Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - Стивен Строгац на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Структура была фрактальной32 — сложной формы, внутренняя структура которой повторялась во все более мелких масштабах.

Кроме того, вблизи границы царил хаос. Две точки могли вначале находиться очень близко друг к другу, какое-то время попрыгать рядышком, а потом разойтись к разным корням. Выбранный корень был так же непредсказуем, как выигрышные числа при игре в рулетку. Мелочи, крошечные, незаметные изменения в начальных условиях могли полностью изменить всю картину.

Работа Хаббарда была одной из первых вылазок в область науки, ныне называемой комплексная динамика, — потрясающее сочетание теории хаоса, комплексного анализа и фрактальной геометрии. В некотором смысле это позволило геометрии вернуться к своим корням. В 600 году до Рождества Христова руководство для строителей храма в Индии33, написанное на санскрите, давало подробные инструкции, как при проектировании ритуальных алтарей вычислять квадратные корни. Спустя свыше 2500 лет математики все еще ищут корни, но в настоящее время инструкции пишутся в двоичном коде.

9. Ванна моя преисполнена[11]

Дядюшка Ирв был братом моего отца и его компаньоном. Они владели обувным магазином в нашем городе. Так вот, он хорошо разбирался в практической стороне вещей и по большей части находился наверху в своем кабинете, потому что лучше управлялся с цифрами, чем с клиентами.

Когда мне было лет десять или одиннадцать лет, дядя Ирв задал мне мою первую арифметическую задачу34. Этот день навсегда врезался мне в память, вероятно, потому, что я ошибся и чувствовал смущение.

В условии задачи говорилось о заполнении ванны водой35. Если включить кран с холодной водой, то ванна наполнится за полчаса, а если с горячей — то за час. Сколько времени потребуется, чтобы заполнить ванну, когда включены оба крана?

Я уверенно, вероятно, как и многие из вас, ответил: «Сорок пять минут». Дядюшка Ирв покачал головой и усмехнулся. И своим высоким гнусавым голосом он преподал мне урок.

«Стивен, — обратился ко мне он, — скажи, сколько воды будет в ванне через минуту». Холодная вода заполняет ванну за 30 минут, так что за одну минуту она заполнит ее часть. Но горячая вода льется медленнее и наполнит ванну через 60 минут, то есть за минуту она заполнит только часть ванны. Поэтому, когда вода льется из обоих кранов, она заполняет + ванны за минуту.

Чтобы сложить эти дроби, обратите внимание, что наименьший общий знаменатель равен 60. Преобразовав в , получаем

Это означает, что вода из двух кранов за минуту заполнила ванны. Следовательно, ванна наполнится через двадцать минут.

С тех пор на протяжении многих лет я неоднократно вспоминал о той ванне, причем всегда с любовью к дядюшке Ирву и самой задаче. Мне преподали урок, как просто ради удовольствия решать задачи, основываясь на интуиции, и как найти приближенное решение, если сложно отыскать точное.

Рассмотрим мое первоначальное предположение — 45 минут — и, решив задачу интуитивно (в соответствии со здравым смыслом), поймем, что этот ответ не может быть правильным. Действительно, он абсурден. Чтобы понять почему, предположим, что горячая вода отключена, тогда холодная вода заполнит ванну за 30 минут. Поэтому какой бы дядюшка Ирв ни задал вопрос, ответ должен быть «меньше 30 минут»; если в ванну льется не только холодная, но и горячая вода, то ванна заполнится быстрее.

Правда, этот вывод не столь убедителен, как ответ «20 минут», который мы получили методом, предложенным дядюшкой Ирвом, зато он не требует никаких расчетов.

Другой способ упростить задачу — предположить, что вода из обоих кранов течет с одинаковой скоростью. Причем ванна при одном открытом кране заполняется за 30 минут. Тогда очевидно, что она наполнится за 15 минут, так как каждый кран выполнит половину работы.

Отсюда сразу становится ясно, что, по расчетам дядюшки Ирва, наполнение ванны должно занимать больше пятнадцати минут. Почему? Потому что «быстрый + быстрый» побьет «медленный + быстрый». Наша условно симметричная задача имеет два быстрых крана, в то время как у дядюшки Ирва один медленный и один быстрый. А поскольку 15 минут — ответ задачи для двух быстрых кранов, то ванна дядюшки Ирва будет наполняться дольше.

Получается, что благодаря рассмотрению двух гипотетических случаев — в первом ванна заполняется только холодной, так как горячая отключена, а во втором — горячей и холодной с одинаковой скоростью, — мы узнали, что ответ лежит в пределах 15–30 минут. В более сложных задачах, где порой невозможно найти точный ответ, и не только в математике, но и в других областях, такой подход может очень пригодиться.

Даже если вы все-таки найдете точное решение, не стоит самоуспокаиваться. Данную задачу можно решать более простыми способами. Это единственное место, где математика дает простор творчеству. Например, помимо метода дядюшки Ирва (с помощью обыкновенных дробей, приведенных к общему знаменателю), есть более забавный маршрут, приводящий к тому же результату. Несколько лет спустя, когда я попытался определить, почему эта задача настолько запутанна, до меня дошло, что в первую очередь из-за разных скоростей кранов. Необходимость следить, каков вклад каждого крана в наполнение ванны, вызывает напряжение. Особенно если вы можете представить такую картину: горячая и холодная вода плещется из кранов, перемешиваясь в ванне.

Так что давайте не смешивать два вида воды, по крайней мере в нашей голове. Вместо одной ванны представим себе две разные конвейерные ленты с движущимися ваннами с отдельными кранами с горячей и холодной водой.

Из каждого крана наполняется одна ванна — перемешивание не допускается. И как только одна ванна наполняется, она движется далее по конвейеру, уступая место следующей.

Теперь все становится понятным. За один час кран с горячей водой наполняет одну ванну, за это же время кран с холодной водой заполняет две ванны (так как на одну требуется полчаса). Это составляет три ванны в час или одну ванну каждые двадцать минут. Эврика!

Так почему же столько людей, в том числе и я, грубо ошибаются, отвечая «45 минут»? Почему так заманчиво разделить пополам сумму тридцати и шестидесяти минут? Я не уверен, но, кажется, из-за ошибочного понимания условия задачи. Может быть, задача с заполнением ванны в сознании наложилась на другие задачи, где нахождение разности имело бы смысл. Моя жена объяснила мне это с помощью аналогии: «Представь себе, что ты помогаешь пожилой даме перейти улицу. Без твоей помощи это займет у нее 60 секунд, ты бы перебежал дорогу за тридцать. Сколько времени вы будете ее переходить, если ты будешь держать даму под руку?» Теперь ясна логика людей, которые говорят о сорока пяти секундах, потому что, когда пожилая дама цепляется за ваш локоть, она замедляет ваше движение, а вы ускоряете ее.

Отличие от задачи с ванной здесь в том, что и вы, и пожилая дама воздействуете на скорость движения друг друга, чего не происходит с кранами. Они независимы. По-видимому, наше подсознание не распознает это различие, по крайней мере, когда мы жадно хватаемся за неправильный вывод.

Нет худа без добра. Даже неправильные ответы могут быть полезны — если вы осознаете, что они неправильные. Они разоблачают ошибочные аналогии и другие погрешности мышления и помогают облечь суть проблемы в более понятную форму.

Классические занимательные арифметические задачи специально сформулированы таким образом, чтобы так же ловко, как это делает фокусник, обмануть свою жертву, то есть вас. Само условие задачи содержит подвох. Если вы ответите инстинктивно, то, вероятно, попадетесь на эту удочку.

Вот пример такого типа задачи. Предположим, трое мужчин могут покрасить три забора за три часа. Сколько времени потребуется, чтобы один человек покрасил один забор?

Очень заманчиво ляпнуть: «Один час». Сама формулировка подталкивает вас к этому. Барабанный ритм первого предложения — трое мужчин, три забора, три часа — настраивает ваше внимание на определенную волну, поэтому когда в вопросе в таком же ритме повторяется: один человек, один забор, то ответу «один час» трудно сопротивляться. Эти параллельные конструкции психологически настраивают на ответ, который правилен лингвистически, но математически неверен.

Правильный ответ: три часа.

Если вы визуализируете задачу, мысленно представив троих мужчин, три забора и уже покрашенные через три часа заборы, то ответ становится очевидным. Чтобы через три часа покрасить все три забора, каждый человек должен красить свой забор в течение трех часов.

Отвлекаясь от рассуждений, скажу, что такие задачи считаются наиболее ценными среди текстовых задач. Они тренируют наше внимание, заставляя остановиться и посмотреть на задачу с совершенно неожиданной стороны.

Возможно, еще важнее то, что текстовые задачи учат нас думать не только о количестве, но и о соотношениях между числами, выражающими количества. Например, как скорость вытекания воды из кранов влияет на время, необходимое для заполнения ванны. И это следующий важный шаг в математическом образовании человека. Понятно, что для многих это сложно, так как соотношения — нечто более абстрактное, чем просто числа. Но они также представляют собой более мощный инструмент познания окружающего мира, поскольку отражают его внутреннюю логику. Причина и следствие, спрос и предложение, вход и выход, воздействие и отдача — все они связаны между собой парами чисел и соотношениями между ними. Текстовые задачи вырабатывают у нас образ мышления, который интенсивно использует различные соотношения.

Тем не менее Кит Девлин в своем эссе «Проблемы с текстовыми задачами» (The problem with word problems) высказывает о них интересные критические замечания. С его точки зрения, проблема в том, что при решении таких задач считается, что вы понимаете правила игры и соглашаетесь с ними, хотя часто они искусственные, а иногда и вообще нелепые. Например, в нашей задаче о трех мужчинах и трех заборах, которые они красят в течение трех часов, подразумевается, что, во-первых, все трое красят с одинаковой скоростью и, во-вторых, красят непрерывно, не снижая и не повышая темпа работы.

Оба допущения нереальны. Предполагается, что вы игнорируете все это, иначе задача оказалась бы слишком сложной и у вас не было бы достаточно данных для ее решения. Вы должны были бы точно знать, сколько раз каждый маляр замедлял работу и насколько он устал на третьем часу, как часто останавливался, чтобы перекусить, и т. п.

Преподаватели математики должны быть готовы к тому, что текстовые задачи заставляют нас делать упрощающие предположения. Этот ценный навык называется математическим моделированием. Ученые используют его всегда, когда применяют математику к явлениям реального мира. Но они, в отличие от авторов большинства текстовых задач, как правило, заранее сообщают о своих допущениях.

Итак, спасибо дядюшке Ирву за первый урок. Незабываемый? Да. Унизительный? Да, но — в хорошем смысле.

10. Игра с квадратами

Формула для вычисления корней квадратного уравнения — это Родни Дэнджерфилд[12] алгебры. И, будучи одной из формул всех времен и народов, она не заслужила никакого уважения. Даже профессионалы не особо ее жалуют. Когда математиков и физиков просят составить десятку самых красивых или важных уравнений36 всех времен, квадратное уравнение никогда не проходит отбор. Да, конечно, все восторгаются 1 + 1 = 2, E = mc2 и элегантной маленькой теоремой Пифагора, которая важничает просто потому, что она вот такая: a2 + b2 = c2. Но квадратное уравнение? Конечно же нет.

По общему признанию, формула для вычисления корней квадратного уравнения некрасива. Некоторые студенты начинают робко выяснять у нее результат, произнося как ритуальное заклинание: «х равен минус b плюс-минус квадратный корень из b квадрат минус четыре ac, деленное на два a». Другие сделаны из более прочного материала и смотрят формуле прямо в лицо, бесстрашно сопротивляясь пугающей смеси из букв и символов:

И только когда вы осознаете, на что способна эта формула, вы начинаете ценить ее внутреннюю красоту. Надеюсь, эта глава поможет вам совладать с кажущимся сумбуром символов, а также позволит понять, что означает уравнение и откуда оно берется.

Во многих ситуациях мы хотели бы выяснить значение некоего неизвестного числа. Какую дозу лучевой терапии следует применить, чтобы уменьшить опухоль щитовидной железы? Сколько денег вам придется платить ежемесячно, чтобы покрыть тридцатилетний ипотечный кредит в размере 200 тысяч долларов при фиксированной годовой процентной ставке, равной 5%? С какой скоростью должны лететь ракеты, чтобы преодолеть притяжение Земли?

В алгебре мы уже получили первый опыт решения простейших задач такого типа. Эти решения были разработаны исламскими математиками около 800 года нашей эры и основывались на более ранних исследованиях египетских, вавилонских, греческих и индийских ученых. Импульсом для их разработки послужили сложности при расчете размера наследства37 по канонам исламского права.

Например, предположим, что умирает вдовец и оставляет все свое имущество (10 дирхемов) дочери и двум сыновьям. Согласно законам ислама, сыновья должны получить равные доли, причем каждому сыну положена сумма вдвое большая, чем дочери. Сколько дирхемов причитается каждому из наследников?

Давайте используем букву х для обозначения суммы наследства дочери. Пока нам неизвестно значение х, мы можем рассуждать о нем как об обычном числе. В частности, мы знаем, что каждый сын получит в два раза больше, чем дочь, то есть по 2x. Таким образом, общее наследство равно x + 2x + 2x, всего 5x, и эта сумма должна равняться общей стоимости наследственного имущества в 10 дирхемов. Следовательно, 5x = 10 дирхемов. Наконец, разделив обе части уравнения на 5, мы видим, что х = 2 дирхема (это доля дочери). Поскольку каждый из сыновей наследует 2x, то им причитается по 4 дирхема.

Обратите внимание, что в этой задаче появилось два типа чисел: известные — 2, 5 и 10 и неизвестные, такие как х. Как только мы смогли вывести соотношение между ними (воплощенное в уравнении 5x = 10), сразу же получили возможность выделить неизвестное х, упростив уравнение путем деления его обеих частей на 5. Это немного напоминает, как скульптор обрабатывает кусок мрамора, пытаясь освободить статую из камня.

Потребовалась бы несколько иная тактика, если бы мы столкнулись с необходимостью вычесть известное число из неизвестного, как в уравнении х – 2 = 5. Чтобы выделить x в этом случае, мы избавляемся от 2, добавив ее в обе части уравнения. Следовательно, слева будет х, а справа 5 + 2 = 7. Таким образом, x = 7, что вы, конечно, уже поняли.

Хотя этот метод сейчас знаком всем студентам, изучающим алгебру, они не осознают, что от него произошло само понятие алгебры. В начале IX века работавший в Багдаде математик Мухаммад ибн Муса аль-Хорезми38 написал фундаментальный учебник, в котором говорилось, что к обеим частям уравнения следует прибавлять величину, равную вычитаемой величине (число 2 в приведенном выше примере). Он назвал этот процесс al-jabr (по-арабски «восстановление»), что позже трансформировалось в «алгебру». Затем, спустя много лет после своей смерти, он опять выиграл этимологический джекпот, поскольку его собственное имя, аль-Хорезми, живет и доныне в слове «алгоритм».

В своем учебнике, прежде чем начать пробираться сквозь хитросплетения вычислительного наследия прошлого, аль-Хорезми описал более сложный класс уравнений, воплощающий соотношение между тремя видами чисел, а не только теми двумя, которые мы рассматривали выше. Наряду с известными числами и неизвестными (х) в эти уравнения также включены квадраты неизвестных (x2). Они теперь называются квадратными уравнениями, от латинского quadratus, то есть «квадрат». Древние ученые в Вавилоне, Египте, Греции, Китае и Индии уже бились над головоломками, часто возникающими в архитектурных или геометрических задачах, связанных с определением площадей или пропорций, и показали, как решать некоторые из них.

Например, аль-Хорезми рассмотрел квадратное уравнение

x2 + 10x = 39.

Однако в его время такие задачи формулировались устно, а не в виде уравнений. Он задал вопрос: «Какая площадь при увеличении на десять собственных корней дает 39?» (Здесь термин «корень» относится к неизвестным х).

Эта задача гораздо сложнее, чем те две, которые мы рассматривали выше. Как мы можем выделить х сейчас? Приемы, используемые ранее, неэффективны, так как члены уравнения x2 и 10x здесь наступают друг другу на пятки. Даже если удастся освободиться от x в одном из них, другой член остается связанным. Например, если мы разделим обе части уравнения на 10, 10x сократится до x (к чему мы и стремились), но x2 превратится в x2/10, что нисколько не приближает нас к желаемому результату. Основным препятствием является то, что мы хотим одновременно сделать две, по-видимому, несовместимые вещи.

На предложенном аль-Хорезми решении квадратного уравнения стоит остановиться подробнее. Во-первых, потому что оно блестяще, а во-вторых, потому что оно настолько мощное, что позволяет решать все квадратные уравнения одним махом. Это означает, что, если известные числа 10 и 39 из нашего уравнения поменять на другие, метод все равно будет работать.

Идея аль-Хорезми состоит в том, чтобы представить каждое из слагаемых в уравнении геометрически. Первый член x2 — это площадь квадрата со стороной x.

Второй член 10x можно рассматривать как площадь прямоугольника 10 на х, или, более изощренно, как площадь двух равных прямоугольников, каждый размером 5 на х. (Разбиение прямоугольника на два меньших готовит почву для основного маневра, который последует далее, — получения полного квадрата.)

Прикрепите два новых прямоугольника к площади x2 для получения г-образной фигуры x2 + 10x:

В таком случае головоломка аль-Хорезми сводится к вопросу: если г-образная фигура занимает 39 квадратных единиц площади, то каким должен быть х?

Изображение само по себе неуклонно подталкивает к следующему шагу. Посмотрите на пустой угол. Если бы он был заполнен, то г-образная фигура превратилась бы в идеальный квадрат. Учтем это наблюдение и заполним квадрат.

Помещение в пустой угол квадрата 5 × 5 добавляет 25 квадратных единиц к уже существующей площади х2 + 10х и в общей сложности дает x2 + 10x + 25. Это равносильно выражению общей площади в виде (x + 5)2, так как каждая сторона заполненной площади равна х + 5 единиц.

Между тем, поскольку мы добавили 25 единиц к левой части уравнения x2 + 10x = 39, для сохранения баланса следует добавить 25 и к его правой части. Так как 39 + 25 = 64, то наше уравнение превращается в

(х + 5)2 = 64.

Это уравнение наверняка решаемо. Вычисляя квадратные корни из его обеих частей, получаем х + 5 = 8 и, следовательно, х = 3.

Число 3 действительно является корнем уравнения х2 + 10x = 39. Если возвести 3 в квадрат, получится 9, а затем добавить 10 раз по 3 (выйдет 30), то общая сумма составит 39, что и требовалось доказать.

В этом решении есть одна загвоздка. Если бы аль-Хорезми занимался алгеброй сейчас, то он не получил бы «полного доверия» к такому ответу, так как не упомянул, что отрицательное число х = –13 тоже является корнем. Возведение его в квадрат дает 169, умножение на 10 даст –130, а их сумма составит 39. Но это отрицательное решение в древние времена было бы проигнорировано, поскольку квадрат со стороной отрицательной длины геометрически не имеет смысла. Сегодня алгебра меньше обязана геометрии, и мы считаем положительные и отрицательные решения одинаково правильными.

Только спустя несколько столетий после смерти аль-Хорезми ученые пришли к пониманию, что все квадратные уравнения могут решаться аналогичным способом — путем заполнения квадратов до тех пор, пока они склонны это позволять отрицательным числам (и их квадратным корням), которые часто встречаются в ответах. Такая линия аргументации выявляет, что решения любых квадратных уравнений

ax2 + bx + c = 0

(где a, b, c — известные, но произвольные числа, а х — неизвестная) могут быть представлены в виде формулы для вычисления их корней

Что такого примечательного в этой формуле и насколько она точна и всеобъемлюща? Ответы находятся прямо в ней: она работает при любых коэффициентах a, b и c. Учитывая наличие бесконечного множества возможных вариантов значений каждого из них, для одной формулы это уже немало.

В наше время квадратные уравнения стали незаменимым инструментом для практического применения. Инженеры и ученые используют их для настройки радиоаппаратуры, анализа вибрации пешеходных мостов и небоскребов, расчетов движения пушечного ядра, снижения и роста популяции животных и бесчисленного множества других явлений реального мира.

Для формулы, родившейся тринадцать веков назад, это совсем немало.

11.Инструменты силы

Если вы были страстным любителем телевидения в 1980-х, то, конечно, помните сериал под названием «Детективное агентство “Лунный свет”» с живыми диалогами и романтическими отношениями между партнерами по фильму. В нем пару проницательных частных детективов Дэвида Эддисона и Мэдди Хэйс исполняли Брюс Уиллис и Сибилл Шепард.

В ходе расследования одного особенно жестокого дела Дэвид интересуется у помощника, кто ему кажется наиболее вероятным преступником. «Ума не приложу», — отвечает Мэдди. «А вы знаете, чего я не понимаю?» — спрашивает Дэвид. «Логарифмов?» — догадывается помощник. И Дэвид, реагируя на взгляд Мэдди, произносит: «А что? Вы их понимаете?»

Это довольно точно отражает всеобщее отношение к логарифмам. Большинство людей после окончания средней школы их никогда уже больше не используют, по крайней мере осознанно, и не обращают внимания на логарифмы, скрывающиеся за кулисами повседневной жизни.

То же самое касается и многих других функций39, рассматриваемых в высшей математике и началах анализа. Степенные функции, показательные функции — в чем их суть? В этой главе я хочу помочь вам по достоинству оценить их полезность, даже если вам никогда не приходилось нажимать на кнопки инженерного калькулятора.

Математику необходимы функции по той же причине, что и строителю молотки и сверла. Инструменты преобразовывают вещи. То же самое делают функции. Поэтому математики часто обращаются к ним для выполнения преобразований. Но вместо дерева и стали функции обрабатывают числа и графики, а порой и другие функции.

Чтобы понять, что я имею в виду, давайте построим график уравнения у = 4 – х2. Возможно, вы помните, как это делается: сначала вы рисуете плоскость xy с горизонтальной осью х и вертикальной у. Затем для каждого значения х вычисляете соответствующее значение y; эта пара чисел является координатами одной точки графика на плоскости xy. Например, если х = 1, то уравнение говорит, что y = 4 – 12 = 4 – 1 = 3. Таким образом (х, у) = (1, 3) координаты точки. После того как вы вычислите и построите еще несколько точек на плоскости, возникнет следующая картина.

У нас получилась изогнутая математическими плоскогубцами кривая. В уравнении для у функция, которая преобразует x в x2, ведет себя подобно обычному инструменту для сгибания материала. Когда ее прикладывают к любой точке на оси х (прямую от точки х до точки х2 можно представить в виде прямого куска проволоки), плоскогубцы изгибают и вытягивают этот кусок проволоки в направлении вниз так, чтобы получилась изогнутая арка, как показано на рисунке.

А какую роль играет число 4 в уравнении у = 4 – x2? Это гвоздь, на который повесят картину на стену. Он поднимает изогнутые арки из проволоки на 4 единицы вверх. Так как при этом все точки кривой поднимаются на одинаковую высоту, то она считается постоянной функцией.

Данный пример иллюстрирует двойственный характер функций. С одной стороны, это инструменты: x2 изгибает часть оси х, а 4 — ее лифт. С другой — строительные блоки: 4 и x2 можно рассматривать как составные части более сложной функции 4 – х2, точно так же, как провода, аккумуляторы и транзисторы — составные части радиоприемника.

Как только вы начинаете смотреть на мир подобным образом, сразу же везде замечаете функции. Описанная выше в виде арки кривая, в математике называемая параболой, — это автограф, который дала квадратичная функция за кулисами. Ищите ее, когда любуетесь струями фонтана. И если вам доведется побывать в международном аэропорту Детройта, обязательно остановитесь у фонтана терминала Delta, чтобы насладиться потрясающими резвящимися параболами40.

Параболы и константы ассоциируются с более широким классом функций — степенными функциями вида xn, в которых значение переменной x возводится в фиксированную степень n. Для параболы n = 2, для константы n = 0.

Разные значения n дают различные ручные инструменты. Например, возведение х в первую степень (n = 1) дает функцию, которая работает как пандус, отражая устойчивое увеличение роста или спада. Такая функция называется линейной, потому что ее графиком, построенным по точкам с координатами (x, y), является прямая линия. Если вы оставите на улице пустое ведро во время непрекращающегося ливня, то количество воды в нем будет расти линейно во времени.

Еще один полезный инструмент — обратно пропорциональная квадратичная функция у = 1/x2, здесь n = –2. (Степень этой функции равна –2, так как x2 стоит в знаменателе.) Эта функция хороша для описания затухания волн и ослабления сил в зависимости от расстояния х. Например, так затихает звук по мере удаления от источника.

Такие степенные функции служат строительными блоками, используемыми учеными и инженерами для описания роста и спада, которые происходят не слишком быстро. Но если нужен математический динамит, пора распаковать экспоненциальные функции. Они описывают все возможные быстропротекающие процессы — от цепных ядерных реакций до пролиферации бактерий в чашке Петри. Наиболее известный пример — функция у = 10x, то есть 10 возведено в степень х. Не путайте ее с ранее рассмотренными степенными функциями. Здесь показатель (степень х) является переменной, а основание (число 10) постоянной, тогда как в степенной функции, подобной х2, все наоборот. Такая перемена мест (переменной и константы) приводит к огромной разнице между этими функциями: при увеличивающемся значении x экспоненциальная функция с показателем x в конечном итоге растет быстрее любой степенной функции, независимо от ее степени. Экспоненциальный рост — невообразимо быстрый рост.

Вот почему так трудно сложить лист бумаги пополам больше семи-восьми раз41. Каждое сложение листа удваивает его толщину, что приводит к ее (толщины) увеличению в геометрической прогрессии. В то же время длина, каждый раз сжимаясь пополам, уменьшается по экспоненциальному закону. После семи сложений толщина стандартного листа из записной книжки становится больше его длины, и поэтому дальше его складывать нельзя. Причем неважно, сколько усилий прикладывает человек при складывании. Предположим, лист можно сложить n раз — в результате стопка должна иметь 2n слоев. Здесь не может быть линейной зависимости, и еще одно сложение невозможно, если толщина стопки больше ее длины.



Поделиться книгой:

На главную
Назад