Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Юный техник, 2006 № 11 - Журнал «Юный техник» на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Восьмиклассница Светлана Сиротинская интересуется проблемами экологии. Ее исследование называлось так: «Воздействие работающего сотового телефона на развитие куриных яиц».

Ни для кого уже не секрет, что обыкновенный мобильник не так уж безвреден, как это кажется на первый взгляд. Все дело — в СВЧ-излучениях. И все-таки Света решила проверить, насколько вредны подобные излучения для живых организмов. Для эксперимента понадобились домашний инкубатор и несколько партий по 30 яиц с птицефабрики. Сотовый телефон во время первой стадии опыта не использовался. И через 22 дня ровно 30 ярко-желтеньких цыплят вылупились на свет.

В следующий раз в центре инкубатора на специальной подставке разместили мобильник. И когда трубка стала звонить через 15 минут с 10 до 20 часов каждые сутки. Света и ее друзья недосчитались семи цыплят из всей партии в 30 яиц. Причем больше всего пострадавших яиц оказалось в лунках, ближайших к телефону.

Очередная попытка, но уже с виброзвонком, привела к гибели девяти куриных зародышей. Наконец, при отключении и звонка, и виброзвука, но при работающем телефоне в очередной партии на свет появилось 28 цыплят.

Выводы, как говорится, делайте сами!

Публикацию подготовил А. ПЕТРОВ


ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ

Умные материалы

Помните знаменитый пример о роте солдат, которые маршировали в ногу по мосту, и тот обрушился в результате резонанса? «Такое было бы невозможно, — утверждают специалисты нового научного направления, — если бы в свое время конструкторы и строители того моста воспользовались последними достижениями адаптроники»…


В наши дни достаточно много материалов с изменяющимися по команде свойствами. Вспомним хотя бы сплавы с памятью или очки-«хамелеоны», имеющие фотохромные стекла. Однако профессор Холген Хальзерка, преподающий в техническом университете Дармштадта и одновременно возглавляющий Институт эксплуатационной прочности и надежности систем им. Фраунгофера, полагает, что перечень умных материалов для нового поколения конструкций, машин и механизмов далеко не исчерпан. Он прогнозирует появление уже в ближайшем будущем новых сплавов и композитов, которые смогут активно реагировать на изменения внешних условий, меняя соответствующим образом свои собственные характеристики.

В этом как раз и заключается основной принцип адаптроники — отрасли науки, изучающей возможности приспособления к изменениям окружающей среды того или иного механизма, машины или конструкции.

Для наглядности вернемся к мосту, упомянутому в начале. Когда такое сооружение строится по обычной технологии, то в его конструкцию приходится закладывать солидные запасы прочности. Ведь мост должен устоять при сильнейшем урагане, возможных сотрясениях почвы и при самой различной нагрузке. На испытаниях на новый мост, на всю его длину, посылают колонну тяжелых, полностью загруженных грузовиков. Такое вряд ли потом когда случится за всю историю эксплуатации моста, но проверять конструкцию на прочность при экстремальных перегрузках все-таки приходится. Излишек прочности, закладываемый в конструкцию, приводит к необходимости возведения лишних опор, утяжеления самой конструкции, излишней стоимости сооружения. И все же не избавляет от возможных случайностей. Вспомним ту же роту: строители моста упустили из виду возможность создания переменных нагрузок определенной частоты, вот мост и рухнул.

Иное дело, если бы такой мост построили по правилам адаптроники. Тогда бы в его конструкцию, кроме обычных пассивных элементов, были бы заложены и активные элементы. Их датчики восприняли бы топот солдатских сапог как сигнал к действию. И соответствующие элементы конструкции подверглись бы ритмичному усилению. И никаких неприятностей не возникло бы…

Таким образом, адаптроника открывает новые возможности для построения облегченных, но в то же время безопасных конструкций. Как подобная активная система уже создается и действует на практике, мы можем рассмотреть еще на одном примере. Ныне все автомобили конструируются с учетом норм пассивной и активной безопасности. Пассивная безопасность предусматривает, чтобы у автомобиля была прочная рама, но сминаемые капот и багажник, которые при столкновении принимали бы на себя и гасили энергию удара.

Кроме того, при аварии во многих автомобилях срабатывают соответствующие датчики, включающие систему экстренного торможения, надувающие подушки безопасности и т. д.

Однако конструкторы знают, что все эти меры в основном достаточны лишь при фронтальном ударе. Но если автомобиль получит удар в бок, дверь легко сминается, а то и просто слетает с петель и, оказываясь внутри салона, наносит травмы пассажирам. Сейчас проходит испытания новая система безопасности. При опасности бокового удара снизу в междверное пространство мгновенно выдвигаются прочные штыри, удерживающие дверь на месте и повышающие ее жесткость. А тотчас после удара эти штыри вновь убираются, позволяя беспрепятственно открыть двери автомобиля для экстренной эвакуации.

Такая система должна иметь, как минимум, три элемента: сенсоры, подающие сигнал опасности, микропроцессор или некий мозг, анализирующий принятый сигнал и отдающий приказ на срабатывание защиты, и непосредственно «мышцы» — исполнительные элементы самой защиты.

Для всего этого, конечно, необходимы материалы и устройства, способные выполнять роль органов чувств, мышления, исполнительных мышц. Они не могли быть созданы в позапрошлом или даже в начале прошлого столетия. А потому первые прообразы адаптронных систем стали появляться лишь в середине 80-х годов XX века. Именно в это время появились первые научные работы, показывающие, каким образом можно целенаправленно модернизировать конструкционные материалы.

Сейчас к наиболее распространенным материалам, способным активно противостоять натиску окружающей среды, относятся пьезокристаллы. «Пьезо» в переводе с английского языка означает «давление». И в самом деле, если надавить на пьезокристалл, то есть приложить к нему механическое усилие, и он электризуется, образуя на противоположных гранях отрицательные и положительные заряды. Само это явление, именуемое прямым пьезоэффектом, было исследовано еще знаменитым французским ученым, лауреатом Нобелевской премии Пьером Кюри в 1880 году. И его свойствами пользовались, например, в пьезоголовках проигрывателей грампластинок.


В наши дни инженеры широко используют и так называемый обратный пьезоэлектрический эффект. Если воздействовать на пьезокристалл электрическим полем, можно вызывать его механическую деформацию, отметить высочайшую скорость реакции подобных материалов. Например, есть пьезокристаллы, которые способны всего за 0,00006 секунды развить усилие в 3000 ньютонов. Величина перемещения при этом измеряется тысячными долями миллиметра, но ведь можно собирать комплекты из нескольких пьезоблоков.

Подобные устройства уже нашли себе применение в практике. Так, в Германии начат серийный выпуск форсунок для дизельных двигателей, которые меняют режим своей работы в зависимости от конкретной необходимости несколько десятков тысяч раз в секунду. Главный элемент такой форсунки — именно пьезоблок, регулирующий момент впрыска топлива в цилиндр, его объем и рабочее давление.

Инженеры фирм «Бош» и «Сименс» создали для такого блока специальную пьезокерамику с примесью окислов циркония и свинца, что позволяет материалу выдерживать огромные механические и тепловые нагрузки в течение 20 лет.

Аналогичные материалы, меняющие свои механические свойства под воздействием электромагнитных полей, тепла или света, могут быть использованы и в адаптронике. Сейчас материаловеды специально занимаются этой проблемой, создавая все новые сорта пьезокерамики и пьезополимеров, электро- и магнитореологические жидкости, меняющие свою вязкость под воздействием электромагнитных полей, и сплавы с эффектом памяти.

К сожалению, пока подобные системы все еще очень дороги. Поэтому в первую очередь активные системы используются в особо ответственных конструкциях — например, в космических и авиационных отраслях машиностроения. Так, активные материалы, созданные специалистами Всероссийского института авиационных материалов, были опробованы в конструкции экспериментального истребителя с крылом обратной стреловидности С-37 «Беркут».


Говорят, аналогичные системы могут оказаться весьма эффективны для укрощения вибраций и резкого уменьшения шума в различных двигателях и машинах. Как показывают исследования наших дней, даже небольшие адаптивные элементы позволяют добиться значительного эффекта, например, при резонансном раскачивании системы.

В. ЧЕТВЕРГОВ, инженер

Кстати…

СУПЕР ДЛЯ ГИПЕР

Интересную целевую программу создания новых материалов (в том числе и интеллектуальных) представили недавно три известных научных организации: Всероссийский научно-исследовательский институт авиационных материалов (ВИАМ), Институт общей и неорганической химии имени Н.С. Курнакова РАН и Российский химико-технологический университет имени Д.И. Менделеева. В результате научно-технического сотрудничества ведущих наших материаловедов уже в ближайшие годы отечественная промышленность получит керамические композиционные материалы нового поколения, выдерживающие температуру до 2000 °C. Именно такие материалы нужны, например, для современных газотурбинных двигателей, которые поставят на гиперзвуковые самолеты.

При этом, по словам генерального директора ВИАМ, члена-корреспондента РАН Евгения Каблова, наши исследователи не ставят себе задачу догнать зарубежных конкурентов, а предлагают принципиально новые решения в создании материалов, превосходящих по своему уровню зарубежные аналоги.

СОЗДАНО В РОССИИ

По следам «Фрама»

Проект первой в мире плавучей полярной станции разработан конструкторами Карельского морского центра (КМЦ). «Он предполагает создание уникального корабля, оснащенного для проведения полярных исследований и способного дрейфовать в арктических льдах, — рассказал давний знакомый нашего журнала, директор КМЦ Виктор Дмитриев. — При строительстве предлагается использовать традиции старинного деревянного судостроения, сочетающиеся с новейшими технологиями, которые разработаны специально для этого проекта».

Разработанный несколько лет назад в КМЦ проект парусника, предназначенного для походов в Арктику, оснащенный всем необходимым для проведения арктических исследований, заинтересовал научно-исследовательские институты, занимающиеся полярными исследованиями, в том числе НИИ Арктики и Антарктики и Институт водных проблем Севера Карельского научного центра РАН. В результате родился проект «научно-исследовательского судна — дрейфующей полярной станции» (НИС-ДПС), получивший название «Полярный Одиссей».

— Такие суда принципиально отличаются от всех других, работающих сейчас в высоких широтах, — продолжал рассказ Виктор Дмитриев. — Полярная дрейфующая станция будет иметь деревянную клееную обшивку из сосны и дуба в четыре слоя толщиной 500 мм, защищенную стальными пластинами толщиной в 5 мм из маломагнитных материалов, что необходимо для обеспечения работы оборудования, измеряющего магнитные поля Земли…

Древесина — лучший материал для таких станций, потому что она хорошо сопротивляется сжатию льдами, сохраняет тепло и не нагревается от солнца. Зверобойные шхуны и исследовательские суда, ходившие в Арктику в начале XX века, были деревянными и с честью выдержали испытание льдами.

Необычная яйцевидная форма корпуса, напоминающая по своему устройству знаменитый «Фрам» Нансена, позволит судну двигаться как носом, так и кормой вперед. Чтобы во льдах не были поломаны винты и рули, они сделаны убирающимися внутрь корпуса. Главная палуба будет закрыта специальной оболочкой, защищающей ее от скоплений льда и снега, а также обеспечивающей экипажу более комфортные условия для работы. В центральной части судна расположена специальная шахта, позволяющая опускать под воду различное научно-исследовательское оборудование, в том числе батискаф и подводного робота. На верхней площадке — центральный портал с радионавигационной и метеорологической аппаратурой и ветроэлектростанцией для выработки электроэнергии.

Судно длиной около 50 м сможет взять на борт до 30 человек и обеспечить им комфортное проживание в течение 3 лет. Причем размещение научно-исследовательского оборудования на «Полярном Одиссее» обойдется в 3–4 раза дешевле, чем, скажем, на ледоколе.


Схема плавучей станции «Полярный Одиссей».

Цифрами обозначены: 1 — корпус; 2 — ветряк; — радионавигационное и метеорологическое оборудование; 4 — убирающиеся винты; 5 — рубка.

В. ЧЕРНОВ

Звездная батарея

Обычно, когда речь заходит о батареях, которые преобразуют свет в электричество, их называют солнечными, имея в виду, что источником энергии является наше светило. А вот недавно российские ученые из Научного центра прикладных исследований Объединенного института ядерных исследований в Дубне создали батарею, которая способна работать даже при свете звезд.


«Этот уникальный источник электроэнергии, не имеющий аналогов в мире, способен работать круглые сутки», — подчеркнул руководитель центра Валентин Самойлов. А вся хитрость в том, что ученым удалось создать новое вещество — гетероэлектрик. Он представляет собой фотоэлемент, имеющий высокий КПД преобразования как в видимом, так и в инфракрасном спектре. Причем поначалу получаемая энергия накапливается в компактном гетероэлектрическом конденсаторе огромной емкости. А уже из него расходуется по мере надобности.

Несмотря на то что российские исследователи уже получили патенты практически на все элементы «звездной батареи» — наноусилитель излучения, конденсатор и прочие элементы электросхемы, оптическое стекло, фотокатод, фотоэлемент, — ученые не стали раскрывать все свои секреты. Сказали только, что гетероэлектрик — это «гетерогенная субстанция, состоящая из носителя и активного начала — наночастиц вещества, размер частиц которого и расстояние между ними меньше длины воздействующего электромагнитного поля». За счет этого, дескать, и получается КПД, превышающий обычные показатели вдвое в области видимого света (54 %, что является сегодня мировым рекордом) и в 1,5 раза в инфракрасной области (31 %). А компактность нового устройства в 1000 раз превышает ныне существующие батареи!

Осторожность создателей этого уникального устройства становится понятной, когда узнаешь, что данная разработка может быть эффективно использована в 24 направлениях науки и техники. И это наверняка только начало. Например, в настоящее время ведут разработки дипольного нанолазера с гетерогенными элементами, который будет опять-таки на порядки превосходить показатели существующих устройств.

Владимир БЕЛОВ

КОЛЛЕКЦИЯ ЭРУДИТА

Волчок все вертится…

Глобальное потепление климата на Земле многие пытаются объяснить парниковым эффектом. Но только ли в нем дело?


Ученые из Канзасского университета в США попытались объяснить большую часть глобальных изменений на планете не только процессами, происходящими в атмосфере, но и особенностями вращения Земли как вокруг собственной оси, так и вокруг Солнца. Кроме того, в своей гипотезе они предлагают принять во внимание еще и вращение Галактики, в которой нам выпало жить.

Нашу Галактику — Млечный Путь — можно представить себе как диск, состоящий из звезд, пыли, газов и планет, вращающийся вокруг своей оси с такой скоростью, что полный оборот осуществляется за 250 миллионов лет. Вращение диска не так уж равномерно: вращаясь, он еще и покачивается, и каждая отдельно взятая на нем точка меняет свою траекторию, перемещаясь то вверх, то вниз.

Когда наша Солнечная система или ее часть как бы «высовывается» из диска вниз или вверх, то получает дополнительную порцию космического излучения, столь опасного для жизни на Земле и влияющего на протекание многих других природных процессов. Например, взмыла вверх Солнечная система — и вымерли динозавры. Нырнула вниз — не стало мамонтов. Кто следующий?..

Смена биологического разнообразия, как подсчитали американцы, происходит один раз в 62 миллиона лет, и похоже, что исчезновение целых видов земных обитателей действительно может быть связано именно с космическими причинами. Причем это не единственная опасность, подстерегающая Землю. Есть мнение, что еще опаснее колебания Солнечной системы внутри Галактики, где находится большое количество разного рода сгущений. Время от времени наша система пробирается сквозь водородные облака, сконцентрированные в волнах плотности Галактики, и тогда неминуемо меняется климат. Ведь облака эти настолько плотны, что, проникая в атмосферу Земли, рассеивают солнечный свет, охлаждают планету. И тогда у нас наступает очередной ледниковый период.

С ПОЛКИ АРХИВАРИУСА

Как построить летающий остров

Как вы, наверное, помните, описывая приключения Гулливера, английский писатель Джонатан Свифт разместил государство математиков королевство Лапуту на летающем острове, в основании которого была круглая алмазная плита диаметром 7 км и толщиной 180 м.


Это было не природное образование, а явно рукотворное сооружение, похожее на корабль. В центре корабля-острова в особой шахте располагался двигатель. Его описание автор дал подробно, со всеми основными размерами, словно в расчете на повторное изготовление. Главной частью двигателя был укрепленный на подвижной оси магнит, похожий на стрелку огромного компаса. Он имел в длину примерно 6 м и диаметр в самой толстой части около 3 м. Магнит этот взаимодействовал с вертикальной составляющей магнитного поля Земли и тем самым создавал подъемную силу для удержания острова в воздухе.

Исходя из наших современных знаний, можно сделать вывод, что такое устройство вряд ли сможет работать. Дело в том, что магнитное поле Земли весьма равномерно и потому может лишь разворачивать находящийся в нем магнит или стрелку компаса. Притяжение или отталкивание создает только неравномерное магнитное поле. (Именно оно наблюдается у полюсов магнита, когда мы, например, собираем с его помощью рассыпанные железные предметы.)

Джонатан Свифт был очень образованным для своего времени человеком, и можно предположить, что, описывая летающий остров и его двигатель, писатель хотел поделиться с современниками своими мыслями о том, как человек может подняться в воздух.

И Свифт, конечно, не одинок. Целый класс явлений, способных без особых затрат энергии создавать подъемную силу и поддерживать полет огромных летающих объектов, быть может, даже размером с целый город, на протяжении почти ста лет изучается учеными-энтузиастами всего мира.


Джонатан Свифт в таких мельчайших подробностях описал в книге конструкцию движителя летающего острова, что, казалось, уже сумел его построить и теперь делился с современниками своим опытом.

Вот вам примеры. Американец Джон Серл с 14 лет начал работать на заводе по производству постоянных магнитов для счетчиков.


Магниты эти, как правило, имели форму цилиндра. Их свойства удивили юношу, и он собрал и начал изучать устройство, внешне напоминающее роликовый подшипник, внешнее кольцо и ролики которого были изготовлены из сплавов с высокой намагниченностью (рис. 1).




Поделиться книгой:

На главную
Назад