Одна из самых распространенных, пусть далеко не самых точных формулировок закона Архимеда гласит: «Тело, опущенное в воду, теряет в своем весе ровно столько, сколько весит вытесненная им вода».
Этой формулировки достаточно, чтобы строить океанские пароходы и даже… дирижабли. Несмотря на это, уроки по теме «Закон Архимеда» считаются самыми сложными. Возможно, это связано с тем, что школа всегда старалась дать ученику не только умение делать расчеты, но и понимание того, откуда сила Архимеда берется.
В прежние времена для наглядного разъяснения закона Архимеда существовало множество остроумных приборов. Но поскольку плаванье тел вызвано существующей в жидкости разностью давлений и «передачей его во всех направлениях без изменения», то разъяснение закона Архимеда начиналось с проверки закона Паскаля. Учитель и здесь имел богатый выбор приборов. Все они настолько просты, что вы сможете изготовить их, глядя на рисунки.
Начиналось с самого простого. В снабженный проволочным каркасом цилиндр из каучука наливали ртуть (тогда к ней относились без опаски). И оказывалось, что внизу его стенки раздуты особенно сильно, что свидетельствовало о росте давления с глубиной. Сегодня о ртути знают больше и потому резиновый воздушный шарик наполняют водой. Результат тот же.
В обоих случаях достигается лишь качественное подтверждение правоты Паскаля. Для точного же нужны измерения.
Приборы немецкого изобретателя Гартля позволяли измерять давление жидкости в сосуде на любой глубине в любом направлении. Вот как они действовали. В «аквариум» (рис. 1) опускалась особая чашка, укрепленная на шарнире, позволявшем ее повернуть или наклонить. На чашку была натянута резиновая пленка, а сама она при помощи шланга соединялась с атмосферным воздухом.
Пленка под действием давления прогибалась, а величина прогиба зависела от давления. Через рычажок пленка соединялась со стрелкой, которая двигалась по шкале. Давление воды прогибало пленку, и стрелка отклонялась, показывая в условных единицах его величину. Устройство и действие прибора было предельно понятным любому.
Но в те времена (начало XX века) все вещи рассчитывались на долгие годы работы и должны были быть просты в ремонте. Однако замена в приборе прорвавшейся пленки и присоединение ее к рычажку стрелки вызывало затруднения.
Гораздо надежней и проще в ремонте был другой прибор Гартля (см. рис. 2).
В нем затянутая пленкой чашка соединялась с водяным манометром. Прогибаясь под действием давления воды, пленка вытесняла из чашки воздух. Он поступал в манометр и поднимал в нем столбик воды. Высота его была пропорциональна давлению воды в жидкости.
Тот же изобретатель создал прибор, измеряющий давление жидкости на дно сосуда (рис. 3).
Для этого служила чашка с пленкой, соединенная со стрелкой, почти как в первом приборе. Только стрелка была значительно длиннее и снабжалась большой, хорошо заметной шкалой. К чашке крепили сменные стеклянные сосуды различной формы. Наливая в них воду до определенного — одного и того же — уровня и измеряя ее давление по отклонению стрелки, удавалось доказать, что давление зависит только от глубины сосуда и не зависит от его формы.
Известный изобретатель Отто фон Герике поставил некогда такой опыт. К крышке герметически закрытой бочки с водой он присоединил тонкую, но очень высокую трубку, а затем налил в нее воду. Давление в бочке повысилось, из всех щелей ее забили струи. Это явление принято называть гидростатическим парадоксом, а объясняется оно законом Паскаля. Дополнительное давление, создаваемое в трубке, пропорционально высоте водяного столба. Оно действует на воду, находящуюся в бочке, передается по всем направлениям и заставляет стенки бочки прогнуться. В них образуются щели, и через них бьет вода.
Гидростатический парадокс показывали и при помощи аппарата Сире (рис. 4).
Он состоял из цилиндрического стаканчика с водой, на который плотно, без зазора, надевался цилиндрический колпачок с тонкой высокой трубкой. Когда эту трубку заливали водой, колпачок начинал подниматься. К пояснению собственно закона Архимеда шли отдельными шагами.
К установленному в сосуде прозрачному цилиндру с ровно отрезанным и отшлифованным торцом (рис. 5) прижимали и удерживали на нитке тяжелую пластинку. Когда сосуд заливали водой, нитку выпускали из рук, но пластина продолжала удерживаться, теперь уже давлением воды. Тем самым ученику показывали, что в жидкости существуют силы, направленные вверх, и они могут поддерживать плавающее тело.
Аппарат Шеллена показывал, что плавающее тело до тех пор погружается в воду, пока не вытеснит столько воды, сколько весит оно само (рис. 6).
Аппарат состоял из прозрачного цилиндра со сливной трубочкой, направленной в мензурку. В цилиндр наливали воду до уровня этой трубочки и аккуратно опускали в него заранее взвешенное тело, способное плавать. Оно до какого-то уровня погружалось в воду, которая выливалась в мензурку. По объему воды определяли ее вес, и оказывалось, что он равен весу тела.
Начало XX века — это время появления подводных лодок. Поэтому некоторые опыты посвящались особенностям плавания под водой.
Случается, что подводная лодка ложится на грунт, а после не может всплыть. Объясняется это тем, что грунт имеет большую вязкость и через него на нижнюю поверхность лодки не передается гидростатическое давление. Таким образом, получалось, что лодка, продув балластные цистерны, стала легче воды, но основной причины всплывания — давления снизу — нет, всплыть невозможно.
Существовало несколько приборов, поясняющих это явление. Вот поплавок Гедике (рис. 7).
Его опускают на дно наполненного жидкостью сосуда и вдувают воздух. После этого поплавок остается на дне, словно бы присосавшись к нему. Опыт хорошо получается, если дно сосуда достаточно плоское, а края поплавка ровно срезаны.
Закону Архимеда подчиняются тела, плавающие не только в воде, но и в воздухе. Именно в эту эпоху моря начинают бороздить гигантские военные корабли, а в небе появляются ничуть не отстающие от них по размерам корабли воздушные — дирижабли.
С ними нередко случаются удивительные коллизии. Ранним прохладным утром подъемная сила дирижабля возрастает на несколько тонн, а в знойный полдень, наоборот, настолько же уменьшается. Когда воздушный корабль проходит под облаком, неведомая сила тянет его вверх…
Логически все это объяснить просто. Прохладным утром или в тени под облаком воздух «съеживается» от понижения температуры и делается плотнее. От этого возрастает сила Архимеда, держащая дирижабль «на плаву». Но показать это в классе при помощи воздушных шариков или мыльных пузырей не удавалось (рис. 8).
Однако была доступна для наблюдения водная модель этого явления. Немецкая и русская промышленность выпускала пустотелые латунные шары. Объем и вес такого шара были подобраны столь точно, что он мог оставаться под водой на любой глубине, напоминая подводную лодку или дирижабль, неподвижно зависшие в толще воды. Стоило в сосуд бросить кусочек льда, вода в нем остывала, плотность ее увеличивалась, и шар начинал подниматься, как дирижабль в утреннюю прохладу.
В ближайшие годы, вероятно, измерения, делавшиеся на приборах Гартля, можно будет выполнять при помощи универсальных измерительных комплектов с электронными датчиками. Но при этом лекция учителя потеряет наглядность. Возможно, для массовой школы этого вполне достаточно. Однако там, где физику изучают углубленно, применение добротных демонстрационных приборов намного эффективнее. Да и сделать их самим совсем не сложно!
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Электронный регулятор мощности
Этот несложный регулятор позволит плавно менять мощность электроплит, осветительных приборов, скорость вращения электродрели и многое другое. Его рабочее напряжение 220 В, максимальная регулируемая мощность — 2600 Вт.
Умещается регулятор на плате размерами 62x43 мм (рис. 1).
Основой регулятора мощности является полупроводниковый симистор VS2. Он представляет собой два встречно-включенных мощных диода с общим управляющим контактом. При отсутствии на нем управляющего напряжения симистор закрыт, электрический ток через него не проходит.
При поступлении на управляющий контакт положительного управляющего напряжения симистор открывается и пропускает ток. Чем больше величина управляющего напряжения, тем больше ток. Это и позволяет регулировать скорость вращения электродрели или мощность паяльника.
Управляющее напряжение регулируется потенциометром R3 и подается на управляющий электрод через цепочку R4 (резистор) и VS1 (динистор), которые определяют диапазон регулировки управляющего напряжения. Конденсаторы C1, С2 и С3 фильтруют импульсные сетевые помехи и предотвращают «ложное» открывание симистора.
Все компоненты устанавливаются на печатной плате методом пайки. Чтобы не отслаивались токопроводящие дорожки и не перегревались элементы, время пайки одного контакта не должно превышать 2…3 сек. Для работы используйте паяльник мощностью не более 25 Вт. Рекомендуется применять припой марки ПОС61М или аналогичный, а также жидкий неактивный флюс для радиомонтажных работ (например, 30 %-ный раствор канифоли в этиловом спирте).
При мощности нагрузки более 100 Вт симистор VS2 необходимо установить на радиатор площадью не менее 200 см2. Допускается подключение к устройству нагрузки, имеющей кратковременную пусковую мощность до 3600 Вт.
Внимание! Устройство находится под напряжением, опасным для жизни! Соблюдайте правила безопасности при работе с высоким напряжением. Плату необходимо установить в пластиковый корпус, чтобы исключить возможность соприкосновения с элементами, находящимися под напряжением.
ЧИТАТЕЛЬСКИЙ КЛУБ
Вопрос — ответ
Когда-то в деревне я пробовала настоящую пшенную кашу на топленом молоке. Готовят ее в русской печке. Так у меня вопрос: неужто нельзя придумать какое-то нехитрое устройство для приготовления блюда в обычной газовой духовке?
Тамара Силаева, 17 лет,
г. Балашиха
Для этого духовку надо слегка дооборудовать. Поместите внутрь нее 2–3 кирпича (желательно огнеупорных). Духовку надо хорошенько разогреть, затем выключить и только после этого поставить кастрюлю с молоком. Высокая температура, благодаря кирпичам, будет держаться в духовке несколько часов. Этого вполне достаточно для того, чтобы каша получилась на славу, как у бабушки в деревне. Приятного аппетита!
Мы в доме начали ремонт. Только вот незадача — строительный алебастр настолько быстро схватывается и так прочно пристает к посуде, в которой его замешивают, что ее впору выкидывать. Что посоветуете?
Сергей Хоменко, 13 лет,
г. Калуга
Чтобы избежать неприятностей, поместите внутрь посудины полиэтиленовую пленку. Можно использовать для разведения алебастра и двухлитровую пластиковую бутылку со срезанной верхней частью. А удобнее всего разводить алебастр в половинке старого детского резинового мяча. От резины и пластика засохший алебастр легко отскакивает, стоит слегка помять эластичную посудину.
Мы с братом купили краскопульт и попытались покрасить стены сарая. Но у нас не получается ровное покрытие. Кроме того, пульверизатор часто забивается. Почему?
Сергей Гудов, 14 лет,
г. Химки Московской области
Во-первых, краскопульт плохо разбрызгивает чересчур густую краску. Ее либо нужно развести разбавителем, либо уже использовать кисть или валик.
Во-вторых, даже жидкая краска может содержать комочки, забивающие узкое отверстие. Поэтому краску желательно процедить через марлю.
В-третьих, важно правильно отрегулировать подачу смеси, чтобы получилось равномерное покрытие. Для этого предназначены ручки управления расходом воздуха и подачи краски. Покрутив их, добейтесь, чтобы из пульверизатора шла устойчивая, в меру густая, равномерная струя.
И, наконец, потренируйтесь на каком-нибудь старом заборе, прежде чем приниматься за дело. Стену, а тем более потолок надо равномерно покрывать тонким слоем краски, стараясь избегать наплывов и потеков. Лучше после высыхания поверхности пройтись по стене еще раз, чем увидеть, что она вся в разводах.
Недавно мы с ребятами ходили в поход, но зарядивший дождь испортил все настроение. Мы промокли и долго не могли согреться даже у костра. А как же люди ходят в походы и не мерзнут даже зимой?
Петя Колобов, 12 лет,
г. Сергиев Посад
Чтобы согреться в холодном лесу, натяните с наветренной стороны кусок брезента. Для этого вбейте в землю две жердины, натяните между ними веревку, на которую и повесьте брезент, закрепив его верхний и нижний края. Такой занавес спасет вас от холодного ветра, а теплый воздух от костра позволит быстро согреться.
Кстати, если приходится устраивать костер на снегу или на мокром месте, сначала сделайте настил из сучьев и лапника. А уж на нем разводите огонь.
ДАВНЫМ-ДАВНО
В XIX веке спрос на игрушечные пароходы, паровозы, подъемные краны и станки был огромен. Но любая игрушка — сами, наверное, знаете — быстро приедается. Так почему бы не выпускать игрушки, которые можно переделывать?
Френк Хорнби в 1901 году. Основу его составил набор стальных планок с отверстиями. К нему прилагались оси, шкивы, шестеренки и крепежные детали. Был в комплекте и красочный альбом чертежей, позволявший собрать много различных конструкций.
Схематическая модель автомобиля или трактора получалась такой, что легко узнавался тип и даже фирма-изготовитель. Особенно любили собирать из «Меккано» подъемные краны. Для ребенка лет десяти это трудная, но очень интересная задача. Справившись с ней, он не только узнает принцип работы устройства, но и становится способен изменить его в нужную сторону. Короче, становится изобретателем.
Изобретение Фрэнка Хорнби сразу же получило огромное признание. Сама же идея набора однотипных деталей для самостоятельной сборки различных моделей нашла множество подражателей и постепенно распространилась далеко за рамки мира детских игрушек. Можно заметить, что со временем стали выпускать универсальные наборы для сборки игрушечных домов, а вслед за тем появилось блочное строительство. Универсальные наборы для сборки учебных электрических схем обернулись сегодня набором блоков для сборки компьютеров.