Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Геном - Мэтт Ридли на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Приведем простой пример. Если повторить нуклеотид- ный триплет шесть раз - CAG CAG CAG CAG CAG CAG, - нетрудно будет посчитать число повторов и скопировать их. Но если повторов много - CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG, - я готов поспорить, что вы наверняка собьетесь, считая их. Примерно то же про­исходит с белком, выполняющим репликацию ДНК. Чем больше повторов, тем более вероятна ошибка копирования. Альтернативная (или дополнительная) гипотеза состоит в том, что ферменты системы исправления ошибок реплика­ции в случае многочисленных повторов могут сами ошибать­ся и вместо того чтобы исправлять, создают новые ошибки (Schweitzer J. К., Livingston D. М. 1997. Destabilisation of CAG trinucleotide repeat tracts by mismatching repair mutations in yeast. Human Molecular Genetics & 349-355).

Возможно, что причина проявления .болезни в преклон­ном возрасте состоит в феномене постепенного накопле­ния повторов. Лаура Манджарини (Laura Mangiarini) в го­спитале Гая в Лондоне работала с трансгенными мышами, в геном которых была встроена часть гена Хантингтона более чем с сотней повторов. Оказалось, что у взрослых мышей в клетках число повторов еще больше увеличилось. В некоторых случаях было обнаружено до 10 новых повто­ров CAG. Впрочем, число повторов осталось неизменным в клетках мозжечка — отделе мозга, контролирующем дви­жения. Клетки мозжечка прекращают делиться вскоре по­сле рождения, поэтому репликация в них не происходит.

Ошибки накапливаются, только когда клетки делятся и хромосомы удваиваются. В клетках мозжечка человека число повторов даже уменьшается, но увеличивается в дру­гих клетках организма. Новые повторы CAG появляются в клетках, из которых развиваются сперматозоиды, что объ­ясняет установленную зависимость между временем прояв­ления болезни у детей и возрастом отца. (Кроме того, те­перь известно, что мутации в сперматозоидах происходят примерно в пять раз чаще, чем в яйцеклетках. Это связа­но с тем, что сперма образуется в результате интенсивно­го деления клеток, тогда как яйцеклетки образуются лишь однажды.) (Mangiarini L. 1997. Instability of highly expanded CAG repeats in mice transgenic for the Hantington's disease mutation. Nature Genetics 15: 197-200.)

Были обнаружены семьи, предрасположенные к спон­танному появлению мутации Хантингтона. Видимо, при­чина заключается не только в том, что у них в хромосоме уже были пограничные значения повторов, скажем, между 29 и 35. Частота мутации у них почти в два раза превышала значения, полученные для других людей с таким же числом повторов. Причина может быть следующей. Сравним две хромосомы: в одной 35 триплетов CAG разделены вставка­ми других триплетов, скажем, ССА и CCG. Если фермент по ошибке сделает дополнительную копию слова CAG, число повторов возрастет лишь на единицу. На другой хромосоме также 35 триплетов CAG, затем следует САА и еще два CAG. Если произойдет мутация и триплет САА превратится в CAG, то число следующих друг за другом повторов возрас­тет сразу на три единицы (Clong S. S et al. 1997. Contribution of DNA sequence and CAG size to mutation frequencies of in­termediate alleles for Huntington's disease: evidence from sin­gle sperm analysis. Human Molecular Genetics 6: 2820-2825).

Но я, кажется, забегаю несколько вперед, обрушивая на вас шквал последних данных о нестабильных последова­тельностях CAG в гене хантингтина. Давайте еще вернемся к тому времени, когда ни белок хантингтин, ни ген, ни по­следовательности в нем с их связью с остротой развития бо­лезни еще не были открыты и не было даже мысли о том, что существует целое семейство наследственных психиче­ских заболеваний, близких к болезни Хантингтона. С 1872 по 1993 год практически ничего не было известно о болезни Хантингтона, кроме того, что она связана с наследственнос­тью. Но затем сведения о болезни стали появляться в науч­ных публикациях, как грибы после дождя. Если сегодня вы соберете все статьи о болезни Хантингтона и вызывающей ее мутации, вам придется не один день посидеть в библио­теке. Начиная с 1993 по 1999 год на эту тему было опубли­ковано более 100 статей. И это все только об одном гене. А у человека в геноме порядка 60 000-80 000 генов. Теперь вы можете оценить, какой бездонный ящик Пандоры откры­ли Уотсон и Крик в 1953 году. По сравнению с количеством информации, которая хранится в человеческом геноме, все остальные открытия в биологии за предыдущие века — это капля в море.

Тем не менее болезнь Хантингтона пока так и осталась неизлечимой. Знания, которые я только что превозносил, не дают нам даже намека на то, как лечить эту болезнь. Механическая, бездуховная простота мутации, ведущей к болезни, делает еще более гнетущим состояние тех, кто ждет лекарства от нее. В человеческом мозге 100 млрд нерв­ных клеток. Как войти в каждую из них и укоротить после­довательность триплетов CAG в гене хантингтина?

Нэнси Векслер рассказала историю о женщине, живу­щей у залива Маракайбо. Она пришла в хижину-лаборато­рию Векслер для неврологического обследования на нали­чие симптомов болезни. Она выглядела вполне здоровой, но Векслер знала, что первичные проявления болезни Хантингтона можно определить задолго до того, как паци­ент почувствует себя больным. И у женщины, безусловно, эти проявления были. В отличие от многих других людей, проходивших обследование, женщина поинтересовалась результатом. Доктор ответила вопросом: «А вы как думае­те?». Женщина была уверена, что она в полном порядке. Доктор уклонилась от ответа под предлогом, что нужны до­полнительные анализы, чтобы диагностировать болезнь. Как только женщина вышла, к доктору вбежал ее помощ­ник и почти истерично спросил, что она сказала женщине. Врач повторила разговор. «Слава Богу! — ответил помощ­ник. — Эта женщина говорила друзьям, что если вдруг у нее обнаружат болезнь, она тот час же покончит с собой».

В этой истории есть несколько вопросов, которые вну­шают тревогу. Первый — это фальшиво счастливое заверше­ние истории. Ведь у женщины была мутация. Она все равно обречена умереть: чуть раньше, наложив на себя руки, или чуть позже — длительной и мучительной смертью. Ей не удастся избежать смерти, несмотря на то, что опытные вра­чи были столь любезны, чтобы заглянуть в глушь, где она жила. И, безусловно, знать истинное положение вещей от­носительно ее собственного здоровья — ее право. Если она была готова к суициду, давало ли это право врачам скры­вать от нее результаты анализов? С другой стороны, у вра­чей была своя правда. Нужно не иметь сердца, чтобы спо­койно и деловито сообщить человеку: «Вероятно, вы скоро умрете». Диагноз, за которым не следует лечение, — это путевка в ад. И еще один вопрос повисает в воздухе: нуж­ны ли вообще врачебные обследования, за которыми не может последовать лечение? Женщина считала, что с ней все нормально. Может и хорошо, что она ничего не узнала. Впереди у нее будет еще лет пять нормальной жизни, пока неумолимое безумие не прикует ее к постели.

Отец этой женщины скончался от болезни Хантингтона. Она знала, что с вероятностью в 50% она тоже может забо­леть. Странная наука — статистика. Нельзя быть больным на 50%. С равной вероятностью она будет либо на 100% больна, либо на 100% здорова. Знание о том, что с такой-то вероятностью ты можешь заболеть смертельной болезнью, хоть и не ведет к болезни, но и не дает покоя.

Нэнси Векслер боится, что наука сейчас окажется в по­ложении Тирезии — слепой провидицы античного города Фивы. Случайно Тирезия увидела купающуюся Афину, и богиня сделала ее слепой. Потом богиня поняла, что пого­рячилась, но зрение вернуть уже не смогла (разрушать — не строить). Тогда Афина осчастливила бедную Тирезию даром провидицы. Какой же ужасной была доля Тирезии — видеть будущее, но не иметь возможности его изменить. «Это так печально, — жаловалась Тирезия Эдипу, — знать и быть бес­сильной». Ей вторит Векслер: «Так ли это интересно знать, когда ты умрешь, особенно если у тебя нет никакой возмож­ности изменить это?». Многие из тех, кто прошел тестиро­вание в 1986 году на наличие мутации Хантингтона, пред­почли остаться в неведении. Только 20% обратились за результатами анализа. Интересно, хотя и объяснимо, — на трех женщин, которые пришли за результатами, приходил­ся только один мужчина. Мужчины больше озабочены со­бой, чем своими потомками (Wexler N. S. 1992. Mapping fate. University of California Press, Los Angeles).

Но и в тех случаях, когда люди сами хотели узнать ре­зультат, возникали многочисленные этические и психоло­гические проблемы. Если один из членов семьи проходил обследование, то результат имел отношение ко всей семье. Многие родители, преодолевая себя, проходили обследо­вания ради детей. Оказалось, что медперсонал был плохо подготовлен даже к оглашению результатов. Приходилось слышать: «половина ваших детей заболеют». Это непра­вильно — у каждого ребенка есть 50%-я вероятность забо­леть. По сути, то же самое, но звучит не так убийственно. От того, как врач сообщит результат обследования, зависит состояние человека и его семьи. Психологи считают, что пациент будет чувствовать себя лучше, если сказать, что с вероятностью 3/4 его ребенок не заболеет, чем говорить, что ребенок заболеет с вероятностью х/ .

Хорея Хантингтона — это крайний случай генетических заболеваний, абсолютный фатализм, не зависящий от усло­вий жизни и питания человека. Лучшие условия жизни, хо­рошая медицина, здоровая пища, любящая семья и толстый кошелек не могут никак повлиять на зловредную мутацию. В данном случае судьба человека в его генах. Как по вере Августинцев: дорога в рай открывается по милости Божьей, а не по делам твоим. Пример с болезнью Хантингтона на­поминает нам, что геном — не только увлекательная, но и страшная книга, на страницах которой мы можем найти свою судьбу, которую нельзя изменить.

Полностью отдавшись работе, Нэнси Векслер верила, что обнаружение гена даст возможность лечить больных или хотя бы замедлить развитие болезни. И, следует при­знать, сейчас она гораздо ближе к достижению своей цели, чем десять лет назад. «Я оптимистка, — пишет Векслер, — даже несмотря на то, что знаю, что выбраться из этого болота возможностей предвидеть, но невозможности из­менить будет довольно сложно... Я верю, что знания, ко­торые мы получим, стоят того, чтобы продолжать работу» (Wexler N. 1992. Clairvoyance and caution: repercussions from the Human Genome Project. In: The code of codes. Ed. D. Kevels, L. Hood. p. 211-243. Harvard University Press).

Ну а как обстоят дела у самой Нэнси Векслер? Несколько раз в 1980 году она и ее старшая сестра Эллис собирались в доме их отца Милтона, чтобы обсудить, следует ли им пройти тест на болезнь Хантингтона. Они много спорили, но не пришли к единому мнению. Милтон убеждал их не проходить тест, поскольку неточность или ошибочность результатов может испортить им всем жизнь. Нэнси была уверена, что тестирование необходимо, но ее уверенность постепенно таяла в лучах перспективы знания и полного бессилия что-либо сделать. Эллис записывала дискуссию в дневник, который потом стал основой душещипательной книги Mapping fate (Судьба на карте). В результате ни одна из женщин не прошла тестирования. Сейчас Нэнси уже до­стигла того возраста, в котором у ее матери диагностиро­вали болезнь Хантингтонга (Wexler N. S. 1992. Mapping fate. University of California Press, Los Angeles).

Хромосома 5 Окружающая среда

Пришло время для холодного душа. Дорогой читатель, я, автор этой книги, ввел вас в заблуждение. Слишком ча­сто я использовал слово «просто» и бормотал об удивитель­ной простоте генетики что-то вроде «ген — это всего лишь пропись в «книге рецептов» белков, написанной на удиви­тельно простом языке», гордясь удачной метафорой. Такой простой ген на хромосоме 3 в случае поломки вызывает алкаптонурию, а другой простой ген на хромосоме 4, если он слишком длинный, — хорею Хантингтона. Если у чело­века есть мутация, он заболевает, если ее нет — человек здо­ров. Никаких дискуссий, статистики и прочих глупостей. И жизнь человека показалась скучной и предначертанной. Она, как горошины, — либо гладкая, либо морщинистая.

На самом деле мир устроен не так. Он полон полутонов, нюансов, спецификаторов и зависимостей. Мендельская генетика так же непригодна для понимания всей сложно­сти и многообразия наследственности, как евклидова гео­метрия для описания многообразия форм живого дерева. За редкими исключениями тяжелых генетических заболе­ваний, которыми, слава Богу, большинство из нас не стра­дает, влияние генов на нашу жизнь вплетается тонкими во­локнами в многообразие других факторов. Мы не делимся на великанов и карликов, как мендельские растения горо­ха, большинство из нас — где-то посередине. Мы не делим­ся, как горошины, на морщинистых и гладких. Морщины есть у всех, но проявляются в разной степени. И в этом нет

ничего удивительного. Как вода, состоящая из молекул, яв­ляется не просто горстью маленьких бильярдных шариков, так и человек — это не просто сумма генов. Здравый смысл подсказывает нам, что влияние генов далеко не так предска­зуемо, как решения математических уравнений. Интересно наблюдать, как на вашем лице смешиваются черты отца и матери. Но картина получается совсем не та, как в случае с вашим братом или сестрой. Каждый ребенок в семье все равно будет уникальным.

Добро пожаловать в мир плейотропности и плюрализ­ма! Ваш внешний вид определялся не только генами, ответ­ственными за данный признак, но и работой всех других генов, кроме того — многими негенетическими фактора­ми, включая моду, ваш вкус и принимаемые вами рещения. Хромосома 5 — удобный объект для гадания на кофейной гуще, чтобы посмотреть, как из многообразия генов скла­дывается размытая, но богатая формами и полутонами кар­тина наследственности. Но не будем сломя голову бросать­ся в этот мир полутеней. Давайте двигаться шаг за шагом. Я продолжу рассказ о заболеваниях, но в этот раз речь пой­дет не о генетической болезни, да и не о болезни вовсе, а о предрасположенности к ней. Хромосома 5 является домом для целого семейства генов, которые рассматриваются как главные кандидаты на номинацию «генов астмы». Но все, что связано с ними, окутано мантией плейотропности — спе­циальный термин для описания разнообразных проявле­ний наследственности, связанных с работой многочислен­ных генов. Астма — типичный пример плейотропного забо­левания. Ученым пока не удалось схватить за руку главный ген астмы, как они ни старались.

Это заболевание в разной форме присуще всем людям. Практически каждый из нас страдает аллергией на какой- нибудь раздражитель, если не с рождения, то в определен­ный период жизни. Существует множество противоречи­вых теорий о природе аллергии. Вы можете присоединить­ся к любой из воюющих партий. Те, кто борятся за чистоту, винят во всем загрязнение окружающей среды. Другие счи­тают, что угроза астмы притаилась в коврах, мебели и стро­ительных материалах. Кто-то видит причину астмы в стрес­сах и перегрузках на работе или в школе. Те, кто не любят мыть руки, винят во всем навязчивую гигиену. Другими сло­вами, астма — это отражение всей сложности нашего мира.

Астма — это вершина айсберга, называемого атопией, — наследственной предрасположенности к различного рода аллергиям. Неудивительно, что большинство астматиков еще имеют аллергию на продукты или вещества. Астма, экзема, аллергия и анафилаксия— это все проявления одного синдрома, связанного с работой определенных клеток организма, активируемых одними и теми же моле­кулами иммуноглобулина-Е. Один человек из десяти имеет клинические проявления аллергии — от легких приступов сенной лихорадки до анафилактического шока, который может развиться в считанные секунды от укуса пчелы или орешка арахиса и привести к смерти. Какой бы фактор ни был причиной все возрастающего числа астматиков, этот же фактор оказывает влияние на частоту и остроту прояв­лений всех остальных атопийных заболеваний. Известно, что если у ребенка была аллергия, которую он перерос, то у него значительно понижается шанс заболеть астмой во взрослом возрасте.

Следует сделать еще одно замечание относительно при­чин астмы и утверждений о стремительном росте числа астматиков. В одних публикациях можно прочитать, что число астматиков за последние 10 лет возросло на 6%, а ко­личество людей, страдающих аллергией на арахис, — на 7% за это же время, причем смертность от астмы внушает опа­сения. Всего несколькими месяцами позже другие исследо­ватели пишут столь же уверенно, что согласно их данным прирост больных астмой — это иллюзия. Просто люди ста­ли больше уделять внимания астме, более часто обращать­ся к врачу в тех случаях, в которых раньше никогда не обра­тились бы и просто считали, что простудились. В 1870 году Арман Труссо (Armand Trousseau) посвятил астме главу своей книги Clinique Medicate (Клиническая медицина). Он описал случай астмы у двух братьев-близнецов, которых эта болезнь приковывала к постели в Марселе и других го­родах, но полностью прошла в Тулоне. Труссо нашел это очень странным. Впрочем, то, что он выделил этот случай, не свидетельствует о редкости болезни в те времена. Хотя и нельзя исключать, что число больных астмой и аллерги­ями действительно растет и виновато в этом загрязнение окружающей среды.

Но о каком загрязнении мы говорим? Большинство из нас вдыхает гораздо меньше дыма, чем наши предки, пользовавшиеся буржуйками и печками. Поэтому кажется сомнительным, что причиной роста аллергии стал смог. Известны случаи острых приступов астмы, вызванных со­временной бытовой химией. Рассыпаемые на свалках и ши­роко используемые в промышленности всевозможные хи­микалии, такие как изоцианаты, тримеллитовый ангидрид и фталевый ангидрид, попадают в воздух, которым мы ды­шим, и могут быть причиной астмы. Было зафиксировано, что когда начинается разгрузка танкера с изоцианатом в американском порту, полицейские, управляющие движе­нием поблизости, вскоре попадают в больницу с приступа­ми астмы, которая затем может повторяться снова и снова до конца их жизни. И все же есть разница между астмой, возникшей под влиянием высокой концентрации раздра­жающего слизистую вещества, и бытовой астмой, которая возникает без видимых причин. Пока нет точных данных о том, что граничные примеси химических веществ в воз­духе могут повышать риск заболеть астмой.

Нередки случаи производственной астмы у людей, ра­ботающих на устаревших, плохо оборудованных предпри­ятиях: в звероводческих хозяйствах, парикмахерских, ко­фейнях, ремонтных мастерских. Описано более 250 раз­новидностей производственной астмы. Но гораздо чаще, примерно в половине случаев, возникает аллергия на помет маленьких невидимых глазом пылевых клещей, которые во множестве копошатся в наших коврах и мебели, пользуясь вместе с нами благами центрального отопления.

Список аллергенов, приводимый Американской ассоци­ацией легочных заболеваний (American Lung Association), гарантирует нашу встречу с одним из них, где бы мы ни на­ходились: пыльца, перья, споры грибов, пища, холод, эмо­циональный стресс, чрезмерные нагрузки, морозный воз­дух, пластмассы, металлическая стружка, деревья, выхлоп­ные газы, сигаретный дым, краски, аэрозоли, аспирин, сердечные капли, а в одном случае — даже сон. Несмотря на то что аллергенами заполнен весь мир, астма — это все же преимущественно городская проблема. Особенно бур­ный рост числа заболевших регистрируется в новых горо­дах, пришедших на смену поселкам и деревням. Например, на юго-западе Эфиопии есть небольшой город Джимма (Jimma), которому чуть больше 10 лет. Эпидемии астмы в этом районе тоже исполнилось 10 лет. Причина роста чис­ла аллергий в городах не вполне ясна. Действительно, в городах больше выхлопных газов и озона, но антисанитар­ные условия жизни присущи, скорее, деревне.

Есть теория, что чем стерильнее окружение человека, тем больше вероятность появления у него астмы. Возможно, проблема в гигиене, а не в ее отсутствии. Дети, у кото­рых есть старшие брат или сестра, реже болеют астмой. Возможно, это происходит потому, что в юном детстве им больше приходится сталкиваться с пылью и уличной грязью, чем ребенку, который в семье один. Обследование 14 ООО детей в г. Бристоле показало, что у тех из них, кто мыл руки по пять раз в день и чаще, а также дважды в день принимал душ, вероятность заболеть астмой была 25%. У тех детей, которые мыли руки не более трех раз в день и купались че­рез день, риск возникновения болезни был вдвое меньше. Предполагают, что для развития нормальной иммунной си­стемы организму необходим контакт с бактериями, особен­но с почвенными микобактериями. При этом результаты стимуляции иммунного ответа отличаются от результатов, получаемых во время иммунизации вакцинами, так как за- Действуются совсем иные механизмы. Поскольку два отдела иммунной системы, которыми заведуют, соответственно, клетки Thl и Th2, соперничают друг с другом у детей, жи­вущих в стерильной чистоте, но вакцинированных против разных заболеваний, ТЬ2-зависимая иммунная система при­обретает неестественную суперактивнось. А эта система как раз специализируется на уничтожении паразитов на слизи­стой и в кишечнике, что сопровождается массированным выбросом гистамина. Гистамин, в свою очередь, оказывает на аллергию, астму или экзему такое же воздействие, как бензин на огонь. Наша иммунная система требует «обуче­ния», которое происходит при контакте иммунных клеток с почвенными микобактериями. Если микробов нет, проис­ходит дисбаланс иммунной системы, ведущий к аллергиям. В доказательство этой теории в лабораторных условиях у мышей, сенсибилизированных к яичному белку, удавалось ослабить или прекратить приступ аллергии с помощью пре­паратов, основанных на почвенных микобактериях. Другие исследования в Японии показали, что у школьников, имму­низированных вакциной против туберкулеза только один раз, риск заболеть астмой был выше, чем у детей, привитых дважды. Можно предположить, что повторное введение ми- кобактерий уже стимулировало Thl-зависимую систему, ко­торая немного урезонила своих ТЬ2-коллег. Вывод простой, выбрасывайте стерилизаторы бутылочек детского питания и идите на поиск почвенных микобактерий (Hamilton G. 1998. Let them eat dirt. New Scientist, 18 July 1998: 26-31; Rook G. A. W., Stanford J. L. 1998. Give us this day our daily germs. Immunology Today 19: 113-116).

Согласно другой теории астма — это результат активно­сти клеток иммунной системы, ответственных за борьбу с глистами. В каменном веке (да и в средние века) иммуно- глобулин-Е-зависимая система трудилась день и ночь, ведя нескончаемую борьбу с глистами всех родов и разновидно­стей. У нее не было времени заботиться об экскрементах клещей и кошачьей шерсти. Сегодня эта система ничем не занята и гиперсенсибилизирована на любые раздражи­тели. Хотя данная теория базируется на несколько сомни­тельных представлениях о работе иммунной системы, есть

наблюдения, свидетельствующие в ее пользу. Нет такой острой формы сенной лихорадки, которую не мог бы вы­лечить один солитер, но трудно сказать, с чем бы пациент предпочел остаться.

Еще одна теория связывает рост заболеваемости аллер­гией в городах с тем, что люди больше времени проводят в закрытых помещениях среди ковров и перьевых подушек, населенных многомиллионной армией пылевых клещей. Есть также теория, согласно которой человек становит­ся чувствительным к астме благодаря умеренным вирусам (например, аденовирусам, вызывающим легкую простуду), поражающим городское население из-за его скученности и подверженности ежедневным стрессам. Теорий, объясняю щих засилье вирусов, еще больше, чем теорий возникнове­ния астмы. Тут и чрезмерные нагрузки детей в школе в соче­тании с переохлаждением во время перемен, когда они вы­скакивают на улицу без верхней одежды. Перманентность инфекции объясняется тем, что люди сейчас легко и бы­стро перемещаются из города в город и даже из страны в страну, обогащая своих сограждан новыми штаммами ви­русов. Известно более 200 разных вирусов, способных вы­зывать то, что мы называем респираторным заболеванием. Доказана связь возникновения хронических инфекций у детей, а также астмы с частым инфицированием синцити- альным вирусом. Еще по одной версии возникновение аст­мы связано с ее особым воздействием на иммунную систему урогенитальных бактерий, вызывающих неспецифические уретриты у женщин с такой же частотой, с какой возникает астма. Вы можете выбирать любую теорию, которая вам по­нравилась. Лично мне наиболее убедительной кажется вер­сия о чрезмерном увлечении гигиеной в наши дни, впро­чем, ради укрепления здоровья я все равно не стану жить в стойле. Но единственное, в чем сходятся ученые, — это то, что развитие астмы обусловлено генетической предраспо­ложенностью. Но как же тогда быть с фактами, свидетель­ствующими о возрастании числа заболевших астмой? Вряд ли гены изменились за последнее время.

Так почему же все-таки ученые полагают, что астма по крайне мере от части является генетическим заболевани­ем? Что они имеют в виду? Приступ астмы возникает в ре­зультате отека дыхательных путей под воздействием гиста- мина, который обильно выделяют стволовые клетки под влиянием иммуноглобулина-Е, переходящего в активное состояние в присутствии молекул именно того вещества, на которое он сенсибилизирован. Цепочка причинно-след­ственных взаимодействий прямолинейна и хорошо изу­чена. То, что иммуноглобулин-Е может активизироваться разными веществами у разных людей, объясняется особым строением этого белка. Его пространственная конфигура­ция может легко меняться во время синтеза. Как трансфор- мер, иммуноглобулин-Е можно скрутить таким способом, чтобы он идеально входил в контакт с любым чужеродным белком-аллергеном. Поэтому у одного человека астма мо­жет вызываться экскрементами клещей, у другого — кофей­ными зернами, но механизм развития реакции будет один и тот же — посредством активизации определенной формы иммуноглобулина-Е.

Если есть цепь биохимических реакций, контролируе­мых белками, значит есть и гены, кодирующие эти белки. Мы помним, что каждый белок синтезируется под контро­лем своего гена, но в случае с иммуноглобулином-Е это про­исходит под контролем двух генов. То, что у некоторых людей аллергия развивается именно на шерсть животных, вероятно, связано с определенными изменениями генов иммуноглобулина-Е в результате мутаций.

Это стало понятным, когда появились статистические подтверждения того, что астма является семейным забо­леванием. В некоторых местах мутации, ведущие к астме, чрезвычайно распространены. Одно из таких мест — уеди­ненный остров Тристан-да-Кунья (Tristan da Cunha), на­селенный, по всей вероятности, потомками человека, страдавшего астмой. Несмотря на приятный умеренный климат, острые проявления астмы отмечены у 20% населе­ния острова. В 1997 году группа генетиков, финансируемая биотехнологической компанией, отправились в дальнее за­морское путешествие на этот остров. Были взяты анализы крови у 270 из 300 островитян в надежде найти мутацию, ведущую к астме.

Обнаружение мутации сможет пролить свет на перво­причины астмы, что поможет в поиске новых эффектив­ных лекарств. Санитарно-гигиенические исследования мо­гут объяснить причины общего роста заболеваемости, но чтобы понять, почему у одного брата развилась болезнь, а у другого нет, нужно знать, в каком гене произошла мутация.

Но в данном случае, в отличие от предыдущих примеров генетических заболеваний, довольно сложно сказать, что есть «норма», а что — «мутация». В случае с алкаптонурией было совершенно ясно, какой ген нормальный, и какой — «ненормальный». Но с астмой все гораздо сложнее. В ка­менном веке иммунная система, остро реагирующая на пы­левых клещей, не создавала проблем, поскольку пылевые клещи не были столь распространены во временном стой­бище первобытных охотников, рыщущих по саванне. И если эта же иммунная система эффективно боролась с гли­стами, то сегодняшний астматик был бы более здоровым человеком в каменном веке, чем кто-либо другой. Одним из открытий генетики последнего десятилетия стало то, что между нормой и мутацией не всегда есть четкое различие.

В конце 1980-х годов сразу несколько групп ученых при­ступили к поиску гена астмы. К середине 1998 года был найден не один ген, а пятнадцать. Восемь генов-кандидатов находились на хромосоме 5, по два — на хромосомах 6 и 12, и по одному — на хромосомах 11, 13 и 14. Это не учитывая того, что два гена, кодирующих иммуноглобулин-Е— цен­трального игрока аллергического ответа, находятся на хромосоме 1. Под книгой о генетике астмы могли бы под­писаться каждый из этих генов, причем в произвольном порядке. У каждого из них были свои ярые сторонники, лоббирующие важную роль именно своего гена в разви­тии астмы. Генетик из Оксфорда Уильям Куксон (William Cookson) рассказывал, как его конкуренты реагировали на открытие им связи между предрасположенностью к астме и генетическим маркером на хромосоме 11: одни поздравля­ли, другие поспешили напечатать опровержения, публикуя результаты незавершенных исследований с явными изъ­янами и недостаточным числом повторностей, или высо­комерно высмеивали «логические дизъюнкции» и «особые гены графства Оксфордшир». Имели место сказанные при­людно едкие колкости, а также анонимное обвинение в под­тасовке фактов. (Интересно, что обман в науке считается самым страшным преступлением, тогда как в политике это невинная шалость.) Околонаучный спор развивался по спи­рали — от сенсационной публикации в Sunday, гиперболизи­рующей открытие Куксона, до телевизионной программы, предавшей обструкции публикацию, после чего последова­ла волна взаимных обвинений телевизионщиков и журнали­стов. «Через четыре года скептицизма и взаимного недове­рия, — писал Куксон примирительно, — мы все чувствовали себя очень уставшими» (Cookson W. 1994. The gene hunters: ad­ventures in the genome jungle. Aurum Press, London).

Такова изнаночная сторона научных открытий. Впрочем, сравнивать ученых с золотоискателями, рыщущими в по­исках только денег и славы, тоже было бы не верно. Из-за многочисленных публикаций в желтой прессе заголовки, сообщающие о новых генах алкоголизма или шизофре­нии, уже кажутся дурным тоном. Закрадываются сомнения в эффективности самих методов современной генетики. Критика не безосновательна. Действительно, простые и броские заголовки в популярных изданиях не отражают всей сложности научной проблемы. Тем не менее ученый, обнаруживший связь между геном и заболеванием, обязан опубликовать эти данные, не опасаясь шквала критики и насмешек. Даже если затем окажется, что связь ошибочна, вреда будет не много — гораздо меньше, чем из-за того, что важный ген будет отметен в сторону ввиду неуверенности ученого в результатах.

Куксон с коллегами в конце концов обнаружили на хро­мосоме сам ген и мутацию в нем, ведущую к предрасполо­женности к астме. Теперь никто не сомневался, что это один из генов астмы. Но данная мутация объясняет только 15% случаев заболевания. Кроме того, когда другие ученые пытались найти подтверждение этой зависимости у сво­их пациентов, статистическая достоверность результатов была на грани ошибки. Такова своенравная природа всех ге­нов астмы. В 1994 году один из соперников Куксона, Давид Марш (David Marsh), опубликовал сведения о взаимосвязи между астмой и геном интерлейкина-4 на хромосоме 5, об­наруженным при изучении случаев заболевания у одиннад­цати амских семей.

Амские меннониты — ответвление секты меннонитов в США.

Впрочем, это открытие также оказалось трудно подтвер­дить, проводя независимые исследования. В 1997 году фин­ские ученые убедительно показали отсутствие связи между этим геном и заболеванием астмой. Но в том же году при изучении астмы в смешанных межрасовых американских семьях было выявлено одиннадцать участков хромосом, предположительно влияющих на предрасположенность к аллергиям. Причем десять из них были специфичными для конкретных этнических групп. Другими словами, гены, оказывающие влияние на предрасположенность к астме негров, могут отличаться от генов, связанных с астмой у европейцев, но их гены, в свою очередь, вполне могут не совпадать с генами астмы у латиноамериканцев (Marsh D. G. 1994. Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin-E concentrations. Science 264: 1152-1156).

Различия между полами оказались не менее разитель­ными, чем различия между расами. Согласно данным Аме­риканской ассоциации легочных заболеваний выхлопные газы карбюраторных машин на бензине чаще вызывают приступы астмы у мужчин, тогда как для женщин более ток­сичными оказались выхлопные газы дизелей. Как правило, аллергии у мужчин проявляются в детстве и в юношеском возрасте, но затем проходят, а у женщин — в 25-30 лет, и уже не проходят. («Как правило» означает, что из этого правила есть много исключений, впрочем, как и из любых других.) Это наблюдение объясняет тот факт, что люди ча­сто связывают свою наследственную предрасположенность к аллергии с болезнью матери, а не отца. Просто у отца эта предрасположенность уже реализовалась в детстве, а затем прошла, но могла передаться детям по наследству.

Проблема в том, что сложный механизм развития им­мунного ответа на аллергены находится под влиянием мно­жества факторов, в результате чего можно найти еще мно­го генов астмы, но все они будут лишь частично влиять на развитие заболевания. Возьмем, к примеру, ген ADRB2, ко­торый лежит на длинном плече хромосомы 5. Он содержит в себе пропись белка бета-2-адренергического рецептора, под контролем которого находятся бронходилатация (рас­слабление гладкомышечных клеток воздухоносных путей) и бронхостеноз (сужение бронхов) — два основных признака астмы, приводящих к затрудненному дыханию. Лекарства для снятия приступа астмы как раз нацелены на этот ре­цептор. Неудивительно, что ген ADRB2 рассматривался как главный претендент на название «гена астмы». Впервые последовательность нуклеотидов этого гена длиной в 1 239 букв была выделена из клеток китайского хомячка. Затем ген был найден в геноме человека и подвергся тщательному обследованию. Разница была обнаружена, когда сравнили гены больных с тяжелой формой астмы с частыми ночны­ми приступами и ген больных другими формами астмы. Отличие состояло в единственном нуклеотиде под номером 46. У больных ночной формой астмы в этом месте стояла буква А вместо G. Буква G на 46-й позиции обнаруживалась у 8% ночных астматиков и у 52% больных с другой формой астмы. Отличие оказалось статистически достоверным, но не однозначным (Martinez F. D. 1997. Association between ge­netic polymorphism of the beta-2-adrenoceptor and response to albuterol in children with or without a history of wheezing. Journal of Clinical Investigation 100: 3184-3188).

Следует также отметить, что больных с ночными при­ступами астмы относительно немного, т.е. влияние гена ADRB2 оказалось незначительным. Данные других ученых совершенно запутали дело. Оказалось, что та же мутация в том же гене влияет на привыкание больных к лекарствам от астмы. Известны случаи, когда лекарство, например фор- мотерол, переставало действовать через несколько недель или месяцев его применения. Было установлено, что при­выкание развивается быстрее у тех больных, у которых на 46-й позиции в гене ADRB2 стоит G вместо А. В очередной раз оказалось невозможно ответить на вопрос, где мутация, а где — норма.

«Скорее всего», «вероятно», «в некоторых случаях» — как это не похоже на тот жесткий детерминизм, как в слу­чае с болезнью Хантингтона (см. главу 4). Безусловно, что замена А на G, и наоборот, оказывает какое-то влияние на предрасположенность к астме, но совершенно не объ­ясняет, почему у одних людей развивается астма, а у дру­гих — нет. Влияние того или иного «гена астмы» всегда про­являлось лишь у небольшой ограниченной группы людей, тогда как в другой группе влияние этого гена оказывалось завуалированным из-за множества других факторов. Вам следует привыкать к такой неопределенности. Чем глубже мы будем проникать в геном, тем меньше в нем будет места для фатализма. Генетика — игра вероятностей, возможно­стей и предрасположенностей. Это не противоречит пред­ставлениям Менделя о наследственности с его простыми формулами распределения рецессивных и доминантных признаков. Просто большинство признаков находятся под прямым или косвенным влиянием сотен генов, что ниве­лирует воздействие мутации в одном из них. Геном так же сложен и многогранен, как и сама жизнь, потому что он и есть сама жизнь. Надеюсь, после этой главы вам уже не так грустно, как после предыдущей. Прямолинейный детерми­низм, будь-то в генетике или в общественных отношениях, действует угнетающе на тех, кто ценит свободу жизни.

Хромосома 6 Одаренность

Как я ни боролся с собой, но первые главы этой книги посвятил генетическим заболеваниям. Теперь мне, навер­ное, в наказание нужно сто раз написать: ГЕНЫ НЕ ДЛЯ ТОГО, ЧТОБЫ ВЫЗЫВАТЬ ЗАБОЛЕВАНИЯ. Мутация и генетическое заболевание — это не одно и то же. Только в некоторых генах в результате определенных мутаций про­исходит поломка, которая ведет к заболеванию. В большин­стве других случаев изменение гена не делает его хуже, а делает другим. Мы не можем сказать, что ген голубых глаз — это сломанный ген карих глаз, а ген рыжих волос — это не­правильный ген волос цвета каштана. Такие гены называют аллелями, т.е. альтернативными версиями одного и того же гена, среди которых нет ни плохих, ни хороших. Они все нормальные, но отличаются друг от друга.

После знакомства с простыми примерами наследствен­ности пришло время заглянуть в самые запутанные дебри генетического леса — наследование интеллекта.

Хромосома 6 — это лучшее место для начала изучения данной темы. Именно на этой хромосоме в 1997 году один бравый, или даже бесшабашный, ученый нашел «ген интел­лекта». Нужно быть смелым человеком, чтобы сделать такое заявление, зная, какая волна скептицизма и насмешек будет обрушена на твою голову. В основе такого скептицизма ле­жит не только то, что эту тему давно уже запятнали лже­ученые, работающие на политические заказы, но и просто здравый смысл. Мать Природа не доверила развитие нашей интеллектуальности слепым генам, отдав предпочтение вос­питанию, обучению, культуре и жизненному опыту.

Но именно о «гене интеллекта» объявил в 1997 году Роберт Пломин (Robert Plomin) со своими коллегами. Каждый год в летнем лагере в штате Айова в США собира­ются из всех школ Америки вундеркинды в возрасте 12-14 лет, показавшие незаурядные знания и успехи, близкие к гениальности. (В лагерь приглашается 1 % учащихся, пока­завших лучшие результаты тестирования с IQ в пределах 160.) Пломин предположил, что у этих детей идеальными должны быть все гены, которые так или иначе оказывают влияние на интеллект. Были взяты анализы крови, и группе Пломина удалось найти маленький специфический участок ДНК на хромосоме 6. (По правде говоря, поиск велся не во всем геноме, а именно на хромосоме 6, поскольку на ее осо­бую роль в приобретении интеллекта указывали исследо­вания других ученых.) Шаг за шагом продвигаясь по длин­ному плечу хромосомы 6, удалось найти участок, который у большинства гениальных детей отличался от среднеста­тистических показателей. Вновь, как и в случае с астмой, закономерность не была абсолютной. Просто у гениальных детей этот изменчивый участок хромосомы чаще изменял­ся в одну сторону. Изменчивая последовательность лежала в середине гена, которому дали имя IGFJl (Chorney М. J. et al., 1998. A quantitative trait locus associated with cognitive ability in children. Psychological Science 9: 1-8).

Развитие направления в генетике по изучению интел­лекта никогда не шло гладко. Пожалуй, в истории науки трудно найти большую глупость, чем та, что было сказана по поводу интеллекта. Прежде всего встает вопрос, кого от­нести к умным, а кого — к дурным. Я понятия не имею о сво­ем IQ. Я проходил тесты в школе, но никогда не спрашивал о результате. Первый раз я просто не понял, что тест сда­ется на время, поэтому не ответил и на половину вопросов. Может, это говорит о моей невнимательности, но причем тут интеллект. Здравый смысл и жизненный опыт убеждают меня в недостоверности измерения интеллекта в баллах.

Абсурдной кажется сама идея того, что такую сложную шту­ку, как интеллект, можно измерить у человека за полчаса.

Действительно, первые методы измерения интеллекта были очень примитивны и базировались на предвзятом отношении к вопросу. Пионером в этом направлении ис­следований был Фрэнсис Гальтон (Francis Galton). Он на­чал наблюдать за развитием детей в разных семьях с целью отделения врожденного интеллекта от приобретенного. Гальтон не скрывал своих убеждений: «Моя основная цель состояла в том, чтобы разобраться в разнообразии наследо­вания способностей у людей, а особенно в разных семьях и расах, чтобы на примерах самой природы проследить, как в эволюции человека более совершенные роды вытесняли на обочину отстающих, а также чтобы понять, не следует ли нам приложить усилия и поспособствовать естественно­му ходу эволюции, а не оставлять эти вопросы на произвол судьбы» (Galton F. 1883. Inquiries into human faculty. Macmillan, London).

Другими словами, Гальтон собирался выводить более совершенные породы людей наподобие выведения пород крупного рогатого скота.

Именно в США проверка интеллекта приобрела особен­но уродливые формы. Тесты на интеллектуальность в нача­ле прошлого века внедрил в американскую жизнь 1оддард (Н. И. Goddard), позаимствовав их у француза Альфреда Бине (Alfred Binet). Было предложено использовать те­стирование на иммигрантах, чтобы проверить, годятся ли они для Америки. 1оддард был не только уверен в том, что большинство иммигрантов «идиоты», но и в том, что про­фессионал сможет отделить умных от дураков, задав пару вопросов. Действительно, результаты были ниже среднего уровня или, как говорили, западно-американского уровня. Ну откуда еврейским мальчикам из Польши было знать, что сетка на теннисном корте натягивается посередине, если они смутно представляли себе, что такое теннис. 1Ъддард был абсолютно убежден в том, что интеллект, это врож­денное качество: «Уровень интеллектуального развития, которого способен достигнуть каждый отдельный человек, всецело зависит исключительно от качества хромосом, пришедших к нему во время зачатия. Этот уровень слабо зависит от всех остальных факторов, за исключением слу­чаев серьезных увечий, ведущих к потере врожденных спо­собностей» (Goddard Н. Н. 1920. — цит. по кн.: Gould S. J. 1981. The mismeasure of man. Norton, New York).

Неудивительно, что с такими взглядами Годдард допу­скал много перегибов. Он был довольно влиятелен в поли­тических кругах, поэтому добился разрешения тестировать всех приезжающих иммигрантов на острове Эллис. К нему вскоре присоединились единомышленники с еще более радикальными взглядами. Роберт Иеркс (Robert Yerkes) убедил армейский генералитет США в необходимости те­стирования миллионов новобранцев, отправляемых на Первую мировую войну. И хотя на результаты тестов никто не обращал внимания, Иеркс набрал достаточную мате­риальную базу для лоббирования идеи, что тестирование интеллекта должно проводиться в национальном масшта­бе во время приема на работу, чтобы быстро и надежно разделить людей на категории разного качества. Именно результаты тестирования новобранцев легли в основу де­батов Конгресса США в 1924 году о принятии акта, строго ограничивающего приток иммигрантов из стран Южной и Восточной Европы, которые интеллектуально «менее раз­виты», чем люди «нордического» типа, доминировавшие в США до 1890 года. В действительности в этих дебатах наука мало кого интересовала. Данный акт был типичным при­мером расовой предвзятости и национального протекцио­низма. Но тестирование Иеркса придало происходящему вид научности.

К истории евгеники мы еще вернемся в следующих гла­вах книги, печально только, что эта история привела к полному неприятию какого-либо тестирования интеллекта академическими учеными, особенно работающими в об­ласти социальных наук. Когда маятник истории незадолго до Второй мировой войны смел с трибун псевдонаучных расистов, на саму идею наследования интеллекта было на­ложено табу. Иеркс, Годдард и их соратники совершенно не принимали во внимание индивидуальные особенности развития и воспитания людей, доходило до того, что они предлагали дать ответы на тесты, написанные на англий­ском языке, людям, не говорящим по-английски или не уме­ющим писать. И глубокая убежденность в том, что знания и способности являются врожденными, не позволяла им критически отнестись к полученным результатам. Но чело­век как раз отличается от животных своей способностью к обучению. Показатели IQ сильно зависели от того, в какой среде воспитывался человек и чему учился. Очевидность этого влияния и брезгливое отношение ученых к расизму привели к тому, что идея наследования интеллекта вообще перестала рассматриваться.

В идеале наука должна двигаться по пути выдвижения многочисленных версий и гипотез, большинство из кото­рых затем отметаются как ошибочные. Но так почему-то не происходит. Точно так же, как в 1920-х годах в корне пресекались любые идеи о влиянии воспитания на врож­денные способности, в 1960-х годах научный мир отказы­вался признавать любые факты, указывающие на влияние наследственности на интеллект. Удивительно, но в вопро­сах воспитания и наследования интеллекта ученые гораздо чаще были в плену заблуждений, чем простые люди, руко­водствовавшиеся здравым смыслом. Любая домохозяйка знала, что воспитание необходимо, но при этом ни у кого не вызывал сомнений вполне очевидный факт наследова­ния способностей. Только ученых постоянно заносило то в одну, то в другую сторону.

Нет ни одного общепризнанного определения интел­лекта. Существуют такие понятия, как быстрота мышле­ния, способность к логическому мышлению, память, сло­варный запас, математические способности, усидчивость. Все это признаки интеллекта, но редко все они сочетаются в одном человеке. Гений может творить глупости в обыч­ной жизни, плохо разбираться в искусстве и неумело во­дить машину. Футболист, имевший посредственные оценки во время учебы в школе, способен мгновенно оценить об­становку на поле и сделать выигрышный пас. Музыкальный слух, способности к иностранным языкам и даже способ­ность понимать других людей не всегда сочетаются с мате­матическими и инженерными талантами. Ховард Гарднер (Howard Gardner) выдвинул идею множественной интел­лектуальности, согласно которой интеллект представля­ет собой сумму отдельных талантов. Роберт Штернберг (Robert Sternberg) предложил выделить три независимых типа интеллекта: аналитический, творческий и приклад­ной. При постановке аналитических задач дается четкое определение условий и указывается набор инструментов, необходимых для решения. Аналитические задачи имеют только одно правильное решение, не связанное с реальной жизненной ситуацией и каким-либо практическим приме­нением. Типичный пример аналитической задачи — школь­ные экзамены. Напротив, прикладные задачи, не имеющие четких предварительных условий, проистекают из жизнен­ных проблем. У таких задач может быть несколько реше­ний, имеющих разную степень эффективности. Уличный бразильский подросток может совершенно не знать школь­ной математики, но легко считать в уме, когда ему это нуж­но. С помощью IQ не удастся измерить способности жокея. Школьники Замбии легко справляются с тестами-голово­ломками, требующими пространственного мышления, но пасуют с ответами на бумаге, английские школьники — их прямая противоположность.

Школа уделяет особое внимание аналитическим, а не прикладным проблемам. Так же подбираются вопросы для тестирования IQ. Хотя форма и содержание тестов могут меняться, они всегда рассчитаны на людей определенно­го склада ума. Можно ли сделать вывод, что IQ — это слу­чайное число, не имеющее ничего общего с интеллектом? Несмотря на все недостатки и ограниченность IQ, что-то этот коэффициент все-таки измеряет. Если сопоставить результаты тестирования по разным тест-системам, то вы обнаружите четкую ковариацию. В 1904 году матема­тик Чарльз Спирмен (Charles Spearman) впервые указал на то, что дети, успевающие по одному предмету, обычно успевают и по другим. Могут существовать разные типы интеллекта, но между ними, безусловно, есть корреляция. Спирмен назвал этот коэффициент корреляции «общим интеллектом» и обозначил буквой g. Не все соглашались со Спирменом. Одни считали его «общий интеллект» лишь статистическим выкрутасом, другие, наоборот, верили в то, что наконец у слов «умный» и «дурной» появилось свое измерение. Дальнейшая практика показала, что коэффи­циент интеллекта g действительно больше других коэффи­циентов соответствует реальной успеваемости учеников в старших классах. Четкая зависимость была установлена между g и скоростью выполнения задач. Другими слова­ми, люди с более высоким коэффициентом g быстрее вос­принимают задачу и находят правильное решение. Кроме того, оказалось, что коэффициент общего интеллекта со­храняется неизменным на протяжении всей жизни, от 8 до 80 лет. Конечно, объем знаний меняется, но вычисленная статистически общая интеллектуальная способность оста­ется неизменной. Есть данные о том, что даже способность грудного ребенка быстро реагировать на внешние стимулы коррелирует с высокими показателями IQ во взрослом воз­расте, хотя трудно представить, каким образом такие ис­следования были проведены. Тем не менее с уверенностью можно сказать, что есть прямая зависимость между общим интеллектом и оценками школьников на экзаменах, а также их способностью более полно усваивать школьный матери­ал (Neisser U. et al. 1996. Intelligence: knowns and unknowns. American Psychologist 51: 77-101).

Это не оправдывает фатализм во взглядах на образова­ние. Большие различия в общей успеваемости учеников разных школ и разных стран четко указывают на огромное значение хорошо поставленного обучения школьников. «Гены интеллекта» не могут работать в вакууме. Для разви­тия и реализации врожденного интеллекта нужны постоян­ные внешние стимулы.

Давайте все же попробуем, каким бы глупым и предвзя­тым это не казалось, принять за основу предположение о том, что интеллект можно измерить с помощью набора тестов и выразить коэффициентом общего интеллекта g. Действительно интересен факт, что, несмотря на все по­грешности и несовершенства системы тестирования, вы­числяемый коэффициент доставался стабильным и соизме­римым в ряде независимых исследований. Если достоверная статистическая зависимость между IQ и некоторыми генами прослеживается даже сквозь «туман несовершенных изме­рений», как сказал об этом Марк Филпотт (Mark Philpott), то это тем более доказывает, что генетическое наследова­ние интеллекта действительно существует (Philpott М. 1996. Genetic determinism. In Tam H. (ed.). Punishment, excuses and moral development Averbury, Aldershot). Кроме того, в настоя­щее время используются значительно более объективные тесты, в которых делается поправка на национально-куль­турные особенности и профессиональную специфику.

В 1920-х годах, во времена расцвета вульгарной евгени­ки, не было никаких экспериментальных подтверждений наследования интеллекта. Была лишь слепая вера радете­лей за генетическую чистоту, основанная на голых предпо­ложениях. Сегодня у нас уже есть результаты научных на­блюдений за совместным развитием родных и приемных детей. Правда, эти результаты, как вы увидите далее, хотя и подтверждают некоторую наследуемость способностей, оказались довольно неожиданными.

В 1960-х годах в Америке близнецов-сирот часто разде­ляли с самого рождения и отдавали на воспитание в разные семьи. Обычно так поступали без какого-либо умысла, но известны случаи, когда одержимые ученые заранее плани­ровали и осуществляли такие эксперименты, чтобы про­верить (а точнее, всем доказать), что на развитие ребенка влияет исключительно воспитание и окружающая среда, но никак не гены. Наиболее известный случай произошел в НьюЙорке, когда один психолог-фрейдист с наклонно­стями инквизитора разделил при рождении двух девочек,

Бет (Beth) и Эми (Amy). Эми была отдана на воспитание бедной, страдающей ожирением и комплексами неполно­ценности женщине, не отличавшейся любовью к приемной дочери. Не трудно предугадать, что Эмми, в соответствии с теорией Фрейда, выросла нервной и замкнутой. Однако имелось одно обстоятельство: Бет повторяла свою сестру в мельчайших деталях, несмотря на то, что выросла в се­мье богатой, общительной, любящей и радушной женщи­ны. Не было отмечено никаких существенных отличий в характере и способностях Эми и Бет, когда они вновь вос­соединились через 20 лет. Вместо того чтобы доказать ис­ключительность воспитания в деле развития личности, экс­перимент показал могучую силу инстинктов, заложенных в нас (Wright L. 1997. Twins: genes, environment and the mystery of identity. Weidenfeld and Nicolson, London).

Наблюдения над разделенными близнецами, начатые сто­ронниками детерминизма воспитания и окружающей среды, были продолжены учеными, находящимися по другую сто­рону баррикады, в частности Томасом Боучардом (Thomas Bouchard) в университете Миннесоты. Начиная с 1979 года он разыскивал по всему свету разделенные пары близнецов и сводил их вместе, по ходу дела проводя тестирование IQ. Другие ученые в это же время проводили наблюдение над приемными детьми, сравнивая их IQ с показателями прием­ных родителей и их родных детей. Сведя результаты всех ис­следований и просуммировав данные о десятках тысяч лю­дей, ученые составили таблицу, показанную ниже. Цифры обозначают процент корреляции: 100% — полная идентич­

ность, а 0% — совпадения в пределах случайности.

Повторное тестирование одного и того же человека            87

Однояйцовые близнецы, выросшие вместе                          86

Однояйцовые близнецы, выросшие раздельно                     76

Разнояйцовые близнецы, выросшие вместе                         55

Родные братья и сестры                                                        47

Родители и дети, живущие в одной семье                             40

Родители и дети, живущие раздельно                                   31

Приемные дети, выросшие вместе                                         0

Случайно выбранные люди                                                     0

Неудивительно, что максимальная корреляция обнаруже­на у однояйцовых близнецов, выросших вместе. Поскольку они имеют одни и те же гены, одну утробу и одну семью, их показатели неотличимы от результатов, полученных при повторном тестировании одного и того же человека. Разнояйцовые близнецы, появившиеся из одной утробы, но генетически не более сходные друг с другом, чем обычные братья, уже не показывают такого совпадения в развитии. И все же уровень совпадений выше, чем у братьев и сестер, родившихся в разное время. Это свидетельствует о том, что события, происходящие в первые месяцы жизни, или еще до рождения, когда дети находятся в утробе матери, оказывают влияние на все последующее развитие человека. Не менее впечатляют результаты сравнения уровня развития прием­ных детей, выросших в одной семье, — 0%. Одинаковое вос­питание и обстановка не оказывают никакого влияния на IQ (Scarr S. 1992. Developmental theories for the 1990s: develop­ment and individual differences. Child Development 63:1-19).

Важность внутриутробного развития была признана только недавно. В соответствии с проведенными исследова­ниями 20%-я корреляция в развитии интеллекта близнецов объясняется тем, что они родились из одной утробы, тог­да как у обычных братьев и сестер тот факт, что у них была общая мать, дает только 5%-ю корреляцию в развитии ин­теллекта. Различие объясняется тем, что близнецы в прена- тальный период оказывались под влиянием одних и тех же факторов, которые определили их дальнейшее развитие, т.е. наше развитие до рождения оказалось почти в четыре раза важнее всего последующего воспитания и обучения. Другими словами, даже та часть нашего интеллекта, за раз­витие которой отвечает воспитание, а не природа, всецело зависит от условий, в которых мы находились в утробе ма­тери. Развиваясь, ребенок выполняет программу, заложен­ную в нем природой, но выполнение этой программы идет через воспитание. Именно потому, что ребенок развивает­ся по индивидуальной программе, не следует делать скоро­палительных выводов о его способностях, пока ребенок не вырос (Daniels М. et al. 1997. Of genes and IQ. In Devlin B. et al. (eds). Intelligence, genes and success. Copernicus, New York).

Но все это противоречит здравому смыслу. Неужели наше развитие не зависит от прочитанных книг и отношений в семье и школе? В действительности тут нет явного противо­речия. В конце концов, разве нельзя объяснить наследствен­ностью тот факт, что в одной семье умные родители и дети любят читать книги, вместо того чтобы утверждать, что именно чтение книг сделало их умными. За исключением на­блюдений за развитием родных и приемных детей, пока не проводились никакие дополнительные исследования, кото­рые могли бы четко разграничить наследственное развитие и семейное воспитание. Результаты наблюдений над родны­ми и приемными детьми свидетельствуют в пользу генетиче­ской предрасположенности к умственному труду. Но и здесь возможна ошибка: слишком узок был социальный слой, в котором проводились исследования. В основном это были белые американские семьи среднего класса с очень малой долей бедных и негритянских семей. Но все американские семьи среднего класса почти не отличаются по числу прочи­танных книг, условиям жизни и качеству обучения в школе. Возможно, поэтому влияние книг, учебников и семейного воспитания нивелировалось в этих исследованиях.

Все эти исследования показали, что примерно полови­на нашего интеллекта наследуется, а около 40% находится под влиянием среды обитания, которую мы разделяем с нашими братьями и сестрами, т.е. под влиянием семьи. На остальные 10% приходится пренатальное влияние, школа, хорошие друзья и дурные компании. Но и с этим нельзя полностью согласиться. Как ваш интеллект, так и влияние на него наследственных факторов, могут меняться. По мере того как мы растем и набираемся опыта, влияние ге­нов на наш интеллект тоже растет. Что? Но это же полная чушь! Тем не менее факты показывают, что если развитие ребенка лишь на 50-55% определяется наследственностью, то интеллектуальный уровень взрослого на 75% зависит от врожденных способностей. По мере того как мы взросле­ем, постепенно реализуется наша программа развития, ко­торая сбрасывает с себя, как шелуху, постороннее влияние. Когда мы вырастаем, мы выбираем ту среду обитания, ко­торая больше соответствует нашим внутренним тенденци­ям, вместо того чтобы подстраиваться под существующие реалии, как в детстве. Мы можем сделать следующие выво­ды: наследуется не ум, а способность к развитию, причем внешние факторы не столько влияют на внутреннее разви­тие человека, сколько подталкивают его к поиску места, где бы он находился в гармонии со своим внутренним миром. Наследственность не означает неизменность.

Фрэнсис Гальтон, о котором мы уже говорили в этой гла­ве, приводил одну очень интересную аналогию: «Дети часто забавляются тем, что бросают в небольшие ручейки веточ­ки и наблюдают, как несет их течение. Вот сучок остановил­ся, зацепившись за какое-то препятствие, потом за другое, затем его подхватил поток и стремительно понес вперед. Можно придавать особое значение тому или иному событию и рассуждать о том, какую большую роль в судьбе сучка сы­грали непредвиденные случайности. В это время все сучки будут уноситься ручьем вдаль, и если взять достаточно боль­шой промежуток времени, то их средняя скорость будет со­вершенно одинаковой». Усиленная школьная программа и дополнительные занятия, безусловно, повлияют в лучшую сторону на развитие интеллекта ребенка, но лишь в краткос­рочной перспективе. После завершения школы интеллекту­альные способности будут выравниваться, достигая с возрас­том того уровня, который был установлен природой.

Если вы согласились со справедливостью критики того, что роль наследования интеллекта была преувеличена в экс­периментах, ограниченных одним социальным классом, тог­да вы должны признать, что роль наследственности возрас­тает в современном обществе, где различия между классами постепенно стираются. Действительно, по иронии судьбы в обществе, где успех человека определяется его способно­стями, а не происхождением, именно происхождение, т.е. унаследованный интеллект, начинает играть особо важную роль. В прошлом жизнь впроголодь и тяжелый изнуритель­ный труд приводили к тому, что бедный человек не дости­гал уровня, уготованного ему природой. Сегодня благодаря тому, что в развитых странах решена проблема по обеспече­нию всех слоев общества достаточной и доступной пищей, различия в способностях и достижениях индивидуумов можно объяснить только различиями в наследственности. Другое дело, можно поспорить о том, насколько соответ­ствуют друг другу способности, успех и интеллигентность, на которую как раз и влияют качество школы и семейного воспитания. Общество равных возможностей не делает лю­дей одинаково воспитанными, скорее наоборот. И все же, следует признать правильность парадоксальной идеи: в об­ществе равных возможностей гены играют большую роль.

Наследственностью можно объяснить различия в интел­лекте у отдельных людей, но не групп людей. Интеллект на­следуется примерно одинаково у разных народов и рас. Но логически не верным будет предположить, что если разли­чия в IQ между людьми на 50% определяются наследствен­ностью, то в основе различий среднего IQ между неграми и белыми или между европейцами и выходцами из Азии также лежит генетика. Проведенные исследования, резуль­таты которых опубликованы в книге The bell curve (Кривая колокола) тоже не подтвердили это предположение. Есть отличие в значениях IQ негров и белых в пользу послед­них, но нет данных о том, что это наследуемое различие. Действительно, в процессе наблюдений за развитием тем­нокожих детей, усыновленных белыми семьями, не было отмечено достоверных отличий в IQ между темнокожими и белокожими детьми (Herrnstein R. J., Murray С. 1994. The bell curve. The Free Press, New York).

Если интеллект наследуется, то должны быть гены, вли­яющие на него. Трудно предположить, сколько таких генов может быть в геноме. Одно ясно, что это должны быть из­менчивые гены, т.е. они должны быть представлены в гено­мах людей в разных вариантах, иначе генетическое наследо­вание интеллекта никак не проявит себя. Действительно, в геноме могут находиться гены чрезвычайно важные для раз­вития интеллекта, но одинаковые у всех людей. Такие гены не могут объяснить различий в интеллекте с точки зрения наследования. Например, у меня пять пальцев на руке, как и у других людей, потому что это предопределено генетиче­ски. Если мы соберем всех людей, у которых меньше паль­цев на руке, то 90% или даже больше составит результат несчастного случая, а не наследственности. Мы установим, что наличие четырех пальцев на руке — это не наследуемый признак, даже несмотря на то что развитие конечностей у зародыша контролируется генетически. Другими словами, генетическая предопределенность и наследование— это не одно и то же. Наследственные признаки мы можем изу­чать только в том случае, если между ними есть отличия. Так, Роберт Пломин в серии экспериментов с ДНК детей- вундеркиндов выявил изменчивый ген. Это не означает, что данный ген — самый важный для развития интеллекта. В ге­номе наверняка есть гораздо более важные гены, влияющие на развитие мозга, но именно поэтому они консервативны и редко меняются или не меняются никогда.

Ген IGFJi, найденный Пломином на длинном плече хро­мосомы 6, на первый взгляд не очень подходит на роль «гена интеллекта». До открытия Пломина этот ген был знаменит своей связью с раком печени. Его можно было бы назвать «геном рака печени», если следовать неправильной тради­ции именовать гены по болезням, которых они в действи­тельности не вызывают. Когда-нибудь ученые установят, яв­ляется ли функция подавления рака печени основной у это­го гена, а влияние на интеллект — побочной, или наоборот. Биохимическая функция белка, кодируемого этим геном, почти ничего не говорит нам о его назначении: «внутри­клеточное транспортирование фосфорилированных фер­ментов лизосом от комплекса Гольджи и клеточной стенки к лизосомам». Это всего лишь транспортный фургон. Ни слова об ускорении шевеления извилинами мозга.

1ен IGFJi имеет гигантские размеры — 7 473 буквы, но этот текст разбит на фрагменты на участке хромосомы длиной в 98 ООО пар нуклеотидов. Смысловые фрагменты разделены бессмысленными интронами (точно так же, как текст журнала постоянно прерывается навязчивой рекламой). Посредине гена есть участок повторяющихся элементов, причем количество повторов склонно менять­ся у разных людей. Возможно, этот вариабельный участок оказывает влияние на уровень интеллекта. Поскольку про­дукт этого гена косвенно связан с инсулином и процессами усвоения сахара, возможно, тут есть определенная связь с данными о том, что люди с высоким IQ отличаются более эффективным потреблением углеводов мозгом. В исследо­ваниях добровольцам предлагалось освоить компьютерную игру «Тетрис». У людей с высоким IQ при этом отмечалось более интенсивное потребление глюкозы мозгом. Но это лишь предположение. Ген Пломина, если в ходе дальней­ших исследованиях вообще удастся подтвердить его связь с интеллектом, может оказывать влияние, используя для этого множество других опосредованных путей (Haier R. et al. 1992. Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence 16: 415-426).

Важность открытия Пломина состоит в том, что впервые удалось перейти от косвенных доказательств наследуемости интеллекта, базирующихся на сравнительном анализе раз­вития близнецов и приемных детей, к прямому изучению ковариаций отдельных генов и уровня интеллекта. Одна ва­риация гена почти вдвое чаще встречается в геномах талант­ливых детей в лагере штата Айова по сравнению со средни­ми значениями для всей популяции — результат, который вряд ли можно объяснить случайностью. Но влияние этого гена на интеллект ограничено. Его воздействием можно объ­яснить повышение коэффициента IQ лишь на 4 балла. Этот ген точно нельзя назвать геном гениальности. По результа­там исследования в Айове Пломин выделил еще десяток ге­нов — кандидатов на роль стимуляторов интеллекта.

Возвращение к идее наследования интеллекта все еще вызывает чувство брезгливости и неприятия в научных кругах. Уж очень резонансной была практика вульгарной евгеники в 20-х и 30-х годах прошлого столетия. Например, Стефан Джей Гоулд (Stephen Jay Gould), критикуя новую волну увлечения наследованием интеллекта, отмечает: «Частичное наследование низких показателей IQ может быть исправлено улучшенной системой образования, а мо­жет и нет. Сам факт наследования не дает никакого ответа на этот вопрос». Действительно, проблема может оказаться в том, что люди, узнав о наследовании интеллекта, воспри­мут эту идею слишком пессимистично относительно роли и важности воспитания. Обнаружение мутаций, лежащих в основе таких проблем с обучением, как, например, дис­лексия, не дает права учителям отказываться от подобных учеников как безнадежных. Наоборот, это должно быть стимулом для поиска особых методов обучения детей, стра­дающих дислексией (Gould S.J. 1981. The mismeasure of man. Norton, New York).

Действительно, ведь даже Альфред Бине (Alfred Binet), который разработал первый тест интеллекта, говорил, что данное тестирование предназначается не для того, чтобы обосновать первенство одаренных детей, а для того, что­бы вовремя выявить отставание в развитии детей и уделить особое внимание их развитию. Пломин приводит самого себя как пример удачной работы системы тестирования. Он был единственным из огромной чикагской семьи, состо­ящей из тридцати двух родных и двоюродных братьев и се­стер, кто получил высшее образование. Он благодарит судь­бу за то, что его высокие показатели тестирования в школе убедили родителей выделить деньги на учебу в колледже. Американская гордость за свою систему тестирования рез­ко контрастирует с британским неприятием этой системы. Не долго просуществовавший и завоевавший дурную славу своей необъективностью эксперимент с экзаменом Кирила Барта (Cyril Burt) — это, пожалуй, единственный случай, когда в систему британского образования было допущено тестирование интеллекта. Если в Англии о тестировании вспоминают как о величайшей глупости, в результате кото­рой талантливые дети отправлялись в школы второго уров­ня, то в США тестирование рассматривают как путевку в жизнь для талантливых детей из бедных семей.

Следует раз и навсегда понять, что смысл наследования интеллекта состоит вовсе не в разделении людей на группы разного качества. Противопоставление Гальтоном приро­ды и обучения не должно найти ложного толкования, как, например, в идеях измерения интеллекта и потенциальных способностей человека путем измерения пропорций его тела. В середине прошлого века всерьез рассматривались теории, согласно которым люди с высоким IQ отличаются от остальных большей симметричностью ушей. Мерилами интеллекта также выступали общая симметричность тела, ширина стопы и лодыжки, длина пальцев, размер грудной клетки и высота лба. Глупость состояла не в поиске корре­ляций, а в том, что их применение было обязательным для вынесения вердикта.

Интерес к замерам пропорций тела с целью использо­вания их в качестве показателей общего развития возро­дился в 1990-е годы. Асимметричность нашего тела впол­не естественна. Например, сердце у большинства людей находится в грудной клетке слева от средней линии тела. Но асимметричность отдельных частей тела совершенно индивидуальна. Например, левое ухо может быть немного больше чем правое, или наоборот. Степень асимметрич­ности может выступать показателем воздействия разных стрессов на организм во время развития: инфекции, токси­ны, плохое питание. Можно предположить, что у людей с высокими показателями IQ тело действительно более сим­метрично, поскольку организм в утробе и в детские годы подвергался меньшим стрессам или лучше справлялся с ними. А устойчивость к стрессам — это наследуемый при­знак. Таким образом, «гены интеллекта» совсем не обяза­тельно должны быть связаны с развитием мозга. Те гены, которые оказывают влияние на устойчивость организма и его способность противодействовать инфекциям, также опосредованно влияют на уровень интеллекта. Вы наследу­ете не интеллект, а способность развить свой мозг до опре­деленного уровня при благоприятных условиях. Можно ли при этом четко противопоставить природу и обучение?

Видимо нет (Furlow F. В. et al. 1997. Fluctuating asymmetry and psychometric intelligence. Proceeding of the Royal Society of London, Series В 264: 823-829).

В подтверждение того, что наследуется не интеллект, а способность к развитию, можно привести известный эффект Флинна. Ученый и политик из Новой Зеландии Джеймс Флинн (James Flynn) обратил внимание на то, что показатели IQ возрастают с каждым годом во всех странах мира со средней скоростью 1 балл за десятилетие. Почему так происходит, трудно сказать. Возможно, это та же при­чина, которая ведет к увеличению роста людей, — лучшее питание в детстве. Например, когда в одной из деревушек Гватемалы рацион питания детей был обогащен белками за 10 лет показатели IQ существенно возросли — эффект Флинна в миниатюре. Но показатели IQ продолжают ра­сти также в развитых странах, где проблема с питанием уже давно решена. Вряд ли объяснением может послужить совершенствование образования. Различные нововведе­ния в школах оказывают лишь временный эффект, при­чем не всегда положительный. Кроме того, IQ возрастает значительно быстрее, чем меняется система образования. Мышление изменяется также качественно. Наибольший прогресс наблюдается в ответах на вопросы, требующие абстрактного мышления. Улрик Нейссер (Urlic Neisser) по­лагает, что эффект Флинна связан с насыщением нашей по­вседневной жизни многочисленными визуальными источ­никами информации: цветными фотографиями, рекламой, фильмами и пр., — что часто замещает собой получение информации из текстовых источников. Развитие ребен­ка сейчас в большей степени находится под воздействием зрительных образов, что способствует более быстрому раз­витию интеллекта (Neisser U. 1997. Rising scores on intelli­gence tests. American Scientist 85: 440-447).

Но как увязать эффект Флинна и другие влияния внеш­ней среды на интеллект с данными, полученными в экспе­риментах с близнецами и приемными детьми, которые сви­детельствуют о доминирующем влиянии наследственности

на интеллект? По словам Флинна, тот факт, что за послед­ние 50 лет средний уровень IQ возрос на 15% говорит либо о том, что в 1950-х годах было больше тупиц, либо о том, что сейчас стало больше гениев. Поскольку о культурном ренессансе в наши дни говорить не приходится, Флинн за­ключает, что в IQ нет ничего генетически наследуемого. Интересно также замечание Нейсера о том, что повыша­ется не общий уровень интеллекта, а лишь его части, на­ходящейся под влиянием быстро изменяющейся внешней среды. Но это не исключает того, что базовая предрасполо­женность к умственному развитию может наследоваться. За два миллиона лет развития общественно-культурных от­ношений людей человеческий мозг мог обогатиться (путем естественного отбора) в дополнение к наследуемым фор­мам интеллекта способностями развиваться под влиянием передающихся из поколения в поколение знаний и тради­ций. Развитие ребенка происходит как под влиянием внеш­них факторов, так и в соответствии с заложенной в нем ге­нетической информацией. Причем, взрослея, человек все в большей степени старается найти в окружающем мире соответствие со своими склонностями или изменить его. Если у человека руки работают лучше, чем голова, он ищет им применение, тогда как «книжный червь» будет искать книги. Гены определяют склонности, но не способности. В конце концов, даже более простые вещи, например близо­рукость, обуславливается не только генетически заданной формой глазного яблока, но и привычками, работой, окру­жающей средой. Чтобы прекратить спор, длящийся уже столетие, следует признать, что «гены интеллекта» дарят человеку не гениальность, а путь к ней.

Последние открытия подтверждают теорию наследования интеллекта. Недавно был открыт новый ген DTNBP1, опять таки на хромосоме б, мутации в котором приводят либо к гениальности, либо к шизофрении (Burdick К. Е. et al. 2006. Genetic variation in DTNBP1 influences general cognitive abi­lity. Human Molecular Genetics 15: 1563-1568). Интересно, что мутации в смежных с ним генах связывают с развитием дислексии и проблемами с чтением, о чем речь пойдет в следующей главе.

Представление о том, что гены определяют строение тела, не ново и давно всеми признано. Сложнее принять тот факт, что поведение особи также контролируется гена­ми. Но я постараюсь убедить вас, что на хромосоме 7 лежит ген, в котором записан не внешний признак, а поведенче­ский акт — инстинкт, причем очень важный инстинкт, ле­жащий в основе человеческой культуры.

                                                                                     Хромосома 7 Инстинкт

Термин «инстинкт» чаще применяют к животным: ло­сось, который ищет ручей, где родился; оса-наездник, в точности повторяющая сложное поведение своей давно исчезнувшей прародительницы; молодые ласточки, точно знающие, куда лететь к местам зимовки — все это проявле­ния инстинкта. Человек не очень-то полагается на инстин­кты. На смену им пришли обучение, творчество, культура и сознание. Все, что мы делаем, — это результат наших ре­шений, воли нашего мозга и промывания мозгов нашими родителями. На наш разум нацелены психология и другие социально-общественные науки. Если нашими поступками и делами управляем не мы с вами, а бездушные гены, чем же является наша воля? Социологи и философы давно уже пытаются втиснуть волю личности в рамки какой-нибудь целесообразности: сексуальной — по Фрейду, социально- экономической — по Марксу, классовой — по Ленину, куль­турно-этнической — по Боасу (Franz Boas) и Мид (Margaret Mead), причинно-следственной — по Уотсону (John Watson) и Скиннеру (В. F. Skinner), лингвистической — по Сапиру

(Edward Sapir) и Ворфу (Benjamin Whorf). Более чем на столетие философы завладели умами человечества, убедив всех в том, что наша воля — это продукт общественно-соци­альной рациональной закономерности, и это отличает нас от животных, живущих по инстинктам.

Но в период с 1950 по 1990 год глобальные социальные теории рушились одна за другой. Фрейдизм надорвался на психоаналитическом лечении маниакальных депрес­сий, терпя в течение 20 лет одно поражение за другим. Марксизм завалило Берлинской стеной. Научные доказа­тельства Маргарет Мид оказались подтасовкой фактов и актерской игрой заранее нанятых людей (Freeman D. 1983. Margaret Mead and Samoa: the making and unmaking of an anth­ropological myth. Harvard University Press, Cambridge, MA). Потерпела также фиаско рациональная теория о том, что в основе эмоциональных отношений лежит материальный рационализм. В 1950 году в Висконсине было описано на­блюдение за детенышем обезьяны. Маленькая обезьянка больше всего была привязана и нежно относилась к обезья- не-кукле — первому объекту, который детеныш увидел сразу после рождения, но от которого не получал никаких мате­риальных благ. Первое наше чувство — любовь и привязан­ность к матери — является примером врожденного поведе­ния (Harlow Н. F. et al. 1971. From thought to therapy: lessons from primate laboratory. American Scientist 59: 538-549).



Поделиться книгой:

На главную
Назад