя по словам известного биолога, академика Владимира Шувалова, российскими и зарубежными исследователями сегодня установлено: некоторые стадии процессов газообмена, фотосинтеза, метаболизма внутри каждой клетки зеленого листа могут протекать настолько быстро, что их приходится измерять фемтосекундами. Одна же фемтосекунда равна 10-15 секунды! Таким скоростям действия могут позавидовать даже супер-суперкомпьютеры. Растение же успевает «обсчитать» все факторы и дать в нужное время нужную команду устьицам.

Более того, ученые заметили даже, что на поверхности листа часто наблюдаются целые области или сегменты, в которых все устьица либо открыты, либо закрыты. Таким образом, как установили, растение оптимизирует процессы управления. Контролировать сразу несколько устьиц одного сегмента, работающих синхронно, все-таки легче, чем поодиночке.

Ученые выявили также статистику, определяющую как размеры сегментов, так и время ожидания их открытия или закрытия. Оказалось, что алгоритмы работы устьиц вполне могут быть рассчитаны по законам кибернетики. Словом, лист растения действует и в самом деле словно тысячи хороших роботов — четко, без сбоев и в нужном ритме.

Зри в корень

Американские исследователи сочли даже, что результаты их исследований можно толковать в пользу «разумного поведения растений», ссылаясь на тот факт, что аналогичные процессы наблюдаются, скажем, в муравейнике. Муравьи ведь обмениваются друг с другом определенными сигналами и сообща куда быстрее находят источники пищи, определяют оптимальные трассы ее доставки в свои кладовые.

При этом каждый отдельный муравей, как выяснили новосибирские биологи (подробности см. в «ЮТ» № 7 за 1997 г.), обладает проблесками разума и умеет считать в пределах десятка. А стало быть, и растения, возможно, тоже имеют некие зачатки интеллекта…

На этом давайте пока остановимся. Метод аналогии нас может завести очень далеко. Подумаем лучше о другом. Если в зеленом листе имеются сложные устройства, по своим возможностям сравнимые с микрочипами, значит, где-то в растении, по идее, должен быть и центральный микропроцессор.

Аналог его в 70-х годах XX века обнаружил профессор кафедры физиологии растений Тимирязевской академии И.И. Гунар. Он предположил, что шейку корней растения, которая имеет свойство сжиматься и разжиматься подобно сердечной мышце, можно в какой-то мере уподобить и нервному (или вычислительному?) центру.

Кстати сказать, природа очень мудро расположила этот центр — как раз на границе между надземной и подземной частью растения, откуда наиболее удобно вести управление всеми процессами.

Радиостанции беды

Как это часто бывает в науке, полученные результаты породили массу новых вопросов. Помните фразу о признаках разумного поведения растений? Оказывается, и она находит свое подтверждение!

С помощью все тех же устьиц растения, как выясняется, способны не только регулировать потоки газообмена, но и обмениваются сигналами. Крис Райян, биолог из университета штата Вашингтон, обнаружил, что как только гусеница или другой вредитель принимается за лист на томатном кусте, остальные листья тотчас начинают вырабатывать протеиназу — вещество-ингибитор, которое связывает у гусениц пищеварительные ферменты, тем самым затрудняя, а то и делая невозможным усвоение ими пищи.

Более того, лист начинает выделять в воздух особые химические соединения, которые заставляют делать то же самые другие листья и даже соседние растения. Лист как бы предупреждает своих собратьев: «На нас напали! Примите меры обороны!» Сигнал этот распространяется довольно сложно. Разрушенные челюстями гусеницы растительные клетки теряют влагу. При этом начинается цепочка химических реакций, которая, в конце концов, приводит в движение заряженные частицы раствора — ионы. И те, распространяясь по растительному организму, несут электрические сигналы точно так же, как волна нервного возбуждения передается в организмах животных и человека.

А любое движение электрического заряда, как известно нам из физики, приводит к возникновению электромагнитного поля. Так что, вполне возможно, эта сигнализация служит двоякой цели. С одной стороны, она заставляет другие листья данного растения или даже его соседей приступить к выработке ингибиторов, как уже сказано выше. С другой стороны, возможно, электромагнитные сигналы, распространяющиеся и в эфире, призывают на помощь естественных врагов тех же гусениц — скажем, птиц.

Эта мысль кажется тем более естественной хотя бы потому, что профессору биологии из университета штата Небраска Эдварду Дэвису не так давно удалось установить: ионная сигнализация свойственна не только растениям, но и многим животным, обладающим развитой нервной системой. Зачем она им? Разве что в качестве приемника, настроенного на сигналы чужой беды.

В общем, получается, что растения не только хорошо умеют рассчитывать свои действия. У них существует свой сигнальный язык, подобный языку насекомых и животных. Одно растение, меняя электрические потенциалы в своих листьях, может сообщить другому об опасности. Словом, если не считать прикованности растений к своему месту, какой-то особой разницы между представителями флоры и фауны нет.

Забавно, но еще полвека назад С.Я. Маршак написал:

Человек — будь он трижды гением — Остается мыслящим растением. С ним в родстве деревья и трава. Не стыдитесь этого родства!

Д. УСКОВ, научный обозреватель «ЮТ»


Растение — компьютер, роща — вычислительная сеть?

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ

Приласкай… компьютер

Со стороны, наверное, это выглядит забавно, но я нередко разговариваю со своим компьютером. То ругаю, то, напротив, пытаюсь лаской заставить его выполнить то, что он делать не хочет. И — это еще смешнее — часто происходит маленькое чудо: бездушный вроде бы прибор перестает давать сбои… Похоже, все идет к тому, что такая манера общения с персональным помощником вскоре может стать повседневной. Мы уже писали, что на стыке двух наук — биологии и кибернетики — возникает нечто совершенно новое — ДНК-компьютеры (см. «ЮТ» № 7 за 2002 г.)


Специалисты и сегодня подтверждают: да, не за горами время, когда можно будет выпить каплю-другую специальной «разумной» жидкости или сделать инъекцию некоего раствора, и внутри организма заработает свой собственный «вычислительный центр», уничтожающий вирусы, больные клетки, без устали заботящийся о здоровье человека.

Более того, ученые утверждают, что, поскольку генетический материал способен к самовоспроизводству и развитию, подобные машины смогут эволюционировать и со временем станут столь совершенны, что смогут решать более сложные задачи, чем самые современные суперкомпьютеры, и приблизятся при этом по своим ассоциативным возможностям к человеческому мозгу.

За основу последней версии ДНК-компьютеров взяты системы, созданные на основе бактерий, проживающих в солончаках. Еще недавно это казалось невозможным. Как складывать и вычитать цифры, набирать тексты, создавать рекламные видеоролики, выяснять, есть ли свободные места на ближайший поезд, с помощью каких-то микробов?

Профессор Леонард Адлеман из Университета Южной Калифорнии недавно подробно описал, как, используя молекулы ДНК, можно производить сложные математические вычисления эффективнее, чем на мощных суперкомпьютерах. Из отдельных генов, фрагментов белковых молекул, помещенных в специальный раствор, с помощью электрических полей или лазерных лучей синтезируют длинные белковые цепи, которые, собственно, и являются результатами вычислений. Остается считать информацию тем же лучом лазера — и результат перед исследователем.

С помощью излучения можно затем мгновенно «обнулить» результат, и ДНК-машина окажется вновь готова к действию.

Адлеман и его коллеги подсчитали, что примерно полкилограмма молекул ДНК может хранить информации больше, чем память всех до сих пор созданных компьютеров, вместе взятых.

В общем, получается этакий разумный аквариум, который может помнить все и вся. Нужно только время от времени подкармливать его и следить за чистотой, чтобы лучше считал. Кстати, считает «аквариумный» компьютер просто великолепно.

Для решения задачи, на которую он тратит всего неделю, традиционным компьютерам понадобилось бы несколько лет машинного времени. В дополнение к «живым» процессорам Центр молекулярной электроники Сиракузского университета разработал «живую» память. Университетские ученые с помощью лазерного луча научились записывать и читать информацию на протеине (белке), который получают из живущих, опять же, в солончаковых болотах микроорганизмов. Так что в шутку можно сказать, что кремниевая электроника постепенно превращается в «болотную».

Но шутки — шутками, а тем не менее, трудно не согласиться, что компьютер все больше «оживает». Последующие поколения биокомпьютеров, возможно, будут представлять собой не мутную жидкость в пробирке, а, например, ласковую домашнюю собачку, которую нужно будет кормить, причесывать и выводить гулять и которая в то же время будет являться средством связи, калькулятором и гигантским хранилищем всевозможных знаний.

У подобной «собачки» можно будет узнать, какая вас ожидает завтра погода, посоветоваться относительно качества той или иной покупки, сделать уроки или решить научную задачу, отправить праздничное поздравление другу на соседний континент или просто поболтать на досуге.

А. ЖУКОВ

Художник Г. КУЗНЕЦОВ

ВЕСТИ ИЗ ЛАБОРАТОРИЙ

Ловушки для света

Ученые продолжают игры со светом, свидетельствует журнал New Scientist Если пять лет назад им удалось притормозить фотоны, заморозив их так; что они стали двигаться со скоростью черепахи, то ныне они создали ловушки, способные удерживать свет сколь угодно долго…


Напомним суть дела. В свое время мы рассказали вам об уникальном эксперименте по торможению света (см. «ЮТ» № 9 за 1999 г.). Датчанка Лина Хау, работающая в Гарвардском университете, США, создала ловушку, способную притормозить фотоны до скорости движения мотоцикла. Для этого лазерный луч посылают в некий сосуд, где при температуре, близкой к абсолютному нулю, фотоны попадают в прозрачную среду, состоящую из замороженных атомов, и замедляют свое движение в 20 млн. раз!



Поделиться книгой:

На главную
Назад