Спохватившиеся американцы, в свою очередь, стали интенсивно разрабатывать подобные аппараты. Говорят, несколько лет назад им удалось разогнать небольшое подводное тело до скорости 5400 км/ч! Однако зарубежным специалистам явно не хватает опыта, накопленного российскими инженерами. Поэтому не случайно вокруг «Шквала» все время идет какая-то подозрительная возня: разведслужбы норовят похитить секреты ракеты-торпеды. Нашумевший судебный процесс над Эдмондом Поупом — лишнее тому свидетельство.
Тем не менее, сегодня некоторые зарубежные источники утверждают, что достижения русских превзойдены. Американцы сосредоточили свое внимание на «подводных пулях» — особых снарядах, которые могут передвигаться в воде вообще без двигателей.
Так в 1997 году исследователи из Центра военно-морского подводного вооружения в Чайна-Лейк, Калифорния, объявили о создании новой сверхзвуковой системы обезвреживания мин. Снаряд без двигателя, с тщательно спроектированным плоским носом, выстреливается из подводного орудия и переходит звуковой барьер, заставляя детонировать окрестные мины.
Очевидно, здесь есть свои хитрости. Ведь если выстрелить в воду обычным снарядом из артиллерийского орудия, то сила торможения воды остановит его через считаные десятки метров.
Впрочем, отсутствие двигателя все же сокращает дальность полета американского снаряда. Тем не менее, данная технология, по словам ее создателей, позволяет достичь скорости 2500 м/с, что является рекордом даже для самолетов.
Инженеры убеждены: фундаментальных причин, мешающих создать подводные аппараты, которые смогут двигаться быстрее пули, не существует. Нужно лишь решить ряд технических проблем.
Прежде всего, необходима мощная и компактная двигательная установка, приспособленная для данных конкретных условий. Многие специалисты полагают, что большие перспективы тут имеет ракетный двигатель, использующий в качестве топлива… алюминиевый порошок. Правда, как мы уже писали в «ЮТ» № 1 за 1999 год, до недавних пор попытки его создания особого успеха не принесли. Очередная же обещает стать удачнее хотя бы потому, что алюминиевая пудра будет применена не в двигателе внутреннего сгорания и не для выработки электричества, а в качестве топлива ракетного двигателя. Причем в качестве окислителя тогда может быть использована забортная вода, так что резервуары с кислородом уже не понадобятся.
Однако поверхность алюминия быстро окисляется. Это предохраняет алюминиевые изделия от дальнейшей коррозии и обычно считается полезным свойством данного металла. Но окисная пленка мешает горению алюминия, поэтому приходится принимать специальные меры. Например, порошок алюминия вводят непосредственно в водоворот воды, где и происходит горение.
Согласитесь, пламя в воде — не такое уж обычное явление, его придется детально исследовать. Кроме того, необходимо подумать и о том, как удалять из двигателя расплавленный алюминий, образующийся в качестве побочного продукта реакции.
Впрочем, ракеты на горящем алюминии хороши только для коротких расстояний. А для дальних подводных путешествий, видимо, придется использовать ядерный реактор. Говорят, с его помощью сверхзвуковая субмарина сможет пересечь Атлантику менее чем за час. Если, конечно, не наткнется на какое-то препятствие по дороге.
Дело в том, что пока сверх кавитационные объекты плохо поддаются управлению. Специалисты полагают, что подобные трудности — явление временное. И в будущем им удастся создать не только сверхскоростные, но и высокоманевренные подлодки.
СОЗДАНО В РОССИИ
Математика спасения
Трагедии «Комсомольска» и «Курска», их предшественников, похоже, заставили все же специалистов всерьез обратить внимание на проблемы повышения безопасности плавания атомных субмарин, эффективного устранения неисправностей, а также своевременной и правильной эвакуации экипажа с терпящего бедствие корабля…
Вот что рассказали нашему корреспонденту Антону Петрову специалисты, занимающиеся созданием математических моделей тех или иных процессов, происходящих на судне.
… Для начала мне дали порулить самой что ни на есть современной атомной подводной лодкой. Сделать это оказалось не так уж сложно. В руке моей оказалась рукоятка, весьма похожая на джойстик компьютерной «стрелялки», а на дисплее стали высвечиваться результаты моей «самодеятельности». А чтобы я нечаянно не загнал ситуацию в тупик, компьютер услужливо прогнозировал, что произойдет с лодкой через несколько минут, если я буду упорствовать в выполнении тех или иных своих действий.
«Не надо забывать, что современный подводный корабль — это огромная махина длиной более сотни метров и водоизмещением в десятки тысяч тонн, прокомментировала ситуацию внимательно следившая за моими действиями С.К. Данилова, завсектором компьютерного обучения подводников Института проблем управления Российской академии наук. — Это все же не истребитель, и результат воздействия на рукоятку управления становится очевиден далеко не сразу»…
Почему моим наставником оказалась милейшая Светлана Константиновна, а не контр-адмирал или, по крайней мере, капитан первого ранга? Да потому, что, во-первых, никто и ни под каким видом не допустит новичка сразу за штурвал настоящего корабля. И меня посадили за тренажер. А во-вторых, мой собеседник оказался как раз тем человеком, который обучает и офицеров высшего ранга азам управления самыми новейшими кораблями. Даже теми, которые пока существуют лишь на листах ватмана да в памяти компьютера.
Об авиационных и космических тренажерах вы, наверное, уже наслышаны. Пи одного пилота, ни единого космонавта, как известно, не выпускают в полет прежде, чем он не выполнит десятки тренировок на земле в тренажерных комплексах. Теперь эту хорошую традицию перенесли и на море.
Первыми из моряков, кстати, свои действия в кризисных ситуациях стали отрабатывать на тренажерах операторы корабельных атомных реакторов. Теперь очередь дошла и до судоводителей…
Пока я вам все это рассказывал, подлодка под моим управлением худо-бедно научилась следовать по прямой. Опускать ее на заданную глубину, всплывать наилучшим образом, а также швартовать к причалу эту махину я решил поучиться как-нибудь в другой раз. И так на лбу почему-то появилась испарина, хотя в зале было не жарко…
А потому я оставил рукоятку управления в покое и попросил Светлану Константиновну рассказать, как математики и кибернетики из Института проблем управления оказались в роли учителей экипажей подплава.
«Все судостроители помнят тот конфуз, что произошел когда-то со шведским парусником «Ваза», — сказала она. — Спущенный в 1678 году со стапелей корабль тут же перевернулся и ушел на дно на глазах у публики. А дело в том, что поначалу даже у специалистов не было достаточного опыта, чтобы еще на стадии чертежей проверять остойчивость корабля. Кстати, наши российские корабелы избежали подобных ошибок потому, что сразу же завели хороший обычай. Прежде чем строить настоящий корабль, делали его уменьшенную копию и спускали на воду»…
С годами, конечно, кораблестроители набрались опыта, научились рассчитывать основные характеристики будущего судна. Однако это вовсе не значит, что они перестали допускать ошибки. Вспомните, например, что случилось со знаменитым «Титаником». В первом же плавании напоролся на ледяную глыбу и тут же пошел ко дну.
А ведь создателей этого корабля предупреждали. Российский инженер Владимир Костенко даже указал, как можно исправить дефекты конструкции. Но его не захотели слушать. Возможно, реакция была бы совершенно иной, если бы в то время имелась возможность наглядно показать, что произойдет с «Титаником» в том или ином случае.
Сейчас такая возможность появилась. Компьютерное моделирование позволяет создавать своего рода мультики, которые, хотите в реальном масштабе времени, хотите в ускоренном, показывают последствия той или иной ошибки, стечения разных обстоятельств. Чтобы компьютер имел возможность рисовать подобные мультики, в его память закладывается математическая модель корабля. Причем вполне конкретного.
Чтобы подобная модель отличалась реализмом, математикам пришлось объединиться не только с кибернетиками, но и с кораблестроителями и моряками. Каждый видит будущий корабль со своей точки зрения, и получается цельная картина.
«Ох, и намучились мы с этими моделями! — откровенно сказал мне еще один участник исследований, старший научный сотрудник Военно-морской академии имени Н.Г.Кузнецова, кандидат технических наук Андрей Борисович Скобелев. — Во-первых, нужно было учесть все возможные погодные условия, в которых может оказаться тот или иной корабль. Во-вторых, вспомнить, методично перечислить и описать все возможные аварии и поломки, которые могут произойти с тем или иным агрегатом, механизмом, устройством, машиной.
Провернуть в уме и в компьютере всевозможные комбинации всех этих поломок, аварий в самых вероятных и невероятных сочетаниях, оценить последствия и выработать оптимальные алгоритмы выхода из той или иной ситуации. Проверить, нет ли ошибок в рекомендациях, не пропустили ли чего»…
Но самым сложным оказалось даже не это. «Самая большая головоломка — учет так называемого человеческого фактора, — продолжал свой рассказ Андрей Борисович. — Вспомните хотя бы: взрыв в Чернобыле оказался возможен потому, что операторы четвертого блока ухитрились нарушить практически все правила и инструкции по эксплуатации атомной установки»…
Но поскольку без людей пока во многих случаях не обойтись, приходится думать и о том, какие ошибки они могут совершить в состоянии стресса, паники, недостаточной выучки. Даже диверсии и боевые действия с противоположной стороны приходится учитывать.
В общем, факторов оказалось столько, что Андрей Борисович потратил 10 лет своей жизни только на то, чтобы учесть около полутора тысяч факторов, влияющих на живучесть корабля. И он все еще не уверен, что учтено абсолютно все — данные будут пополняться по мере накопления дополнительной информации, из практического опыта. Пока же первые эксперименты на тренажерах показали: математическая модель показывает развитие событий в основном правильно. А значит, у моряков появляется больше шансов спасти свой корабль и собственные жизни в той или иной ситуации.
Однако жизнь есть жизнь. А это значит, что как бы ни совершенствовали корабелы свои творения, как бы ни боролся экипаж за живучесть того или иного корабля, может наступить такой момент, когда становится понятно: спасти его уже невозможно. Пора спасаться самим.
Опыт того же «Комсомольска», а потом и «Курска» показал: спасательные средства на современных подлодках недостаточно эффективны. Их нужно совершенствовать. И над этим тоже работают ныне специалисты. Вот, например, какие методы и средства предлагают сотрудники Государственного НИИ аварийно-спасательного дела, водолазных и глубоководных работ Минобороны России.
Предположим, авария уже произошла. Лодка залегла на грунт, и экипажу теперь приходится думать о том, как выбраться на поверхность моря. Что нужно для этого сделать?
По словам сотрудника ГосНИИ аварийно-спасательного дела Виктора Николаевича Илюхина, прежде всего экипаж облачается в спасательные костюмы. Эти скафандры способны поддерживать внутри давление порядка 3 атм. И это не случайно. Дело в том, что, как правило, экипаж далеко не сразу покидает пострадавшую подлодку. Сначала моряки делают все от них зависящее, чтобы спасти свой корабль.
А пока они занимаются спасательными работами, давление внутри подлодки заметно повышается. Частью это происходит из-за того, что сочащаяся из-за борта вода понемногу сдавливает воздух внутри лодки, уменьшая его объем; отчасти из-за того, что давление внутри поднимают сами подводники, стремясь противодействовать забортному давлению. Наконец, оно может повышаться и в аварийном порядке: скажем, из-за того, что вышли из строя поглотители углекислого газа, выдыхаемого людьми, а кислород из аварийных баллонов понемногу продолжает поступать внутрь лодки.
Так или иначе, повышенное давление внутри лодки приводит к тому, что давление газов становится повышенным и внутри организма. И если человек вдруг попадет в нормальные условия, кровь в его организме может как бы вскипеть — начнут выходить растворенные в ней пузырьки азота: человек может погибнуть или заболеть так называемой кессонной болезнью.
Повышенное же давление, которое поддерживается внутри спасательного костюма, позволяет избежать кессонки. Человек может сначала покинуть лодку, всплыть на поверхность, а уже потом, в шлюзовой камере спасательного корабля, будет постепенно стравливать давление в организме до нормального. Причем за тем, как именно снижается давление, следит специальное устройство, разработанное сотрудниками того же ГосНИИ В.Н.Илюхиным, А.И.Смирновым, В.А.Сухих и их коллегами.
Однако прежде чем всплыть, подлодку нужно покинуть. Для этого служит специальная шлюзовая камера с двумя люками. С одной стороны в нее по очереди входят подводники из лодки, с другой — периодически открывается люк в открытое море.
Чтобы ускорить эту операцию, в ГосНИИ аварийно-спасательного дела разработан своеобразный лифт, позволяющий быстро перемещать подводников от одного люка к другому и заметно ускоряющий операцию спасения. Оказавшись в воде, подводник должен выбрать один из трех вариантов подъема на поверхность. Если глубина небольшая и человек пробыл в подлодке сравнительно недолго, при нормальном давлении он может всплыть быстро. Если же глубина относительно велика, давление в лодке было повышено, то всплывать лучше медленно, с остановками, чтобы сбросить давление азота в собственной крови.
И наконец, в последнее время разработан способ экстренного всплытия с больших глубин с подводными парашютами. Поскольку запас воздуха в спасательном костюме, как правило, ограничен, подводник должен оказаться на поверхности раньше, чем воздух у него кончится. Но всплывать быстрее нельзя, чтобы не заработать кессонку. Что делать?
Для таких случаев подводники воспользовались опытом парашютистов. С больших высот те, как правило, совершают затяжные прыжки. То есть человек сначала падает свободно и, лишь пролетев большую часть пути, на конечном этапе раскрывает парашют, замедляющий падение. Теперь подобные парашюты есть и у подводников. Сначала моряк всплывает быстро. А перед поверхностью раскрывает парашют, который замедляет подъем, позволяет хоть как-то адаптироваться к изменяющимся условиям окружающей среды.
Правильно выбрать способ подъема подводникам помогает специальное устройство, на табло которого в зависимости от конкретной обстановки загорается тот или иной разрешающий сигнал. И сразу становится понятно, каким именно образом надо спасаться в данном случае.
ДОСЬЕ ЭРУДИТА
«Сырный» феномен
Басню И.А.Крылова о вороне и лисице заставило вспомнить открытие, сделанное Леном Фишером из Бристольского университета. В журнале «
Анализируя запах, который выделяет сыр, ученый Фишер установил, что для получения оптимального удовольствия для каждого сорта сыра нужно подобрать определенную толщину ломтика. Исследования, проведенные с участием множества добровольцев, показали: интенсивность запаха растет с увеличением толщины ломтика, но до определенного предела. Оптимальная толщина у каждого сорта сыра своя. Для сыра уэнслидейл, например, она составляет 7 мм; у чершира — 5 мм; у карфилли — 4,5 мм; для чеддера — 2,8 мм; у глостерского — 2,5 мм и т. п.
Такая точка запахового максимума присуща только сыру, так что ее можно назвать «сырным» феноменом. Концентрация аромата других продуктов пропорциональна их количеству. Но будь у вороны, скажем, колбаса, ей это вряд ли бы помогло. Лиса ведь бежала «близехонько».
Все мы родом со звезд?
Японские исследователи обнаружили занесенные на Землю из космоса частицы звездной пыли, которые, возможно, образовались еще до формирования Солнечной системы. Частицы эти найдены в двух небольших метеоритах в пустынях Марокко и Алжира. Ученые из Токийского промышленного университета под руководством профессора астрономии Ясуки Касиямото исследовали состав метеоритов с помощью новейшего оборудования.
В итоге обнаружены семь пылинок, самая большая из которых размером один микрометр (одна тысячная миллиметра). Предположительно они отделились от двух разных звезд еще до зарождения Солнечной системы, возраст которой оценивается в 4,6 млрд. лет. По химическому составу частицы относятся к классу силикатов — важнейших породообразующих минералов, составляющих 80 процентов массы земной коры. Самый приблизительный подсчет показывает, что им никак не менее 6 млрд. лет.
Это открытие, полагают исследователи, прольет свет и на тайну происхождения человека. Согласно модной сейчас гипотезе, принадлежащей французскому биофизику Марселю Лавуантье, современный человек состоит из звездной пыли и базовых элементов, возникших во время трех ключевых периодов в образовании космоса.
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Летающий робот
В отличие от «летающих тарелок», на которых, по словам уфологов, к нам прилетают инопланетяне, этот летательный аппарат называют то «летающим блюдцем», то «аэросковородой»… А все потому, что новинка, созданная сотрудниками норвежской компании SiMiCon, действительно имеет форму диска.
Поговаривают, что конструкторов на их разработку вдохновил фантастический аппарат из фильма
Диаметр реального «летающего блюдца» — 4,5 м. В настоящее время испытания в аэродинамической трубе прошли три прототипа диаметром по 1,5 м. Круглый корпус, представляющий собой в то же время несущую поверхность, снабжен выдвижными лопастями, которые приводятся в действие при помощи небольшого реактивного двигателя и обеспечивают аппарату возможность вертикального взлета и посадки.
После набора высоты включается так называемый маршевый двигатель, а вертолетные лопасти уходят внутрь корпуса. Однако они могут быть выдвинуты вновь, если аппарату потребуется зависнуть в воздухе или осуществить посадку. Для компенсации углового вращательного момента используется либо тяга реактивного двигателя, либо небольшой хвостовой винт.
Этот дистанционно управляемый летательный аппарат, получивший название «летающий винт» (
Например, на вооружении армии США состоят два беспилотных аппарата, один из которых —
Одну из задач — переход из режима вертикального взлета в режим полета —
По мнению разработчиков аппарата SRC, он должен заинтересовать военные и различные общественные организации. «Рынок беспилотных воздушных аппаратов более восприимчив к новинкам, чем сфера пилотируемых самолетов, — говорит Рагнвальд Оттерлей, один из авторов
Разработчики обещают, что первый настоящий SRC поднимется в воздух примерно через 5 лет. Однако их оптимизм не разделяют те конструкторы, которые помнят, что это далеко не первая попытка создания дисколета. Все предыдущие разработки так и остались экспериментальными, поскольку круглое крыло так и не оправдало возлагавшихся на него надежд — аппараты, оснащенные им, оказывались неустойчивы в полете.
ПО СЛЕДАМ СЕНСАЦИЙ
Еще один «кирпичик» мироздания?
Недавно ученые Института теоретической и экспериментальной физики (ИТЭФ)принимали поздравления. Им удалось подтвердить теоретические выкладки своих коллег из Санкт-Петербургского института ядерной физики, предсказавших возможность существования экзотических частиц из пяти кварков.