Как выяснилось, сила трения здесь была пропорциональна приложенному напряжению и могла изменяться с частотой в несколько килогерц. В одном из экспериментов стальную ленту соединили с диффузором, и получился громкоговоритель. Звучал плохо, но очень громко. Это был фактически механический усилитель низкой частоты.
Тем, кто хотел бы повторить опыты академика Иоффе, поясним: шифер, примененный в конденсаторе, это совсем не тот знакомый нам волнистый кровельный материал из асбоцемента. В опыте применялся минерал с тем же названием — широко распространенный в природе продукт кристаллизации глины. Добытый из земли природный шифер в наши дни разрезают на плитки и ромбики, предназначенные для покрытия полов и крыш. Так что его можно недорого купить на строительных рынках.
Типографский камень — это особый вид твердого мелкозернистого известняка. Ранее его применяли в типографском деле, но заменили металлами и пластмассами. Сегодня твердый известняк идет на производство щебня и строительных плит.
Наконец, агат — это разновидность халцедона. Основная же масса его представляет собою поликристаллический кварц. Его в природе достаточно много, а обрабатывать сравнительно легко.
ПОЛИГОН
Строим дископлан
В 1956 г. жители юго-запада Москвы неоднократно видели бесшумно проплывавший в небе диск. Это был первый российский планер-дисколет, который после многих лет работы создал бывалый летчик и опытный авиаконструктор М.С. Суханов. Несколько позже более простой дископлан построил студент МАИ Анатолий Гремяцкий.
Летательные аппараты с дисковым крылом отличаются устойчивостью, простотой пилотирования и компактностью. Так, одноместный планер Гремяцкого имел крыло диаметром всего 3,5 м. Крыло обычного типа имеет сложный каплевидный профиль, что значительно усложняет его изготовление, дисковое же крыло значительно проще.
Каркас его напоминает велосипедное колесо, состоящее из обода, внутри которого, подобно спицам, натянуты стальные проволочные расчалки, закрепленные на центральном стержне. Чтобы вся конструкция стала прочной, обод должен находиться в одной плоскости.
Такую конструкцию несложно выполнить в натуральную величину, но точно сбалансировать крыло небольшой модели практически невозможно. Поэтому тем, кто решит сделать модель дископлана, советуем сделать крыло из ватмана. Оно состоит из двух конических поверхностей, соединенных между собой при помощи пенопластовых ребер — стрингеров. Выкройки поверхностей показаны на рисунке, там же изображен и стрингер.
Крыло собирается в определенном порядке. Вначале склеиваете его нижнюю и верхнюю части. Затем вырезаете из пенопластовых лотков стрингеры и приклеиваете их двухсторонним скотчем к нижней поверхности крыла. Затем смазываете верхние ребра стрингеров водорастворимым клеем, например ПВА, и сажаете на них верхнюю поверхность. После этого края поверхностей крыльев точно совмещаете, прихватываете кусочками скотча и промазываете клеем на нитрооснове — применение клея, содержащего воду, может привести к короблению кромки крыла. В качестве фюзеляжа, как это часто делают на схематических моделях планеров, используйте сосновую рейку 10x10 мм с грузом и хвостовым оперением. Соединение крыла и фюзеляжа — при помощи колодки с крючками из алюминиевой проволоки. Их можно присоединить к крылу скотчем. Колодка крепится к рейке при помощи резиновых колец. Изгибая крючки, можно менять угол атаки крыла, чтобы прочувствовать его влияние на полет модели.
Передвигая колодку, вы добьетесь наибольшей устойчивости полета.
Планер-дископлан отличается исключительной простотой пилотирования. В отличие от М.С. Суханова, сам А. Гремяцкий летать не умел. Казалось бы, следует пойти в аэроклуб и там пройти основательную школу. Но нет, он попросту сел на свой планер и после нескольких проб научился летать в совершенстве. Это стало возможно только потому, что крыло в форме диска гораздо устойчивее в полете, чем крыло обычного типа.
Дело в том, что полет на крыле большого удлинения требует очень строгого соблюдения угла атаки — угла встречи крыла с набегающим на него потоком воздуха. Если этот угол чуть меньше, чем нужно, теряется подъемная сила, а с нею и высота. Чуть больше — подъемная сила возрастает, но с ней растет и сопротивление. А если угол атаки увеличить еще больше, подъемная сила катастрофически падает. И, даже вернув угол атаки в прежнее положение, восстановить подъемную силу удается не сразу. Нужно время, пока крыло сможет развить свою полную подъемную силу и сможет держать аппарат в воздухе, как и прежде. Если все эти перемены происходят на малой высоте при заходе на посадку, то вполне возможно врезаться в землю.
В отличие от обычного, крыло, имеющее форму диска, создает подъемную силу даже при углах атаки более 45°. Поэтому на планере с таким крылом и может летать даже начинающий. Для посадки планеру-дископлану достаточно дорожки длиной 10–15 м. В момент приближения к земле, когда высота полета становится равна диаметру крыла, возникает «динамическая воздушная подушка» и посадка происходит исключительно мягко.
НАУЧНЫЕ ЗАБАВЫ
БЕГУЩИЕ МЫЛЬНЫЕ ПЛЕНКИ
Приготовь для опыта: стеклянную трубку конической формы, мыльный раствор.
Мыльная пленка всегда стремится занять такую форму, чтобы поверхность ее была возможно меньше. Постарайся добыть стеклянную трубку конической формы, такую, чтобы один конец у нее был уже, чем другой.
Смочи мыльным раствором всю внутреннюю сторону стекла и дай воде стечь. Затем широким концом опусти трубку в воду, держа ее вертикально. Осторожно вынь трубку из раствора. Мыльная пленка, как видно, затянула отверстие. Держи теперь стекло горизонтально, и ты увидишь, что пленка сдвинется с места и побежит к узкому концу трубки.
Если ты будешь окунать стекло в раствор раз за разом, пленки побегут одна за другой, будто стараясь догнать друг дружку.
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Усилители класса D
Ключевые методы усиления класса D
Из первой части статьи мы узнали, что ток, а следовательно, и мощность в нагрузку УЗЧ поставляет источник питания, а транзисторы лишь регулируют этот ток в соответствии с входным звуковым сигналом. Регулировка должна быть строго пропорциональной, чтоб не было искажений. Такие усилители называют аналоговыми, как и всю электронику, основанную на пропорциональном управлении. КПД аналогового усилителя принципиально не может достигать 100 %, поскольку в процессе работы транзистор почти все время открыт лишь частично и на нем выделяется мощность, которая затем превращается в тепло и рассеивается радиатором.
Потери мощности на транзисторе могут отсутствовать при двух условиях: либо транзистор должен быть заперт и ток через него равен нулю, либо полностью открыт и напряжение между коллектором и эмиттером равно нулю (напомним, что мощность, рассеиваемая на транзисторе, равна току через него, помноженному на напряжение коллектор-эмиттер). Транзистор при этом подобен выключателю, который либо замкнут, либо разомкнут. При этом он может коммутировать огромные мощности, сам нагреваясь мало. Описанный режим работы транзистора назван ключевым.
Известен он очень давно и широко применяется в силовой электронике для управления освещением, электромоторами. Причем управление может быть и плавным, если включать и выключать транзистор с большой частотой, такой, чтобы за период между импульсами включения нити ламп не успевали остыть, а моторы — заметно изменить свою скорость. Регулировка же происходит изменением длительности импульсов, или, как говорят, скважности — отношения периода следования импульсов к их длительности. Процесс изменения длительности (ширины) импульсов называется широтно-импульсной модуляцией (ШИМ).
Принцип ключевого усиления с успехом применим и в УЗЧ, если частоту следования импульсов выбрать ультразвуковой — выше самой верхней частоты звукового спектра, на практике — от 30 кГц и выше. Этот способ усиления и отнесен к классу D.
Структурная схема усилителя класса D приведена на рисунке 1.
Он содержит генератор импульсов, ШИМ-модулятор, ключевой усилитель КУ, выходной фильтр нижних частот ФНЧ и нагрузку — динамическую головку громкоговорителя ГР или АС.
ШИМ обычно получают следующим образом: преобразуют импульсы в треугольные или используют специальный генератор импульсов треугольной (пилообразной) формы — генератор «пилы» и подают его колебания на один вход компаратора (Комп). На другой его вход поступают звуковые колебания (график
Компаратор же работает так: выдает на выходе максимальное положительное напряжение, если на входе со значком «+» потенциал выше, чем на входе со значком «-», и максимальное отрицательное напряжение в противном случае. Компаратор легко выполнить на операционном усилителе или на цифровом логическом элементе.
На графике
В простейшем случае фильтром может служить и сама динамическая головка громкоговорителя — из-за инерционности она просто не может воспроизводить импульсный сигнал с высокой частотой.
К ФНЧ есть одно важное требование: он обязательно должен начинаться с индуктивности, то есть не иметь емкостей, подключенных к выходу ключевых транзисторов. В противном случае для перезаряда этих емкостей через ключи должны будут протекать большие токи, время переключения увеличится, а КПД упадет. Часто в качестве ФНЧ используют обычный дроссель (катушку индуктивности), реактивное сопротивление которой увеличивается с частотой, и она служит препятствием прохождению высокочастотного импульсного тока.
На рисунке 2 изображена схема простейшего УЗЧ класса D, которому не нужен отдельный генератор.
С выхода усилителя на его входы устроены две цепи обратной связи: положительная (ПОС) через резисторный делитель R3R2 и отрицательная (ООС) через интегрирующую цепочку R4C1. Пусть в какой-то момент времени напряжение на выходе усилителя возросло. Это изменение цепью ПОС передается на неинвертирующий вход (+) операционного усилителя (ОУ) и приводит к дальнейшему лавинообразному увеличению напряжения на выходе, пока оно не достигнет максимума, почти напряжения питания. Теперь начинается зарядка конденсатора С1 положительным напряжением с выхода через резистор R4. Когда напряжение на инвертирующем входе (-) станет больше, чем на неинвертирующем входе, ОУ быстро переключится в другое состояние, и напряжение на выходе станет также максимальным, но отрицательным. Конденсатор С1 будет перезаряжаться в отрицательной полярности, и цикл повторится. На выходе появятся симметричные прямоугольные импульсы (со скважностью 2) максимальной амплитуды, а выходные транзисторы ОУ будут работать в ключевом режиме. Период повторения импульсов определяется постоянной времени цепочки ООС, равной R4C1.
Ситуация несколько изменится, если на вход подать сигнал ЗЧ. При его положительной полярности зарядка конденсатора при положительном импульсе будет происходить быстрее, а при отрицательном — медленнее, то есть произойдет модуляция ширины импульсов — ШИМ, в полном соответствии с графиками, показанными на рисунке 4.
Остается лишь профильтровать полученную последовательность импульсов (это делает дроссель Др) и подать усиленный сигнал на громкоговоритель. Экспериментируя с самыми распространенными и дешевыми логическими КМОП микросхемами, автору удалось построить крайне простой усилитель класса D (см. рис. 3).
Его основа — генератор прямоугольных импульсов, собранный на элементах DD1.1 и DD1.2. Работа генератора была описана в статье «Сверхэкономичный индикатор», ЮТ — 2008, № 2, с. 74–77. Частота генерируемых импульсов достигает 60 — 100 кГц. Два других элемента микросхемы соединены параллельно для увеличения отдаваемого тока и использованы как ключевой выходной каскад.
Дросселя ФНЧ не потребовалось, его роль с успехом выполняет индуктивность первичной обмотки выходного трансформатора Тр1, согласующего низкое сопротивление головки ВА1 (обычно 4–8 Ом) со значительно большим выходным сопротивлением усилителя. На входе усилителя установлен регулятор громкости R1. Все эти элементы вместе с корпусом удобно взять от ненужного старого трансляционного громкоговорителя. Микросхемы подойдут серий К174 и К561, типов ЛA7 и ЛE5. Расположение их выводов одинаковое.
Усилитель получился исключительно экономичным: потребляемый ток от шестивольтовой батареи не превосходит 0,2–0,3 мА. Несколько громче усилитель звучит при напряжении питания 9 В. Отдаваемая звуковая мощность, разумеется, невелика и не превосходит 10–20 мВт. Это неизбежная плата за экономичность, но никто не мешает вам подобрать или сконструировать АС высокой чувствительности, громко звучащую и при такой мощности.
Получив столь высокую экономичность, автор просто не мог не попытаться использовать этот усилитель в громкоговорящем детекторном приемнике, уже более 10 лет верой и правдой прослужившем на даче. В нем уже был аналоговый мостовой усилитель класса АВ, собранный на двух транзисторах МП37 и двух МП41. Памятуя хорошее правило — не ломать уже сделанных вещей в надежде на лучшее, я просто собрал новый приемник с усилителем класса D (рис. 4).
Колебательный контур приемника образован емкостью антенны (луч 12 м) и индуктивностью катушки L1 (150–200 витков), настраиваемой стержнем от ферритовой антенны. Постоянная составляющая про детектированного диодом VD1 сигнала, сглаженная дросселем Др1 и накопительным конденсатором большой емкости С4, служит для питания усилителя. Ток и напряжение питания контролируются стрелочными приборами — головкой индикатора записи от магнитофона с током полного отклонения 0,3 мА и обычным вольтметром на 25 В, сделанным из головки на 50 мкА с добавочным сопротивлением 500 кОм.
Переменная составляющая продетектированного сигнала ЗЧ через регулятор уровня R1 и разделительный конденсатор С2 поступает на вход усилителя, описанного выше. Четвертый элемент МС не использован для уменьшения потребляемого тока. Дросселем Др1 послужила первичная обмотка такого же трансформатора от трансляционного громкоговорителя, как и Тр1. Хорошие результаты получаются также с малогабаритными сетевыми трансформаторами («силовичками») от старых блоков питания 220/9 или 220/12 В.
При настройке на радиостанцию «Маяк» 549 кГц приемник заработал даже чуть громче, чем прежний аналоговый, приборы показали 6 В при токе чуть больше 100 мкА, но звук явно носил «цифровой» оттенок. К тому же стал прослушиваться шум в паузах (в аналоговом усилителе его вообще не было), но это удается заметить лишь в полной тишине. В целом, конструкция оказалась вполне работоспособной, и ее можно рекомендовать для экспериментов и дальнейшего улучшения.
ЧИТАТЕЛЬСКИЙ КЛУБ
Вопрос — ответ
Говорят, скоро подросткам до 14 лет запретят появляться на улице после 22 часов без сопровождения взрослых. А что делать, если у меня по вечерам тренировки?
Никита Самусев,
г. Краснодар
Действительно, депутаты Госдумы приняли в первом чтении законопроект, согласно которому детям до 14 лет в ночное время будет закрыт доступ в общественные места — бары, ночные клубы, Интернет-кафе и т. д. без сопровождения взрослых.
Видимо, будут милиционеры интересоваться, что делают подростки в столь поздний час и просто на улице, в общественном транспорте. В таком случае надо четко отвечать, кто вы такой, откуда и куда следуете. Неплохо при себе иметь ученический билет, а также справку от родителей, в которой будут указаны ваше полное имя, домашний адрес и мобильные телефоны родителей с указанием их имени и отчества, чтобы милиция могла быстро навести все необходимые справки.
Мама не рaзрешает мне подолгу смотреть телевизор. Говорит, что от него человек устает не меньше, чем от работы за компьютером. Но ведь телевизор — это, вообще-то говоря, средство развлечения, большую часть времени он показывает кинофильмы, концерты, юмористические передачи и т. д.
Наташа Камолова,
г. Воронеж
И все-таки мама права. Как показали исследования наших и зарубежных психологов, телевидение перегружает мозг и нервную систему. Люди, проводящие многие часы у телевизора, особенно в юном возрасте, потом плохо спят по ночам, им снятся кошмары. Кроме того, длительный просмотр телепередач отрицательно влияет на зрение. А если смотреть телевизор еще и во время еды, то вы рискуете заполучить и нарушение процессов пищеварения, приводящее к избыточному весу.
Примерно то же можно сказать и о человеке, который подолгу сидит за монитором, играя в компьютерные игры или «бродя» по Интернету.
Говорят, в стране сокращается число военных училищ, которые готовят офицеров. Не слышали ли вы, какая судьба ждет в таком случае знаменитое Рязанское воздушно-десантное училище?
Александр Строгов,
г. Калуга
Как сообщил журналистом статс-секретарь — заместитель министра обороны генерал армии Николай Панков, с 1 февраля 2009 года на базе 6 военных вузов, в том числе в Военно-космической академии, Московском высшем общевойсковом командном училище, Рязанском воздушно-десантном училище, Военном институте физкультуры и Омском десантном училище, теперь будут готовить сержантов-профессионалов. Срок их обучения меньше, чем у офицеров — 2 года и 10 месяцев.
Это связано с тем, что число офицеров, необходимое Российской армии, в последние годы резко сократилось. Если в советское время ежегодно выпускали 60–65 тыс. лейтенантов, то ныне, поскольку численность наших войск уже сократилась вчетверо, стало требоваться 15–17 тысяч. А вскоре их станет и того меньше — не более 7–7,5 тыс. офицеров взводного и ротного звена в год.
Соответственно, все военные вузы будут сведены в 16 высших учебных центров. К 2013 году в армии намечено оставить всего 3 учебно-научных центра, 6 академий и 1 университет. В их состав и войдут нынешние профильные высшие военные училища, военные институты и НИИ. Сейчас же офицеров готовят 65 военных вузов.
Переход к новой системе будет осуществляться постепенно. Кого именно будут готовить в том или ином военном учебном заведении, каков будет набор, можно узнать в военкомате по месту жительства.
ДАВНЫМ-ДАВНО
Вероятно, первым мостом когда-то послужило дерево, случайно упавшее через ручей. Дерево по соотношению веса к прочности превосходит лучшую сталь, но оно недолговечно. Этруски, а вслед за ними и римляне научились строить арочные мосты из камня. Они могут простоять сотни и сотни лет, однако построить каменный мост с пролетами для прохода судов невозможно, да и возведение их трудоемко.