Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Юный техник, 2007 № 09 - Журнал «Юный техник» на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:


А вот расширение коммерческих запусков с Байконура весьма затруднено. Дело в том, что, скажем, в США существуют весьма жесткие правила контроля за распространением ракетных и космических технологий. Поскольку же практически любой иностранный спутник, как правило, имеет в своей «начинке» элементы, произведенные в США, то американские власти весьма придирчиво подходят к выдаче лицензии на его вывоз в казахские степи. А вот к вывозу таких грузов во Французскую Гвиану те же американские чиновники относятся куда проще.

Нет здесь и особых экологических проблем — все части стартующих ракет падают в океан, в нейтральные воды.

Есть у космодрома Куру и еще одно очень важное преимущество. Это самая близкая к экватору космическая площадка. А потому отсюда можно будет «выстреливать» полезные грузы такого веса, о которых немыслимо и говорить ни на Байконуре, ни даже на американском космодроме, что расположен куда южнее — на мысе Канаверал во Флориде.

Все дело в том, что по законам физики линейная скорость вращения нашей планеты на экваторе гораздо больше, чем в любой другой точке (космодром Куру отстоит всего на 3 градуса от экватора). Так, при запуске с Байконура «Союзы» выводят в космос спутники массой до 2 тонн. На Куру центробежные силы вращения Земли позволяют увеличить полезную нагрузку в полтора раза.

Общая стоимость проекта, руководителем которого является французский космонавт Жан-Пьер Зньере, составляет 344 млн. евро. Доля России — около 130 млн. евро, причем Европейское космическое агентство в основном финансирует строительство стартового комплекса само, а России предоставлен заем, который будет погашен за счет доходов от реализации проекта. Ведь стоимость пуска одного «Союза» будет равна примерно 50 млн. евро. Программой же предусмотрено около 50 запусков только в предстоящие полтора десятилетия.

По словам руководителя «Роскосмоса» Анатолия Перминова, представители космических ведомств Франции и России уверены, что российские «Союзы» станут «идеальным дополнением» к европейским носителям, парк которых в настоящее время состоит лишь из тяжелой ракеты «Ариан-5 ЕКА» и легкой итальянской «Веги».

В. ЧЕРНОВ


Так будет выглядеть стартовый комплекс для ракеты «Союз-СТ» на космодроме Куру. Рис. ЕКА.


Наша справкаКОСМОДРОМЫ МИРА

Байконур (Казахстан — Россия) расположен в Казахстане, на берегу Сырдарьи. Административный центр — г. Байконур (он же Ленинск). Используется Россией и Украиной. Отсюда запускают ракеты-носители (PH): «Союз», «Протон», «Рокот», «Зенит», «Циклон-3».

Космический центр им. Джона Ф. Кеннеди (США) расположен на мысе Канаверал. Создан в 1946 году. Опытные пуски ракет — с 1950 года. Первый запуск спутника — в 1958 году. Используются PH Delta и Atlas.

Плесецк (Россия) расположен в 180 км к югу от Архангельска. Возник как ракетная база в декабре 1959 года. Первый старт состоялся 17 марта 1966 года. В 70 — 80-е годы XX века с него производилось до 40 % всех мировых космических запусков.

Свободный (Россия) расположен на Дальнем Востоке, в Амурской области. Основан в 1994 году на базе дивизии ракетных войск стратегического назначения.

Капустин Яр (Россия) базируется в Астраханской области, в окрестностях г. Знаменска. Бывший центр испытаний первых отечественных баллистических ракет. Ныне космодром вспомогательного назначения.

Международный проект «Морской старт». С 1999 года успешно проводятся запуски с океанской платформы Odyssey, изготовленной в Норвегии и переоборудованной под стартовую позицию в Выборге (РФ). Районом старта является экваториальная зона в Тихом океане. Используются PH «Зенит-3SL) с разгонным блоком ДМ-SL. Участниками проекта являются Россия, США, Украина и Норвегия.

Куру (Французская Гвиана) используется Европейским космическим агентством. Опытные запуски ракет проводятся с 1968 года. Первый запуск спутника состоялся в 1979 году.

Аль-Анбар (Ирак) расположен в 50 км западнее Багдада. Построен в 1989 году. Во время операции «Буря в пустыне» подвергся значительным разрушениям и с тех пор не эксплуатируется.

Шрихарикота (Индия) расположен в 100 км севернее города Мадрас. Функционирует с 1979 года. PH — SLV-3, ASLV, PSLV.

Кагосима (Япония) расположен в префектуре Кагосима на острове Кюсю. Функционирует с 1970 года. PH — Lambda-45, Mu-3S, M-V.

Танегасима (Япония). Первый запуск спутника состоялся в 1975 году. PH — Н-2.

Мусудан (КНДР) находится на восточном побережье Северной Кореи, неподалеку от городов Нодонг и Тасподонг в округе Квандай провинции Камгуонг. PH — Taepodong.

Цзюцюань (Китай) расположен в провинции Ганьсу в пустыне Гоби на высоте 1000 м над уровнем моря. Функционирует с 1969 года. PH — Long March, F6-1, CZ-2D, CZ-2F.

Сичан (Китай) — основной космодром КНР для «геостационарных» запусков. PH — CZ-2E, CZ-3.

Алькантара (Бразилия) находится в северной части Бразилии на побережье Атлантического океана. Первый и пока единственный запуск был осуществлен 2 ноября 1997 года. PH — VLS.

Ванденберг (США) находится 8 районе Лос-Анджелеса (штат Калифорния). Первый запуск спутника в 1959 году.

Уоллопс (США) расположен на острове Уоллопс (штат Вирджиния). Первый удачный запуск спутника состоялся в 1961 году.

ИНФОРМАЦИЯ

АВТОМОБИЛЬ ДЛЯ ПОГРАНИЧНИКОВ. Комплекс оперативно-служебной деятельности «Страж» на шасси вездехода Mitsubishi L 200 или УАЗ «Патриот» включает в себя радиолокатор, гиростабилизированную систему визуального наблюдения, а также индикатор радиоуправляемых фугасов и мины. Комплекс может оснащаться системами электронного слежения, которые распознают неподвижные и движущиеся объекты в радиусе 15 км. «Страж» также имеет аппаратуру спутниковой связи и компьютерную систему для сбора, хранения, обработки и документирования информации.

Еще одна особенность установки: в походном положении машина выглядит как обычный внедорожник. Но, достав из багажника антенну радара, оптикоэлектронный модуль-экипаж за 5 минут может полностью «вооружить» автомобиль.

«ЖИВАЯ» ВОДА ПРОТИВ РАДИАЦИИ? Вода с низким содержанием тяжелого изотопа водорода — дейтерия способна минимизировать последствия радиационного излучения. Об этом рассказал журналистам заведующий отделом систем жизнеобеспечения Института медико-биологических проблем РАН Юрий Синяк. «Проведя эксперименты в Дубне, мы установили, что у мышей, употреблявших «бездейтериевую» воду, снижаются последствия радиационных повреждений в организме, стимулируются процессы восстановления в органах иммунной системы и кроветворения», — сообщил он. Ученый полагает, что такую воду можно будет использовать для защиты космонавтов в ходе длительных экспедиций на Луну и Марс.

РАЗВИВАТЬ МЕХАТРОНИКУ призывают соотечественников наши ведущие специалисты. Сотрудники МГТУ имени Н.Э. Баумана, Московского государственного технологического университета «СТАНКИН» и некоторых других научно-технических центров страны полагают, что именно эта дисциплина, родившаяся недавно на стыке механики, электроники и информатики, позволит совершить очередную революцию в машиностроении и обработке металлов.

Кстати, их активно поддерживают британские коллеги из Исследовательского центра мехатроники университета Демонтфорта, которые полагают, что только совместными усилиями специалисты развитых стран смогут быстрее преодолеть нынешний застой в машиностроении.

НОВЫЕ ЛОКАТОРЫ МАИ. По словам профессора Вячеслава Шевцова, эти разработки не имеют аналогов в мире. Одна из них — это сверхширокополосный радар. Как показали испытания, такой локатор, установленный на автомобиле, обеспечивает отчетливую видимость в темноте, в пыли, дыму. А это очень актуально, например, для спортивных автомобилей, участвующих в ралли «Париж — Дакар».

Другая разработка — сверхкороткоимпульсный локатор. Он перспективен для малой авиации, поскольку способен заметить в небе не только сверхлегкий самолет или дельталет, но даже голубя. А на взлетной полосе с помощью такого радара несложно увидеть, например, зайца или иное мелкое препятствие.

РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…

Костюм с мускулами

Слышал, что в Японии созданы перчатки, делающие человека силачом. А нельзя ли сделать костюм, который любого сделает Геркулесом?

Алексей Новгородкин,

г. Саратов


Идея эта уже более полувека, что называется, носится в воздухе. Например, сотрудники Корнельской авиационной лаборатории (г. Буффало, штат Нью-Йорк) Билл Милликен и Греди Айкен в середине 50-х годов XX века высказали идею использования сервомеханизма, дублирующего строение и движения человеческого тела, и даже попытались разработать основные принципы его конструкции, изучая естественные движения человека.

С самого начала идея состояла в том, чтобы сохранить способность человека к принятию решений и увеличить его физическую силу с помощью так называемого «усилителя механической мощности человека» (УММЧ). Немного позднее, в марте 1968 года, журнал «Продактс инжиниринг», описывая работы фирмы «Дженерал Электрик», привел слова Ральфа Мошера, руководившего этими работами. «Я полагаю, что главное — это разработать снабженный механическим приводом внешний скелет, который сможет носить человек», — сказал он.

Говоря иначе, инженеры «Дженерал Электрик» хотели создать шагающую машину, способную воспроизводить и усиливать движения рук и ног человека, как минимум, в 25 раз!

Предполагалось, что силач в таком костюме осилит любого противника на поле боя, сможет без устали переносить любые грузы, будет способен без подъемного крана и лебедки осуществлять монтаж тяжелых механизмов и конструкций…

Первая трудность, с которой столкнулись создатели экзоскелетона — такое название получил данный механизм, — состояла в том, что было непонятно, каким образом лучше приводить в действие рычаги, усиливающие деятельность ног, рук и корпуса? Использовать электродвигатели? Гидравлику? То и другое вместе?

Однако, когда попробовали оснастить каждый шарнир внешнего скелета соответствующими приводами, оказалось, что просто не хватает места, чтобы разместить все моторы, узлы и детали. Осуществление проекта отложили до лучших времен. Такие времена наступили лишь в 90-е годы прошлого столетия, когда были созданы довольно миниатюрные и в то же время достаточно мощные серводвигатели. В разных странах мира, в том числе и в России, было создано несколько экспериментальных экзоскелетонов. Скажем, на кафедре гидромеханики, гидромашин и гидроприводов МГТУ им. Н.Э.Баумана кандидатом технических наук А.К.Ковальчуком под руководством доцента С.Е. Семенова была создана шарнирная конструкция, внешне напоминающая робота. Приводилась она в действие опять-таки гидравликой (подробности см. в «ЮТ» № 4 за 1999 г.), а потому получилась довольно громоздкой и медлительной.


Современный экзоскелетон пока лучше демонстрировать на манекене, а не на человеке.

Следующий шаг сделали японцы. Так, в начале уже нынешнего столетия инженер Йошиюку Санкаи, работающий в университете города Тсукуба, представил прототип специального костюма под названием HAL, на разработку которого он потратил около 10 лет.

Эту конструкцию человек надевает на себя. Причем, как сообщил автор разработки, пользоваться этим костюмом могут даже инвалиды с нарушениями опорно-двигательного аппарата.

Последняя и наиболее продвинутая модель костюма, HAL-5, была продемонстрирована на японской выставке Robot Expo в конце 2006 года и вызвала весьма… скептические отзывы. Дескать, костюм неудобен, громоздок, поскольку приводится в движение опять-таки гидравликой.

Тем не менее, создатель костюма не забросил свою разработку и полагает, что после небольшой доработки его детище будет полностью готово к массовому производству.


Голубые трубки жилета Power Jacet и есть аналоги обычных мышц. Конечно, конструкция стала компактнее, чем раньше, но до идеала ей, согласитесь, пока далеко.

К концу текущего года Йошиюку Санкаи намерен выпустить, по меньшей мере, два десятка HAL-5. А еще через год-полтора, уверяет он, количество серийно выпущенных робокостюмов достигнет 400–500.

Первая партия устройств будет отдана госпиталю города Тсукуба, а вот куда пойдут остальные, пока неизвестно. Не исключено, что костюмами заинтересуется Минобороны.

Впрочем, как утверждает автор разработки, приобрести HAL-5 сможет любой, кто способен выложить из кармана от 42 000 до 60 000 долларов США — именно столько (как хороший автомобиль!) стоит один экземпляр чудо-костюма.

Вскоре стало понятно, почему Йошиюку Санкаи так торопится. На пятки ему наступают инженеры всем известной компании «Панасоник», создавшие свою версию сервокостюма. Он приводится в действие восемью группами искусственных мускулов (на фото они показаны, как голубые трубки). Приводы соответственно являются аналогами трапециевидной, дельтовидной и прочих мышц. Управляются эти «мускулы» с помощью сенсоров, установленных на локтях и запястьях рук пользователя.

Однако и здесь, как показало более внимательное изучение, создатели костюма выдают желаемое за действительное. Искусственными мускулами они назвали обыкновенные пневмоприводы. А вот до применения в конструкции силиконовых мышц, работа над которыми ведется в ряде лабораторий мира, еще далеко. Слишком уж эти мыщцы пока медлительны и маломощны.

В общем, получается, что создание настоящего экзоскелетона, который позволит каждому стать Гераклом, откладывается, по крайней мере, еще лет на 15–20…

С. НИКОЛАЕВ

УДИВИТЕЛЬНО, НО ФАКТ!

Знакомьтесь: Homo Sapiens

Может ли человек летать? А нырять на глубину 10 километров? А бегать быстрее гепарда? А почему бы и нет? Ведь мы почти себя не знаем. И, лишь понемногу проникая в тайны собственной «конструкции», обнаруживаем такое, чего не мог бы придумать даже самый гениальный инженер. Взять, например, зрение…

Два лучше, чем один

Взгляните на себя в зеркало. Какие бы у вас ни были глаза — карие, серые, голубые или зеленые, — в принципе, у всех они устроены одинаково.


Общепринятая схема строения глаза.

Почему у нас два глаза — вам, наверное, понятно: во-первых, два надежнее, чем один. Во-вторых, два глаза расширяют поле зрения и — пожалуй, это важнее всего — позволяют довольно точно определять расстояния до того или иного объекта, а также видеть мир вокруг объемным, стереоскопическим. Зажмурьте один глаз, подбросьте и попробуйте поймать монету. Согласитесь, с двумя глазами легче.

Дело в том, что каждый глаз видит и пересылает в мозг свое, несколько отличающееся от другого изображение. В зрительном центре мозга они накладываются друг на друга, формируя объемное изображение. Точно такой же эффект, кстати, дают стереопары — комплекты из двух слайдов, чуть-чуть отличающихся друг от друга; один показывает объект как бы с точки зрения правого глаза, а другой — левого. Посмотришь эти слайды с помощью специальной приставки, позволяющей видеть каждый слайд лишь «своим» глазом, и изображение кажется объемным.

Это еще не все тонкости нашего зрения.

Секреты ока


Поделиться книгой:

На главную
Назад