Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Юный техник, 2007 № 12 - Журнал «Юный техник» на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Просверлив в каждой половинке лука по два отверстия, смажьте клеем и плотно стяните 6-мм болтами с гайками весь центральный узел (применять саморезы не следует, они при натягивании лука могут расколоть древесину).

Далее туго обмотайте место соединения толстой суровой ниткой с клеем. Клей следует выбирать только водорастворимый: ПВА, столярный, а еще лучше казеиновый. Нитка обязательно должна быть хлопчатобумажной, а во время намотки — слегка сырой. После высыхания она туго натянется и возьмет на себя те немалые силы, что возникают при натяжении лука.


Блочный лук можно сделать из старой лыжи.

Обрежьте дугу по своему росту, приладьте тетиву, и у вас получится дальнобойный английский лук. Историки отмечают, что именно он позволил Англии отстоять свою независимость и стать великой державой. Из этого же лука стрелял и знаменитый разбойник Робин Гуд.

Имея в своем распоряжении блочный лук, он бы совершил еще и не такие подвиги! Вы их можете совершить в своих играх от его имени. Добавьте лишь к луку пару блоков.

Современный блочный спортивный лук снабжается двумя некруглыми колесиками особой формы по концам. Сделать их в домашних условиях сложно. Однако ощутимый результат дадут и круглые дюралевые ролики, закрепленные с наружной стороны дуги при помощи легких стальных накладок. Концы тетивы присоедините к стержню на середине дуги лука.


Скорость стрелы увеличивают блоки, укрепленные на концах лука при помощи стальных накладок.


Центральный узел лука. При стрельбе на него действуют силы в несколько сотен кг. Для получения необходимой прочности этот элемент должен быть хорошо склеен, стянут болтами и нитками.

А.ИЛЬИН

Рисунки автора

ФИЗИЧЕСКИЙ ЭКСПЕРИМЕНТ

Свет и магнитное поле

Почти в каждом физическом кабинете есть набор для изучения поляризации света. В него входит несколько непонятных предметов, но два из них прямо-таки удивительны. Это два зеленоватых стеклышка в темной оправе (см. рис. 1 на следующей странице). Сложите их вместе и поверните. Поле зрения потемнеет, а потом станет почти совсем непроницаемо для света. Продолжайте вращать, и оно вновь станет светлым и ясным.


Эти странные стеклышки называются поляроидами. Дело в том, что световые волны колеблются в самых различных плоскостях. Поляроид же пропускает те из них, колебания которых лежат только в одной плоскости. Такой свет называется поляризованным.

Если поляроиды повернуты так, что их плоскости совпадают, то свет проходит беспрепятственно. Если же они взаимно перпендикулярны, то световой луч ослабляется почти в тысячу раз.

Но интересные эффекты можно наблюдать и держа в руках всего лишь один поляроид. Подойдите к застекленной витрине. Очень часто в ней отражается улица и то, что находится за стеклом, видно плохо. Немного поверните поляроид, и отражение если не все полностью, то в значительной мере исчезнет.

Каждому рыболову интересно узнать, есть ли в реке рыба. Но вода хоть и прозрачна, а дно увидеть нельзя. Мешает все то же отражение, на сей раз от волн. Посмотрите на воду через поляроид, и дно станет видно значительно лучше. Дело в том, что свет поляризуется, отражаясь от поверхности стекла или воды. Поворачивая поляроид, мы отфильтровываем этот мешающий нам свет. Этим свойством пользуются фотографы-профессионалы, ставящие на объективы своих аппаратов поляризационные фильтры.

Одиночный поляроид может заменить вам даже часы и компас. Посмотрите на небо в пасмурную погоду. В том месте, где должно быть солнце, вы увидите маленькую синюю восьмерку, окруженную желтой каймой (рис. 2). Причина этого явления нам неизвестна, так что мы охотно опубликуем ваши объяснения.


Поляроиды из набора снабжены специальными оправами для установки в универсальный проектор, и с ними можно проделать ряд красивых и занимательных опытов.

Поставим поляроиды на проектор и развернем так, чтобы свет через них не проходил. После этого в промежуток между ними внесите кусок обычного стекла, на экране появится его светлое, слегка окрашенное изображение. Объясняется это тем, что свет, пройдя через стекло, изменил наклон плоскости поляризации, и это позволяло ему пройти через скрещенные поляроиды.

Казалось бы, повернув второй поляроид, мы снова добьемся полного затемнения. Но нет, с обычным стеклом этого не получится. Вот если взять кусок специального оптического стекла, то после поворота второго поляроида оно уже видно не будет. Особенно яркая радужная картина получается, если поместить между поляроидами кусок смятого целлофана.

Обе картины объясняются двойным преломлением лучей. Очень многие твердые вещества способны один и тот же луч света разделить на две части, идущие немного в разных направлениях (рис. 3).


Фазы световых волн и плоскости поляризации в этих лучах оказываются немного сдвинуты относительно друг друга, но частоты полностью совпадают. Благодаря этому в них происходит интерференция, приводящая к яркой игре красок.

Способность к двойному преломлению лучей обычного оконного стекла без поляроидов никому не заметна и не мешает. Но из такого стекла невозможно изготовить хорошую линзу. (Вместо изображения одной точки может получиться две.)

Возникает же эта способность в стекле при его быстром неравномерном охлаждении в процессе изготовления. Отдельные его участки оказываются неравномерно растянуты в различных направлениях и по-разному преломляют свет. Поэтому лучшие сорта оптического стекла после отливки длительно, порою до полугода, охлаждают. Вот почему за некоторые фотообъективы приходится платить большие деньги.

Но двойное преломление лучей бывает и полезно.

Возьмите кусок полиэтилена, надрежьте его и, поместив между затемненными поляроидами, потяните. В районе надреза появятся радужные линии (рис. 4).


При усилении натяжения полиэтилен начнет рваться, а радужные разводы усилятся. Все эти линии есть не что иное, как линии распределения сил (процесс можно отчетливо видеть на экране).

Мост или крыло самолета всегда начинают разрушаться в каком-то одном месте, где происходит опасная концентрация сил. Стараясь заранее определить и усилить опасное место, проектировщики делают модель из прозрачного материала, помещают ее между двух поляроидов и подвергают нагрузке. Возникающий узор раскрывает картину распределения сил, а измерение яркости отдельных участков ее позволяет найти величину этих сил. Работа эта кропотлива, но ее результаты очень важны.

Точно определить содержание сахара во фруктовом соке нелегко. Выручит все та же поляризация. Поместите между поляроидами прозрачную кювету с плоскими стенками, создайте темное поле и налейте в нее раствор сахара. Кювета тотчас же станет видна. Прошедший через раствор сахара свет немного повернул плоскость поляризации. Если второй поляроид повернуть, поле снова сделается темным. Концентрация сахара оказывается пропорциональна повороту анализатора.

Кстати, раз уж здесь зашла речь о сахаре… В XIX веке он стоил очень дорого. Ученые приложили немало сил, пытаясь синтезировать его из угля или нефти, но — к счастью! — успеха не добились: процесс получался сложным и дорогим. Правда, оказалось, что если слить два сильнейших яда — раствор синильной кислоты и формалина, — то в колбе со временем появляется сахар. Его химическая формула полностью совпадает с формулой лучшего тростникового сахара. Вот только плоскость поляризации он вращает не так, как обычный сахар, а в противоположную сторону. Оказалось, что его молекула по форме зеркальна молекуле обычного сахара. Этот «зеркальный» сахар был сладок, но организмом не усваивался.

Способность вращать плоскость поляризации имеют очень многие вещества. Еще знаменитый физик Майкл Фарадей обнаружил, что магнитное поле способно вращать плоскость поляризации света, проходящего через вещество. Вот один из его экспериментов.

В катушку с большим числом витков помещалась кювета с жидкостью. Вдоль нее пропускался луч поляризованного света. При включении тока положение плоскости поляризации света значительно изменялось.

В своих опытах Фарадей использовал катушку длиной около 0,5 м и внутренним диаметром 40 мм. Она содержала 150 витков изолированной проволоки диаметром 5 мм и работала от батареи напряжением 48 В. Изготовить такую катушку несложно, а питаться она может от выпрямителя. Но можно использовать катушку от набора по электромагнетизму и конденсатор емкостью 100 мкФ. Внутрь катушки следует поместить кювету с плоскими стенками, склеенную из оргстекла. Опыты следует проводить только в присутствии учителя!

А. ВАРГИН

Рисунки автора

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ

Волшебная метла

В ДВ- и СВ-диапазонах работают сотни интереснейших, но очень слабых радиостанций. Как их ловить? Можно строить громоздкие многометровые антенны, состоящие из горизонтально и вертикально натянутых проводов. Но можно обойтись и без них.

Еще в 30-е годы прошлого века на дымовых трубах, на балконах или на отдельных мачтах ставили метелочные антенны. По своей форме и размерам такие антенны действительно напоминали метелки.

Несмотря на малые размеры, метелочная антенна обеспечивала уверенный и громкий прием. В электрическом отношении это был всего лишь вертикальный провод эффективность которого немного улучшала метелка на верхнем конце. Так что заметного эффекта метелочная антенна давать не могла.

Но ведь давала! Почему?

Недавно появилась гипотеза о том, что метелочная антенна одновременно с приемом обеспечивает усиление сигнала. Но для усиления нужны особые свойства и дополнительный источник энергии…

Где же они в простой проволочной метелке? Оказывается, и то и другое у метелки есть. Но давайте по порядку.

В прошлом веке лучшие метелочные антенны выпускала специальная фирма Central Equipment Ltd. Вот как они были устроены.

Каждая антенна собиралась из пучка отрезков медной проволоки от 0,5 до 1 м, и они разводились на угол от 45 до 90 градусов. Нижний конец пучка вставлялся в массивный фарфоровый изолятор, сквозь дно которого присоединялся провод длиной около 15 м, соединяющий антенну с приемником. Провод, идущий от антенны к приемнику, чтобы изолировать его от крыши и стен дома, крепился к специальным кронштейнам-изоляторам и до самого ввода нигде ничего не касался. Ввод же устраивали из эбонитовой трубки.

В этом описании удивляет прежде всего тщательность изоляции антенны. Ее, по всем признакам, делали так, словно рассчитывали на тысячи вольт, хотя, казалось бы, напряжение сигнала на антенне не должно превышать милливольт. В этом противоречии кроется первый след к разгадке тайн метлы.

Как выяснилось, на антенну действительно действует напряжение, измеряемое киловольтами. Это постоянное напряжение атмосферного электричества. Дело в том, что верхние слои атмосферы заряжены положительно относительно земли и их потенциал достигает многих сотен киловольт. Таким образом, мы живем как бы между обкладками конденсатора. В приземном слое воздуха существует электростатическое поле, напряженность которого меняется с интенсивностью 130 В/м.

На высоте нашей головы потенциал атмосферы превосходит 200 В. Но мы этого не чувствуем, потому что воздух хороший диэлектрик и ток, текущий через наше тело, ничтожно мал. Метелочная антенна соединена с землей через катушку приемника (контурную, или связи), поэтому ее потенциал равен потенциалу земли, который обычно принимают за нулевой. Если при этом она установлена где-нибудь на балконе пятого этажа, на высоте 15 м, воздух имеет потенциал около 2 кВ.

В проводе антенны возникает постоянный ток, измеряющийся наноамперами, при мощности в нескольких милливатт. Он тем больше, чем больше в антенне проводов. Это напряжение способно вызвать так называемый тихий разряд. Вольт-амперная характеристика его имеет участок отрицательного сопротивления.

Вот что это такое. При увеличении напряжения на концах обычного проводника (его сопротивление принято считать положительным) ток растет. В проводниках с отрицательным сопротивлением (неоновых лампах, тиристорах, туннельных и лавинно-пролетных диодах) с ростом приложенного напряжения ток падает, поэтому такие проводники и способны усиливать сигнал.

Именно этот процесс и должен происходить при разряде на концах прутьев метелки. Чтобы его усилить, концы прутьев следует делать по возможности острыми. Таким образом, метелочная антенна является устройством, работающим от энергии, запасенной на обкладках «земного» конденсатора.

А теперь несколько советов по изготовлению и установке антенны. Метелка делается из десяти и более медных проволок диаметром не менее 2 мм и длиной от 30 см. Их нужно заострить с одного конца, а с другого — очистить от окислов или лака и залудить оловянным припоем. Затем следует собрать проволоки в пучок и обвязать медной проволокой в двух-трех местах, как это делается на метлах и вениках. В середину пучка следует вставить «хвостик» — еще один отрезок луженой медной проволоки. После этого весь луженый конец метлы смажьте флюсом и запаяйте мощным паяльником или газовой горелкой.

Далее нужно выточить из пластмассы чашечку-держатель со сквозным отверстием внизу для выхода хвостика и подключения его к проводу снижения. В качестве него можно взять любой провод с толстой изоляцией.

Для заземления можете использовать «нулевой» провод силовой розетки, к которой обычно подключают стиральные машины, а если вы живете в сельской местности, подключите антенну к заземлению громоотвода или к зарытой в землю трубе.

В. ПОЛЯКОВ, профессор


ОТ РЕДАКЦИИ. Чтобы подключить метелочную антенну к радиоприемнику, между ней и «землей» нужно включить резистор с сопротивлением несколько мегом, как показано на схеме.

Параллельно резистору в целях предотвращения неприятностей при грозовом разряде включена неоновая лампа. Несмотря на это, вашу антенну перед грозой нужно ОБЯЗАТЕЛЬНО отключить.

ЧИТАТЕЛЬСКИЙ КЛУБ


Вопрос — ответ

Почему во многих странах монеты называются центами? Ведь «цент» — это, похоже, сокращение от слова «центнер», то есть 100 кг…

Вероника Бударова,

г. Саратов

Догадка Вероники верна: слово «цент» и в самом деле происходит от латинского centum, что в переводе значит «сто». Впервые же монета с таким названием и номиналом в одну сотую часть доллара появилась в 1783 году на территории США. Она называлась тогда «вашингтонский цент», поскольку была введена центральным правительством. Интересно, что сам доллар ввели в обращение лишь три года спустя.

За свою историю цент пережил множество приключений. Говорили, например, что Генри Форд предлагал новенький автомобиль всего за 1… цент. Только цент этот должен быть необычный — медная монета выпуска 1943 года.

А вся хитрость заключалась в том, что именно в тот год монету с портретом Линкольна чеканили исключительно из стали, поскольку вся медь ушла на производство патронов и другие военные нужды. Лишь в 1944 году Монетный двор США снова смог использовать в своем производстве медь и латунь. Причем часть таких монет была отчеканена из цветного металла, переплавленного из стреляных гильз, собранных на полях сражений.

У нумизматов ныне самой большой ценностью считается одноцентовая монета выпуска 1792 года (более ранних просто не сохранилось). На аукционе она была продана за 437 000 долларов! Так что Форд ничуть бы не прогадал, даже если бы кто-то принес ему такой цент. Кроме США, центы сейчас в ходу на территории Канады, Австралии, ЮАР, Новой Зеландии да и почти всей Европы, где наряду с евро появились евроценты.

Говорят, но свете есть люди, которые одинаково владеют как правой, так и левой рукой. Как это у них получается?

Игорь Смирнов,

г. Санкт-Петербург

Литовский педагог Лина Чанене научилась рисовать одновременно — и независимо — сразу двумя руками, еще когда сама училась в школе. От рождения она левша, но родители и педагоги все пытались переучить девочку. И в итоге ее правая рука по ловкости догнала левую. Так что теперь Лина может писать как правой, так и левой рукой и рисует, взяв в каждую руку по карандашу, сразу два одинаковых портрета.

Когда говорят о каких-то заведомо безрезультатных поисках, то произносят: «Найти иголку в стоге сена». А вообще, когда-нибудь кто-то пробовал отыскать в сене эту самую иголку?

Татьяна Ковалева,

г. Кострома

Недавно этим занимались участники необычного состязания, которое прошло вблизи датского города Скаген. Там была сформирована «поисковая группа» из 22 молодых людей. Каждый действовал в одиночку. За происходящим следило строгое жюри. Правда, участники искали иголку не голыми руками — каждый был вооружен мощным магнитом. Но все равно, большинство минут через 5–7 отказывались от поисков.

Победителем стал Ене Эберлунд, который проявил недюжинное упорство и через 34,5 минуты торжественно предъявил членам жюри большую штопальную иглу, за что и получил солидный приз — 900 тысяч датских крон, рассказала газета «Экстра бладет».



Поделиться книгой:

На главную
Назад