Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Голоc через океан - Артур Чарльз Кларк на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Надписи на монументе в Польдью в честь первой трансатлантической радиосвязи

В 1902 году Оливер Хевисайд (одновременно с Кеннели[48] в Соединённых Штатах) дал объяснение этого, на первый взгляд непонятного, явления. Он предположил, что на большой высоте в атмосфере есть сильно ионизированный слой, отражающий радиоволны обратно на землю, поэтому они и не исчезают бесследно в космосе. Трудно было поверить, чтобы природа оказалась столь предусмотрительной и как бы специально для осуществления связи с помощью радио создала отражающий слой высоко над поверхностью земли. Поэтому учёные не сразу согласились с таким объяснением. И только в 1924 году – за два месяца до смерти Хевисайда – учёные Э. Эпплтон[49] и М. Барнетт показали, что в атмосфере действительно есть отражающие слои, даже не один, а по меньшей мере два. А сегодня сотни ракет пересекают ионосферу, и недалёк тот день, когда человек сам отправится в космос[50].

На заре развития радио инженеры и учёные, создавая оборудование для приёма радиоволн, встретились с двумя серьёзными трудностями. Устройство для выпрямления волн было очень громоздким (детекторных приёмников тогда ещё не существовало) и, кроме того, не знали, как усиливать получаемые сигналы.




Джон Амброз Флеминг, его "клапан-диод" и схема простейшего радиоприемника с вакуумным диодом в качестве детектора

Первый серьёзный шаг к преодолению этих трудностей был сделан в 1904 году, когда англичанин Джон Флеминг (1849-1945) изобрёл так называемый "клапан-диод", примитивнейшую радиолампу – предок миллионов ламп, которые сегодня применяются в радио и телевидении. Впоследствии за этой лампой укрепилось название "диод", однако слово "клапан" как нельзя более точно характеризует её свойства. Диод позволяет сигналам проходить только в одном направлении, т. е. выпрямляет их, и превращает радиоволны, как всякие электрические колебания, быстро меняющие своё направление, в чёткие сигналы. Однако усиливать их ещё не умели.

Но зта проблема также вскоое была решена. В 1907 году Ли Де Форест изобрёл триод. Пропуская слабые сигналы через металлическую сетку, вмонтированную в диод Флеминга, Форест установил, что их можно усиливать почти неограниченно. Изобретением триода начался век электроники, в котором мы сейчас живём. Это открытие можно отнести к наиболее значительным научным достижениям того времени.




Ли Де Форест, его триод-"аудион" и схема простейшего радиоприемника с вакуумным триодом в качестве детектора и усилителя

Триод впервые получил практическое применение в области электросвязи и дал резкий толчок дальнейшему развитию радио. Проблема усиления слабых и быстро меняющих направление электрических колебаний была решена. Армия инженеров с помощью радиолюбителей начала создавать новую, чрезвычайно быстро развивающуюся отрасль промышленности, которая в наши дни имеет совершенно самостоятельное значение.

Опыты, проведённые на заре развития радио, позволили установить определённые закономерности в распространении радиоволн. Так, выяснилось, что чем длиннее волны, тем больше район их действия. Посылая сигналы через Атлантику. Маркони использовал волны длиной в полтора километра (т. е. частотой около 200 килогерц). Для передачи и приёма таких длинных волн требовалась огромных размеров антенная система. Длинноволновая радиостанция занимала площадь в несколько квадратных километров. На ней выстраивались в несколько рядов связанные проводами башни, каждая высотой в десятки метров.

В начале двадцатых годов радиолюбители сделали открытие, которое заставило правительства и частные фирмы обратиться к коротким волнам. Первоначальные опыты работы на этих волнах показали, что радиус их действия ограничен – практически он находится в пределах нескольких десятков километров. Но никто не мог предположить, что, будучи отражёнными от ионосферы, короткие волны действуют на расстояния в тысячи километров, причём сигналы нередко становятся более отчётливыми и громкими, чем при трансляции на близкие расстояния.

Не удивительно, что для этого замечательного открытия потребовалось некоторое время. Пока ставились опыты с короткими волнами, скажем при радиосвязи между Нью-Йорком и Вашингтоном, вряд ли кому-нибудь приходило в голову устанавливать приёмник для улавливания сигналов в Гренландии или Перу. Но когда радио распространилось по всему миру и в эфир ринулись любители-энтузиасты, старавшиеся побить рекорды дальности радиосвязи, неожиданно обнаружилось преимущество коротких волн.

В 1924 году Маркони решил вплотную заняться техникой передачи на коротких волнах. В то время для передачи на дальние расстояния использовались волны весьма большой мощности, длиной от девяти до восемнадцати километров, распространяемые посредством громоздкой и дорогой антенной системы. Маркони был убеждён, что связь при помощи волн длиной в несколько метров будет и дешевле и надёжнее.

Во всём мире к трансляции с помощью коротких волн относились скептически. Полагали, что послать волны на большое расстояние, может, и удастся, но принять их в силу неустойчивости практически будет невозможно. Маркони надеялся преодолеть эту трудность при помощи антенны с направленным излучением, посылающей энергию сигнала в желаемом направлении и препятствующей её рассеянию в пространстве. Метод мог дать экономический эффект лишь в случае относительно небольших антенных устройств, предназначенных для кооотковолновой передачи. Попытка применить направленную антенну для длинных волн привела к сооружению громоздкой системы длиной до двадцати километров с весьма низкой эффективностью.

Опыты с короткими волнами прошли успешно и в течение 1927-1928 годов Англия установила коротковолновую связь с Канадой, Индией, Южной Африкой и Австралией.

Радиосвязь на коротких волнах оказалась настолько эффективной, что возникли серьёзные сомнения в целесообразности дальнейших работ по совершенствованию подводной кабельной связи. В 1928 году британские кабельные и радиокомпании объединились, создав известную и в настоящее время "Кэйбл энд Уайерлесс К° Лтд", которая в течение последних тридцати лет является одной из ведущих в области международной связи. Эта компания является типичным для Англии примером деятельности частного капитала под государственным контролем. Правительство представлено в правлении компании и имеет право во время войны взять руководство делом в свои руки. Надо заметить, что правительство не воспользовалось этим правом в 1939-1945 годах.

Для широкой публики слово "радио" ассоциируется с передачей разговорной речи и музыки – иными словами, это по существу радиотелефония. Но радио как средство связи стало использоваться гораздо раньше, чем первое живое слово было передано на расстояние без проводов. И даже сегодня значительная часть коммерческой информации в отличие от развлекательной передаётся телеграфным способом, хотя радиотелефония приобретает всё более широкое распространение.

Представьте себе, что вы оказались высоко над землёй и обладаете способностью различать радиоволны. Вы увидели бы, какое множество радиоволн опоясывает землю, то поднимаясь высоко в ионосферу, то отражаясь от неё, неся миллионы слов из одной страны в другую, увидели бы яркое сияние множества излучающих точек – радио и телевизионных станций.

Мы уже упоминали о том, что Маркони в 1901 году удалось послать первое радиотелеграфное сообщение через океан с Корнуэлла в Ньюфаундленд. Это была буква "S", обозначаемая на языке телеграфистов тремя точками. Человеческая же речь совершила такое путешествие (но в обратном направлении) лишь в 1915 году.


Антенна, установленная на Эйфелевой башне в 1909-1925 гг.

Военно-морская радиостанция в Арлингтоне (штат Виргиния) провела ряд опытов и в конце концов ей удалось осуществить передачу голоса, которая была принята приёмником, установленным на вершине Эйфелевой башни в Париже. В то время Эйфелева башня была центром французской военной системы связи, и на приём передачи отвели только десять минут в ранние утренние часы. Итак, после нескольких месяцев подготовительных работ, 23 октября 1915 года в 5 часов 37 минут была принята первая фраза, посланная через океан. Эта фраза, проложившая дорогу через Атлантику миллионам других слов, кажется теперь самой обыденной: "Хэлло, Шрив! Какая сегодня погода?". Первая гоажданская радиотелефонная линия связи между Нью-Йорком и Лондоном вступила в эксплуатацию в феврале 1927 года. Передачи велись на волнах длиной около 6000 метров. Это случилось через шестьдесят один год после прокладки трансатлантического телеграфного кабеля и через пятьдесят один год после изобретения телефона. С этого момента вплоть до прокладки первого телефонного кабеля через океан в 1956 году радио оставалось единственным средством передачи человеческой речи через Атлантику.


Распространение радиоволн в земной атмосфере. Роль отражения от ионосферы.

К сожалению, это единственное средство не было достаточно надёжным. И в передатчики и в приёмники внесли много улучшений, но на третье звено в цепи радиосвязи – на ионосферу – человек воздействовать не мог. При благоприятных условиях передача была отличной, помехи незначительными. Часто же связь становилась просто невозможной из-за шумов, треска и других помех. Периоды плохой связи длились иногда по нескольку часов и даже дней. Радиотелефонная связь через Атлантику находилась в том же положении, что и воздушный транспорт на заре развития авиации, когда никто не мог гарантировать вам точное время вылета – всё зависело от погоды. В отличие от авиации, для радиосвязи понятие "погода" определяется тем, что происходит не на высоте нескольких километров от Земли, а на высоте нескольких сотен километров.

Изучение ионосферы является одной из наиболее сложных и в то же время наиболее важных отраслей современной науки, как для решения практических задач радиосвязи, так и для понимания явлений, происходящих во Вселенной. Здесь мы вынуждены немного отклониться от темы книги для того, чтобы читатель понял, почему инженеры связи после тридцатилетних поисков, находок и разочарований вновь из ионосферы опустились в глубины океана.

Ионосфера неоднородна и нестабильна. Она состоит из трёх основных слоев. Нижний слой "Е" расположен на высоте 130 километров, а два верхних слоя "F1" и "F2" – на высоте 200-400 километров. Обозначения "Е" и "F" были даны Эпплтоном, который впервые доказал существование в ионосфере не одного слоя, а нескольких. Нижний слой – ближайший к Земле, Эпплтон обозначил буквой "Е" – пятой буквой английского алфавита – на тот случай, если будут открыты слои, расположенные ниже. Сейчас мы знаем, что наличию слоев ионосферы мы обязаны ультрафиолетовым лучам, посылаемым на Землю Солнцем. В очень малых дозах ультрафиолетовые лучи полезны для человека. Но, если бы они достигли поверхности Земли неослабленными, в несколько минут всё живое на земле было бы уничтожено. К счастью для нас, ультрафиолетовые лучи высоко над поверхностью Земли проходят своего рода фильтрацию, а потому и не оказывают пагубного воздействия. Попутно во время такой фильтрации лучи ионизируют атмосферу, расходуя энергию на отрыв электронов от встречающихся на их пути атомов кислорода и азота. Наэлектризованный воздух отражает радиоволны примерно так же, как воздух при определённых температурных условиях отражает свет, создавая миражи.

Ионосфера под влиянием солнечных лучей меняет свою плотность и высоту в зависимости от времени суток и времени года. Учитывая это обстоятельство, варьируют (но только в определённых пределах) длины применяемых радиоволн.

Солнце как бы питает ионосферу; но иногда интенсивное ультрафиолетовое излучение, вызываемое взрывами на поверхности Солнца, разрывает ионосферу на части. Некоторые взрывы связывают с появлением пятен на Солнце, имеющим определённую закономерность. Замечено, что раз в 11 лет поверхность Солнца покрывается пятнами, а в остальное время она остаётся сравнительно чистой. Моменты появления пятен на Солнце совпадают с моментами наиболее сильных возмущений ионосферы, и в эти периоды радиосвязь особенно ухудшается.

Поэтому мы можем представить себе ионосферу, как зеркало, окружающее Землю и пульсирующее с изменением как времени суток, так и времени года, зеркало, которое никогда не бывает абсолютно гладким, а потому и не даёт удовлетворительного отражения. Остаётся только удивляться, каким образом радиоинженеры с успехом используют этот созданный природой, но далеко не совершенный рефлектор.

Прежде чем мы спустимся с небес в глубины океана, позвольте напомнить ещё об одном изобретении, которое явилось следствием изучения верхних слоев атмосферы.

Принцип отражения радиосигналов лёг в основу радарных установок, которые широко применялись во время второй мировой войны. Инициатором создания радара в Англии в конце тридцатых годов стал Роберт Уотсон-Уатт[51]. Не будь радиолокационных устройств, Воздушный флот Англии, возможно, был бы уничтожен в этой войне превосходящими силами немцев и, кто знает, что сталось бы тогда с Англией.

Так вот радиолокация своим возникновением обязана изучению невидимого слоя – ионосферы, о существовании которого человечество и не подозревало несколько десятков лет назад.

К сожалению, и сейчас ещё находятся люди, которые ставят под сомнение целесообразность занятий так называемой "чистой наукой". Казалось бы, какой интерес для нашей повседневной жизни представляют попытки замерить плотность электронов в определённом слое воздуха, находящемся на высоте нескольких сот километров?

Но, как следует из вышеизложенного, подобные, на первый взгляд, чисто теоретические исследования изменяют облик планеты и нередко оказывают влияние на развитие истории человечества в целом.

* * *

В книге В. Сибрука "Роберт Вуд" (Огиз-Гостехиздат, М., 1946 г.) приведен забавный рассказ Вуда о демонстрации Маркони в Лондоне (1911 г.) трансатлантической передачи радиосигналов:

…Было объявлено, что на лекции Маркони присутствующие услышат трансатлантические сигналы из Глэс Бэй в Новой Шотландии (в Америке). В то время многие ещё сомневались в возможности этого.

Над крышей собирались запустить змей с антенной, и слушатели должны были услышать сигналы в систему телефонных трубок, разложенных по аудитории. За много дней до лекции исторические залы института наполнили рабочие, устанавливавшие аппараты Маркони. Они разобрали железную балюстраду на мраморной лестнице, ведущей на второй этаж, мешавшую поднять туда громоздкие электрические установки. Вестибюль был три дня забит огромными ящиками, и постепенно за круглым столом, где Фарадей показывал свои маленькие катушки и магнитики, скопилось столько внушительных электрических аппаратов последней конструкции, сколько можно увидеть в одном месте разве на всемирной выставке. Огромная мраморная распределительная доска с вольтметрами, амперметрами, реостатами, предохранителями, индукторами и т. д. и т. д., несколько таинственных ящиков красного дерева с блестящими медными клеммами и пластинками и ещё масса других предметов. Вечером перед лекцией два молодых ассистента Маркони залезли на крышу института, откуда запустили двойной змей и настраивали приёмные аппараты.

Всё это меня страшно интересовало, так как я сам занимался змеями в Ист Хэмптоне. Я ввязался в их работу с вопросами, предложениями, мешая им на каждом шагу своими попытками помочь.

Маркони читал свою лекцию по рукописи, облокотившись на кафедру и положив голову на руку. Мне казалось, что он меньше всех интересуется тем, что говорит, — и никаких экспериментов не было.

Только под самый конец он сказал: "Я установил здесь аппарат для передачи сигналов, и вы услышите звук искрового разряда в этом ящике, когда я нажму на ключ". Он нажал, его несколько раз и мы услышали: "Бэз-бэз-бэз, бэзззз-бэзззз-бэзззз, без-бэз-бэз" (SOS).

За десять минут до окончания я заметил, что его ассистенты нервничают. Один из них исчезал каждые несколько минут, затем появлялся, и они начинали торопливо шептаться. Я подошёл к ним на цыпочках и спросил, что случилось. Трансатлантические сигналы прекрасно приходят, но ветер затихает и змеи опускаются.

"Скажите Маркони", — прошептал я. — Пусть аудитория услышит сигналы, пока это можно, а потом кончит лекцию".

Они покачали головами. "Невозможно", — прошептал один из них. — "Сигналы обязательно должны итти под конец. Он придёт в ярость, если мы прервём его".

"Давайте я скажу ему", — предложил я. Но они ни за что не могли решиться.

Лекция монотонно продолжалась и закончилась словами: "Теперь мы услышим сигналы, перелетевшие Атлантический океан". — Он повернулся к своим ассистентам, стоявшим в стороне. Они смущённо покачали головами, и один сказал: "Змеи опустились". Маркони повернулся к присутствующим и объяснил, что отсутствие ветра сделало демонстрацию невозможной. Мнепоказалось, что он отчасти доволен, что избавился от лишних хлопот.

Идя домой с лордом Рэлеем после лекции, я спросил его: "Что вы думаете об этом?" Он ответил: "Мне кажется, что если бы вам или мне нужно было для лекции приспособление, которое делает "бэзз-бэзз", то мы обошлись бы прибором попроще, и "бэзз-бэзз" у нас всё-таки получилось бы".

XVIII. ТРАНСАТЛАНТИЧЕСКИЙ ТЕЛЕФОН

В начале этой главы я хотел бы привести слова одного шотландского проповедника, который имел обыкновение говорить прихожанам: "Ну, а теперь мы подошли к самой трудной части моей проповеди, но, взглянув ей смело в лицо, мы пройдём и её".

К сожалению, я не могу воспользоваться этой фразой: то, о чём пойдёт речь, действительно "самая трудная часть", однако решить, сумели ли мы пройти до конца книги, может только читатель.

Справедливости ради следует сказать, что разобраться в таком сложном инженерном сооружении, как трансатлантический телефон, может только человек, обладающий специальными знаниями в области электроники. И всё же я верю, что основные проблемы и их решения будут поняты и читателем без специальной подготовки и даже тем, кто не решается ввернуть новую электролампочку взамен перегоревшей. Поэтому мы разделим путь к существу вопроса на два этапа. Настоящая глава полностью лишена технических тонкостей (по крайней мере, у меня было стремление сделать её такой). Некоторые места придётся, возможно, прочесть дважды, но я думаю, что тот, кто дочитает главу до конца, поймёт основное. В то же время многие читатели, знакомые с основами электроники, пожелают, видимо, детальнее рассмотреть эту проблему – их я отсылаю к главе XXI и надеюсь, что она доставит им удовольствие.

Мы уже знаем, как быстро по всему миру распространился телефон после изобретения Грэхема Белла в 1876 году. Но телефонная связь на длинные расстояния, даже на земле, стала практически возможной спустя сорок лег после изобретения телефона, после того как триод разрешил проблему усиления тока телефонной передачи. Затухающие сигналы в телеграфной линии легко усиливаются с помощью реле, но попытка сделать то же самое в телефонной связи не удавалась, и это в течение нескольких десятилетий ставило в тупик лучшие умы человечества.

Сегодня при телефонном разговоре на длинные дистанции человеческий голос усиливается с помощью системы электронных ламп на усилительных пунктах, расположенных на расстоянии 60-80 километров друг от друга; без этого усиления слышимость совершенно пропадает уже через несколько сот километров. Но усиление – лишь одно из преобразований человеческой речи при передаче её на большие расстояния. Обычно мало кому известно, что дальняя телефонная (и телеграфная) связь осуществляется с помощью радиотехнической аппаратуры, но только проводящей ток средой служат жилы кабеля или провода.

С момента зарождения электросвязи умы учёных были направлены на то, чтобы передать как можно больше сообщений по одному проводу, т. е. "уплотнить" цепь. Ведь и Белл изобрёл телефон, пытаясь воплотить в жизнь идею своего "гармонического телеграфа", в надежде осуществить передачу полудюжины телеграмм по одному проводу с помощью пластинок, имеющих различную частоту колебаний. Тот же принцип сейчас с успехом используется нами при настройке радиоприёмника на определённую станцию. Более того, этот же принцип положен в основу одновременной передачи десятков, сотен и даже тысяч телефонных разговоров по одному проводнику[52].

Когда вы говорите по телефону, по проводам передаётся электрический ток не той частоты, которая соответствует звуковым колебаниям вашего голоса, а более высокой частоты. Она получается в результате преобразования тока звуковой частоты с помощью установленного на телефонной станции миниатюрного радиопередатчика. Сигналы таких передатчиков, каждый из которых настроен на определённую частоту, и передаются по проводам. При этом два одновременных разговора не мешают друг другу, ибо каждый из них передаётся по линии своим передатчиком и на своих частотах. Точно так же не мешают друг другу различные программы, принимаемые одной коллективной радио- или телевизионной антенной.

Приёмное устройство отделяет одну передачу от другой (или "фильтрует" их, как говорят в технике) и преобразует сигналы в звуки членораздельной речи.

Таким образом, принцип высокочастотного телефонирования по проводам аналогичен принципу радиопередачи. Но так как к качеству передачи музыкальных и концертных программ по радио предъявляются более высокие требования, чем к качеству передачи разговорной речи, полоса частот канала радиовещания вдвое-втрое шире полосы частот телефонного канала.

Один телефонный канал может быть использован для одновременной передачи двадцати четырёх телеграфных сообщений[53]. В наши дни существовавшее раньше различие между телеграфными и телефонными цепями практически исчезло. Оба вида сообщений передаются по одним и тем же линиям. Сотни жил телефонного кабеля прежнего типа заменены в настоящее время одной парой проводников.

Эти проводники, конечно, далеки от тех, которыми в своё время пользовались Грэхем Белл, Эдисон и "другие пионеры связи. Множество изолированных проводников, скрученных попарно наподобие миниатюрного осветительного электрошнура, в настоящее время заменены коаксиальным кабелем, в котором внутренний проводник помещён в пустотелую медную трубку – внешний проводник. Между внешним и внутренним проводниками расположена обычно полиэтиленовая изоляция. С появлением телевидения каждый может видеть коаксиальный кабель у себя дома (он соединяет антенну с телевизором)[54], но впервые он был разработан для нужд многоканальной телеграфной и телефонной связи.

По коаксиальному кабелю можно передавать очень широкую полосу частот. Для примера достаточно сказать, что применённый для соединения с телевизионной антенной такой кабель позволяет вести приём или передачу на частотах порядка 50 миллионов герц и выше. Если бы возникла необходимость, по этому кабелю можно было бы вести передачу с частотой в несколько миллиардов герц. Иными словами, по коаксиальному кабелю можно передавать одновременно, во всяком случае на небольшие расстояния, около миллиона телефонных разговоров, и при этом они не будут мешать друг другу.

Тремя основными элементами современной дальней связи являются: во-первых, кабель, во-вторых, усилительные станции, установленные на линии через каждые 60 – 70 километров с тем, чтобы компенсировать ослабление сигналов по мере их продвижения вследствие потерь в линии, и, наконец, приёмная и передающая аппаратура, которая позволяет осуществить одновременную передачу десятков и сотен разговоров по одной цепи и затем разделить их по частоте. Если три эти элемента подобраны и изготовлены надлежащим образом, телефонная связь практически не ограничена расстоянием. Имеются в виду технические возможности, так как иногда эта связь ограничивается определённым расстоянием из чисто экономических соображений.

Со времени второй мировой войны, а точнее с момента появления радиолокации основным соперником коаксиального кабеля стала связь на ультракоротких волнах с помощью радиорелейных линий *. Большинство людей, вероятно, видели высокие башни, обрамлённые загадочными кронами с параболическими рефлекторами или раструбами. Башни эти воздвигаются либо на крышах телефонных станций, либо стоят на возвышенностях вдали от жилья. Это те же усилительные станции, только соединены они между собой не медными проводами, а узкими пучками радиоволн. Пучок этот остро сфокусирован; будь он видимым, он напоминал бы пучок лучей прожектора. Устанавливаются башни одна от другой на расстоянии прямой видимости, по возможности на возвышенных местах. Дистанция между ретрансляционными радиорелейными станциями примерно та же, что и между усилительными станциями на линии коаксиального кабеля, т. е. около 65 километров. В горной местности этот интервал может быть увеличен.

Связь с помощью ультракоротких волн имеет то преимущество перед проводной связью, что её можно устанавливать в труднодоступной местности, там, где проложить кабель сложно и дорого. Проложить кабель вообще не всегда просто. Горы, реки, болотистые места и, наконец, сопротивление владельцев отдельных участков – серьёзные препятствия для сооружения кабельных линий.

Но используем ли мы коаксиальную кабельную или ультракоротковолновую радиорелейную линию – в том и в другом случаях для обеспечения качественной связи станции усиления устанавливают на расстоянии не более 60-70 километров друг от друга. На поверхности земли это не составляет особого труда, но как быть в случае, если на пути линии связи возникает водная преграда протяжённостью значительно больше, чем несколько десятков километров?

Некоторые улучшения, внесённые в конструкцию подводного кабеля, позволили увеличить этот предел. Так, в 1947 году между Англией и Голландией был проложен 150-километровый подводный кабель, который позволял одновременно вести 84 телефонных разговора. Сегодня несложно изготовить кабель, допускающий передачу несколько меньшего количества разговоров, но на расстояние уже, скажем, в 350-400 километров без какого-либо промежуточного усиления[55].

Но четыреста километров – это только одна десятая часть расстояния через Атлантику. Ну и что же, — могут спросить, — разве нельзя в десять раз усилить сигнал, подаваемый в линию, или сигнал, поступающий в приёмное устройство? И проблема подводной телефонной связи через Атлантику будет решена!

К сожалению, простая арифметика здесь неприменима. Ток в подводном кабеле ослабевает не пропорционально расстоянию, а гораздо быстрее (более подробно это изложено в главе XX). Уменьшение тока по мере его прохождения по подводному кабелю происходит в масштабах, которые измеряются астрономическими цифрами. Нет, простым увеличением в 10 раз здесь ничего не добьёшься.

Примерный расчёт показывает, что если бы для передачи по первому трансатлантическому телефонному кабелю использовали энергию всех существующих на земле электростанций, то всё равно уже через 370 километров по длине кабеля, т. е. на расстоянии всего лишь одной десятой пути через Атлантику, переданную энергию трудно было бы обнаружить даже с помощью самых чувствительных приборов. На первый взгляд, это кажется парадоксальным, ибо в то же время батарея размером с напёрсток посылает по подводному кабелю телеграфный сигнал, легко преодолевающий Атлантический океан. Объяснение следует искать в используемой частоте передачи. При работе на частотах в сотни тысяч герц потери несоизмеримо больше, чем в случае, когда передача ведётся на постоянном токе.

Но при всех условиях существует предел количества энергии, которое можно передать по кабелю без повреждения его изоляции и расплавления проводников. Повреждение кабеля прокладки 1858 года, происшедшее из-за избытка энергии, обусловленного наличием в схеме огромных катушек доктора Уайтхауза, может служить подтверждением этого положения.

С другой стороны, усиливать сигналы до бесконечности тоже нельзя. После какой-то определённой степени усиления результатом дальнейших попыток становится шум. Если, скажем, указатель диапазона при настройке радиоприёмника установить в положение между станциями, то будет слышен устойчивый свист, производимый бесчисленными передатчиками. Но отличить одну станцию от другой нельзя, пока не настроишься на определённую волну – сигналы как бы тонут в общем шуме.

В радиоприёмнике или в другом виде усилителя большинство шумов и помех является следствием того, что ток обычно не течёт плавно. Образно говоря, распространение тока по проводнику подобно песчаной лавине. Каждый электрон, непрерывно колеблясь, производит свой шум, шумы накапливаются и в результате усиления перекрывают слабый полезный сигнал.

Теперь нам более или менее ясно, насколько трудно было разрешить проблему трансатлантической телефонной передачи по подводному кабелю. Единственный способ, так же как и при наземной дальней связи, — это установка усилителей на таком расстоянии один от другого, при котором посланный сигнал может быть усилен до того, как он будет поглощён шумами, возникающими в проводнике. Это легко сказать, но куда труднее сделать. На практике возникали трудности, долгое время казавшиеся непреодолимыми.

Обычная усилительная станция на междугородной телефонной магистрали занимает помещение в несколько комнат; для её питания требуется энергия абсолютно надёжной и достаточно мощной силовой установки. Усилительная станция длительно работает при минимальном уходе, но всё же нуждается время от времени в некоторой регулировке и замене изношенных деталей. Особенно это касается усилительных ламп. Владельцы радиоприёмников и телевизоров хорошо знают, что лампы медленно, а иногда и не очень медленно, теряют свои качества и постепенно выходят из строя. Было бы ещё полбеды, если бы мы точно знали срок их службы. Но ведь радиолампа может выйти из строя завтра или простоять ещё пятьдесят лет. Никто не может сказать заранее, насколько её хватит.

Проектирование подводных телефонных усилительных станций, которые бы исправно в течение десятилетий функционировали на морском дне под давлением в несколько сот килограмм на квадратный сантиметр, естественно, стало основной проблемой трансатлантической телефонной связи. Её пытались решить тремя различными путями, и на них стоит остановиться хотя бы для того, чтобы понять, почему они были отвергнуты.

Справедливости ради следует сказать, что один путь вообще всерьёз не рассматривался. Телефонная связь Америки с Европой могла быть осуществлена по линии, почти полностью проходящей по суше через территорию Советского Союза. Единственную подводную секцию длиной около 150 километров, не требующую установки подводных усилительных станций, пришлось бы проложить в Беринговом проливе (как мы уже видели в главе XI, подобную безуспешную попытку предприняли после неудачной прокладки первого трансатлантического телеграфного кабеля). Однако вряд ли такое решение было бы целесообразным как по политическим, так и по экономическим соображениям. Потребовалось бы пересечь линией связи огромную территорию, установить сотни усилительных станций, обеспечить постоянное наблюдение за ними и за всей линией в целом.

Итак, задача установления телефонной связи между Европой и Америкой всё же сводилась к сооружению линии в Атлантике.

А что, если использовать ультракоротковолновую связь, оборудовав ретрансляционные вышки на судах, поставленных на якоря через каждые шестьдесят-семьдесят километров по всей трассе? Но тогда потребовалось бы минимум пятьдесят судов с экипажами и соответствующим оборудованием. Капиталовложения оказались бы огромными, а расходы на содержание флотилии – ещё больше. При решении этой проблемы возник бы, кроме того, ряд чисто практических трудностей, а именно: как быть в случае шторма, аварии, каким образом судам поддерживать нужную дистанцию и определённое положение друг относительно друга, как при постоянной качке посылать строго направленные пучки волн от одной вышки к другой.

На первый взгляд, вполне приемлемым был третий путь. Самолёт, поднятый на высоту около 12 километров, может поддерживать прямую радиосвязь в пределах "видимости", с учётом кривизны поверхности Земли, с другим летательным аппаоатом, поднятым на такую же высоту, на расстоянии 800-900 километров от первого. (Кстати, Соединённые Штаты сравнительно недавно изготовили радиолокационные установки, которые для увеличения радиуса действия подняты в воздух). Таким образом, на всю Атлантику потребуется только четыре самолёта, снарядить и обслуживать которые, казалось бы, значительно проще, чем пятьдесят судов. Но это опять приведёт к большим затратам на эксплуатацию установок и содержание экипажа. Хотя, возможно, проблема межконтинентальной связи решится в будущем именно таким путём; в этом случае роль летательного аппарата будет играть искусственный спутник Земли.

Сегодня же единственным практическим решением проблемы трансатлантической и вообще трансокеанской телефонии являются подводные усилители, вмонтированные в уложенный на океанское дно кабель. В первой трансатлантической телефонной линии 102 таких усилителя исправно работают с 1956 года. Половина их участвует в передаче сообщений с востока на запад, половина – в обратном направлении.

Гигантское ожерелье лежит на дне океана. Едва ли у ювелиров есть изделия, которые изготовлялись бы с такой тщательностью и с такими затратами человеческого труда. И это не удивительно, так как подводным усилителям предстоит работать глубоко на морском дне, где нет человеческих глаз и рук, которые могли бы вовремя прийти им на помощь.

XIX. ФАБРИКА ИДЕЙ

Интересно, что бы подумал молодой Грэхем Белл, работавший в своих двух комнатах с единственным помощником, о комплексе лабораторий, оборудованных по последнему слову техники, носящих его имя и играющих такую большую роль в трансатлантической телефонии. На первый взгляд, лаборатории выглядят как большая современная фабрика; да они ею и являются. Но это фабрика идей, на которой производственные процессы остаются невидимыми. Множественное число – "лаборатории" вполне уместно, так как физическое отделение занимает четыре отдельных помещения – одно из них в Нью-Йорке, а три в штате Нью-Джерси. Однако сокращение "Белл Лэбс" принято употреблять в единственном числе.

В наше время во многих странах есть научные центры, ведущие исследовательскую работу в различных областях промышленности. "Белл Лэбс" – полное название "Bell Laboratories" – "Лаборатории Белла" – крупнейшее учреждение такого рода. В настоящее время в его штате насчитывается до десяти тысяч человек, из них три тысячи – ученые и инженеры. Содержание "Белл Лэбс" обходится Американской телефонно-телеграфной компании в 160 миллионов долларов ежегодно. Компания может позволить себе это. Если бы попросили назвать компанию с самым большим капиталом, мы, вероятно, скорее всего вспомнили бы Форда или "Дженерал Моторс". На самом же деле Американская телефонно-телеграфная компания начинает список крупнейших фирм Америки: её баланс достигает шестнадцати миллиардов долларов[56].

В лабораториях разрабатываются вопросы, связанные с развитием радио, телевидения, радиолокации, техники управления ракет и особенно электроники. Большое значение придаётся исследованиям, которые могут привести к новым открытиям и изобретениям. Эта работа, разумеется, трудно поддаётся планированию. Трудно представить себе, например, вице-президента компании, заявляющего: "В следующем финансовом году мы совершим двадцать крупных открытий". Единственное, что здесь можно сделать, — это подобрать молодых, подающих надежды, учёных и инженеров, создать им все условия для работы с тем, чтобы они занимались интересующими их проблемами. Всё это требует больших затрат, и никто не может сказать заранее, даст ли то или иное изобретение выгоду в ближайшем будущем или через сто лет. Однако 16 миллиардов баланса красноречиво говорят о том, что все затраты окупаются с лихвой. За три десятилетия, прошедших с момента организации "Белл Лэбс", её сотрудникам были присуждены две Нобелевские премии – в 1937 году Д. Дэвиссону – за работы по электронной дифракции и В. Браттейну, Д. Бардину и В. Шокли – в 1948 году за изобретение транзистора. Принцип действия этого небольшого, но замечательного устройства основан на особенностях прохождения тока через некоторые вещества, известные под названием полупроводников. Эти вещества, в большинстве своём кристаллические, проводят ток хуже, чем металлы, но тем не менее их нельзя отнести и к изоляционным материалам. При определённых условиях их проводимость в одном направлении лучше, чем в другом. Классическим примером может служить старый кристаллический детектор с пружинкой, который широко использовался в приёмниках двадцатых годов.


Кристаллический детектор – ключевой элемент радиоприемников доламповой эры. Острие проволочки с помощью пружинной части прижимается к кристаллу сернистого свинца (галенита). Удачную точку контакта приходилось искать методом проб и ошибок

Со временем кристаллический детектор, который мог лишь отбирать сигналы, но не мог усиливать их, был полностью вытеснен из области радио электронной лампой, обладающей обоими этими качествами. Однако потом было установлено, что при определённых обстоятельствах некоторые типы кристаллов могут усиливать ток. Кроме того, они имеют ряд преимуществ перед обычными радиолампами. Это исключительно малые габариты и потребность в электропитании, отсутствие нагрева, механическая прочность. Итак появился транзистор. В электронике, радиотехнике началась революция, которая через несколько лет изменит нашу жизнь во многих её сферах.

Прежде всего стало возможным сделать удобные и надёжные аппараты для людей, имеющих дефекты слуха. Затем появились маленькие переносные радиоприёмники. На транзисторах стали изготовлять приборы для контроля и управления промышленными процессами. И всё началось с того, что трое учёных решили посмотреть, что произойдёт, если электрический ток пропустить через крошечные кусочки невзрачного на вид и малоприменимого для промышленных целей элемента – германия.

И сейчас, наверно, какие-нибудь учёные работают над отвлечённой, на первый взгляд, проблемой, решение которой в будущем совершит революцию в науке или промышленности.



Поделиться книгой:

На главную
Назад