Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Руководство администратора баз данных Inrformix. - Виктор Николаевич Кустов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Виртуальным процессором называется процесс сервера баз данных. Виртуальный процессор можно сравнить с операционной системой. Поток по отношению к нему выступает как процесс, подобно тому, как сам виртуальный процессор является процессом с точки зрения операционной системы.

Виртуальные процессоры (ВП) являются специализированными - они подразделяются на классы в соответствии с типом потоков, для выполнения которых они предназначены. Примеры классов ВП:

CPU - Потоки обслуживания клиентов, реализуют оптимизацию и логику выполнения запросов. К этому классу относятся и некоторые системные потоки.

AIO - Операции асинхронного обмена с диском.

ADM - Административные функции, например, системный таймер.

TLI - Контроль сетевого взаимодействия посредством интерфейса TLI (Transport Layer Interface).

В отличие от операционной системы, которая должна обеспечивать выполнение произвольных процессов, классы виртуальных процессоров спроектированы для наиболее оптимального выполнения заданий определенного вида.

Начальное число виртуальных процессоров каждого класса, создаваемых при запуске INFORMIX-OnLine DS, задается в конфигурационном файле. Однако, потребности в каждом виде обработки не всегда предсказуемы. Инструменты администрирования позволяют динамически, не останавливая сервер, запустить дополнительные виртуальные процессоры. Например, если растет очередь потоков к виртуальным CPU-процессорам, то можно увеличить их число. Точно так же, возможно добавление виртуальных процессоров обмена с дисками, сетевых процессоров взаимодействия с клиентами, создание процессора обмена с оптическим диском, если он отсутствовал в начальной конфигурации. Динамически сократить можно только число виртуальных процессоров класса CPU.

На некоторых мультипроцессорных платформах, где OnLine DS поддерживает родство процессоров (processor affinity), допускается привязка виртуальных CPU-процессоров к определенным центральным процессорам компьютера. В результате производительность виртуального CPU-процессора повышается, поскольку операционная система реже производит переключение процессов. Привязка позволяет также изолировать работу с базой данных, выделяя для этой цели определенные процессоры, в то время как остальные будут заняты другими задачами.

2.2.1.3 Планирование потоков

Сервер осведомлен о степени значимости различных потоков и в соответствии с этим назначает для них приоритеты. Например, потоки ввода-вывода получают приоритеты следующим образом:

1. ввод-вывод логической журнализации - наивысший приоритет;

2. ввод-вывод физической журнализации - второй по значимости приоритет;

3. прочие операции ввода-вывода- низший приоритет.

Таким образом, гарантируется, что операции записи в логический журнал, от которых зависит восстановление базы данных в случае сбоя, не окажутся в очереди позади операции вывода во временный рабочий файл.

Сами виртуальные процессоры выполняются как высокоприоритетные процессы операционной системы, которые не прерываются, пока не пусты очереди готовых к выполнению потоков.

Выполнение потока не откладывается по истечении заданного кванта времени, как это происходит с процессами в операционной системе. Поток откладывается в двух случаях:

1. когда он временно не может выполняться, например, если необходимо дождаться завершения обмена с диском, ввода данных от клиента, снятия блокировки.

2. когда в коде потока встречаются обращения к функции yield. Обращения к ней вставляются при компиляции запросов, требующих длительной обработки, чтобы их выполнение не тормозило прохождение других потоков. Для этого выбираются точки, наиболее безболезненные для выполнения потока.

2.2.1.4 Разделение потоков между виртуальными процессорами.

Для каждого класса поддерживаются три очереди потоков, которые разделяются всеми виртуальными процессорами данного класса:

Очередь готовых к выполнению потоков.Очередь спящих потоков. В нее помещается, например, CPU-поток, которому требуется доступ к диску. Предварительно CPU-поток порождает запрос на обмен с диском, для обслуживания которого формируется AIO-поток. Завершив обмен с диском, AIO-поток оповещает об этом виртуальный процессор CPU, который "будит" спящий CPU-поток и перемещает его в очередь готовых потоков.Очередь ждущих потоков. Эта очередь служит для координации доступа потоков к разделяемым ресурсам. В нее помещаются потоки, ожидающие какого-либо события, например, освобождения заблокированного ресурса. Когда поток, заблокировавший этот ресурс, готов освободить его, просматривается очередь ждущих потоков. Если в ней есть поток, ожидающий именно этот ресурс, то он перемещается в очередь готовых.

Если выполняемый поток завершается, засыпает или откладывается, то освободившийся виртуальный процессор выбирает из очереди готовых очередной поток с наивысшим приоритетом. Как правило, OnLine DS стремится выполнять поток на одном и том же виртуальном процессоре, поскольку передача его другому процессору требует пересылки некоторого объема данных. Тем не менее, если поток готов к выполнению, он может быть продолжен другим процессором, с целью исключения простоев и обеспечения общего баланса загрузки.

2.2.1.5 Экономия памяти и других ресурсов

Рациональное использование ресурсов операционной системы достигается за счет того, что потоки разделяют ресурсы (память, коммуникационные порты, файлы) виртуального процессора, на котором они выполняются. Виртуальный процессор сам координирует доступ потоков к своим ресурсам. Процессы же, в отличие от потоков, имеют индивидуальные наборы ресурсов, и, если ресурс требуется нескольким процессам, то доступ к нему регулируется операционной системой.

Переключение виртуального процессора с одного потока на другой, в целом, происходит быстрее, чем переключение операционной системы с одного процесса на другой. Операционная система должна прервать один процесс, выполняемый центральным процессором, сохранить его текущее состояние (контекст) и запустить другой процесс, предварительно поместив в ядро его контекст, что требует физической перезаписи фрагментов памяти. Поскольку потоки разделяют виртуальную память и дескрипторы файлов, то переключение виртуального процессора с потока на поток может сводиться к перезаписи небольшого управляющего блока потока, что соответствует выполнению примерно 20 машинных команд. При этом виртуальный процессор как процесс операционной системы продолжает выполняться без прерывания.

2.2.2 Организация разделяемой памяти

Разделяемая память - это механизм операционной системы, на котором основано разделение данных между виртуальными процессорами и потоками сервера. Разделение данных позволяет:

Снизить общее потребление памяти, поскольку участвующим в разделении процессам, т. е. виртуальным процессорам, нет нужды поддерживать свои копии информации, находящейся в разделяемой памяти.Сократить число обменов с дисками, потому что буферы ввода-вывода сбрасываются на диск не для каждого процесса в отдельности, а образуют один общий для всего сервера баз данных пул. Виртуальный процессор зачастую избегает выполнения или обращения за результатами операций ввода с диска, поскольку нужная таблица уже прочитана другим процессором.Организовать быстрое взаимодействие между процессами. Через разделяемую память, в частности, обмениваются данными потоки, участвующие в параллельной обработке сложного запроса. Разделяемая память используется также для организации взаимодействия между локальным клиентом и сервером.

Управление разделяемой памятью реализовано таким образом, что ее фрагментация минимизируется, поэтому производительность сервера при ее использовании не деградирует с течением времени. Изначально выделенные сегменты разделяемой памяти наращиваются по мере надобности автоматически или вручную. При освобождении памяти, занятой сервером, она возвращается операционной системе.

В разделяемой памяти находится информация обо всех выполняемых потоках, поэтому потоки относительно быстро переключаются между виртуальными процессорами. В частности, в разделяемой памяти выделяется область стеков потоков. Стек хранит данные для функций, выполняемых потоком, и другую информацию о состоянии пользовательского сеанса. Размер стека для каждого сеанса устанавливается при помощи переменной окружения.

Важный оптимизирующий механизм сервера - кэши хранимых процедур и словарей данных. Словари данных (system catalog), доступные только на чтение, а также хранимые процедуры, разделяются между всеми пользователями сервера, что позволяет оптимизировать совокупное использование памяти. При загрузке в разделяемую память словарь данных записывается в структуры, обеспечивающие быстрый доступ к информации, а хранимые процедуры преобразуются в выполняемый формат. Все это может существенно ускорить выполнение приложений, обращающихся ко многим таблицам с большим числом столбцов и/или ко многим хранимым процедурам.

2.2.3 Организация операций обмена с дисками

Операции ввода-вывода, как правило, образуют наиболее медленную компоненту обработки баз данных. Поэтому от их реализации существенно зависит общая продуктивность сервера. Для оптимизации ввода-вывода и повышения надежности в сервере INFORMIX-OnLine DS применяются следующие механизмы:

собственное управление дисковой памятью;асинхронный ввод-вывод;опережающее чтение.

2.2.3.1 Управление дисковой памятью

INFORMIX-OnLine DS поддерживает как собственный механизм управления дисковой памятью, так и управление средствами файловой системы ОС UNIX. Преимущества собственного механизма управления дисковой памятью:

Снятие ограничений операционной системы на число одновременно читаемых таблиц.Оптимизация размещения таблиц - для таблиц выделяются большие области последовательных физических блоков, в результате ускоряется доступ к ним.Снижение накладных расходов при чтении - данные с дисков считываются непосредственно в разделяемую память, минуя буферы ОС.Повышение надежности. При использовании файловой системы INFORMIX-OnLine DS не может гарантировать, что в случае сбоя данные журнала транзакций не пропадут из-за того, что они остались в буферах ОС и не успели записаться на диск. Поэтому процедура быстрого восстановления, вызываемая при перезапуске системы, не обеспечит в этом случае целостности данных.

Файловую систему используют в ситуациях, когда нет возможности выделить под базы данных специальные разделы на дисках, или если перечисленные соображения не критичны.

2.2.3.2 Асинхронный ввод-вывод

Для ускорения операций ввода-вывода сервер использует собственный пакет асинхронного ввода-вывода (AIO) или пакет асинхронного ввода-вывода ядра ОС (KAIO), если он доступен. Пользовательские запросы на ввод-вывод обрабатываются асинхронно, поэтому виртуальным процессорам CPU не приходится ждать завершения операции обмена, чтобы продолжить обработку.

2.2.3.3 Опережающее чтение

Сервер OnLine DS может быть сконфигурирован таким образом, чтобы при чтении последовательной таблицы или индексного файла обеспечивалось опережающее чтение нескольких страниц в то время, пока обрабатываются уже прочитанные в разделяемую память данные. Таким образом, сокращается время ожидания обмена с диском, и пользователь быстрее получает результаты запроса.

2.2.4 Поддержка фрагментации таблиц и индексов

INFORMIX-OnLine DS поддерживает горизонтальную локальную фрагментацию таблиц. Это такой способ хранения таблицы, когда совокупность ее строк разбивается на несколько групп согласно некоторому правилу, и эти группы хранятся на разных дисковых разделах. Фрагментация таблиц способствует достижению следующих целей:

Сокращается время обработки одного запроса. Встроенный в INFORMIX-OnLine DS механизм PDQ при обработке запросов использует информацию о фрагментации таблиц и создает для сканирования таблицы несколько параллельных потоков. Если стратегия фрагментации выбрана удачно, то ускорение при выборке из таблицы практически линейно зависит от числа фрагментов (рис. 3).Снижается уровень конкуренции при одновременном обращении нескольких запросов к одной таблице. INFORMIX-OnLine DS анализирует правило фрагментации таблицы и во многих случаях способен определить, что данный запрос относится только к одному ее фрагменту. Если фрагменты хранятся на разных дисковых устройствах, то разным запросам будут соответствовать обращения к разным дискам.Повышается готовность (доступность) приложений. Даже если некоторые фрагменты таблицы недоступны из-за того, что соответствующие диски вышли из строя, запросы к ней, тем не менее, во многих случаях могут выполняться.Улучшаются характеристики административных операций, таких как архивирование-восстановление, загрузка-выгрузка данных, поскольку они применимы к отдельным фрагментам таблиц. Если таблица разбита на малые фрагменты, то ее восстановление при выходе из строя одного фрагмента выполняется значительно оперативнее, чем полное восстановление нефрагментированной таблицы. Полные операции архивирования, восстановления, загрузки, выгрузки данных также ускоряются, поскольку операции ввода-вывода для фрагментов таблицы выполняются параллельно.

Различаются два типа правил фрагментации таблиц:

Равномерное распределение (round robin) - это встроенный в INFORMIX-OnLine DS механизм фрагментации, который обеспечивает примерно равное число записей в каждом фрагменте.Распределение по выражению (by expression) - для каждого фрагмента задается некоторое выражение, зависящее от значений полей записи; истинность выражения определяет, попадет ли запись в данный фрагмент.

Правило разбиения таблицы задается в SQL-инструкциях CREATE TABLE (создать таблицу), ALTER TABLE (изменить таблицу).

Пример:

CREATE TABLE account ...

FRAGMENT BY EXPRESSION

id_num > 0 AND id_num <= 20 IN dbsp1

id_num >20 AND id_num <= 40 IN dbsp2

REMAINDER IN dbsp3

Здесь dbsp1, dbsp2, dbsp3 - имена областей дискового пространства, выделенного под БД.

INFORMIX-OnLine DS поддерживает также фрагментацию индексов.

Различаются два вида фрагментации индексов - зависимая (соответствующая фрагментации таблицы) и независимая. Фрагментированной таблице может соответствовать нефрагментированный индекс. Создание индекса с правилом фрагментации, не совпадающим с правилом фрагментации таблицы, полезно в тех случаях, когда в разных приложениях выборки из таблицы осуществляются на основе разных подмножеств ее атрибутов.

Стратегия фрагментации таблиц и индексов выбирается в зависимости от цели, которая преследуется, от структуры таблицы и характера запросов к ней. Различные стратегии подробно описаны в документации. Например, если основной целью является уменьшение конкуренции при одновременном доступе к таблице, то оптимальной будет фрагментация таблицы по диапазонам значения ключа (или другого столбца, на основе которого производится основной доступ к таблице) и зависимая фрагментация индекса.

INFORMIX-OnLine DS предоставляет средства наблюдения, позволяющие оценить эффективность фрагментации таблиц и индексов по следующим параметрам:

1. Распределение данных по фрагментам;

2. Баланс запросов на ввод-вывод по фрагментам;

3. Статус дисковых областей, содержащих фрагменты.

Если наблюдения показывают, что выбранная стратегия не удовлетворяет поставленной цели, то правила фрагментации могут быть изменены динамически, без остановки сервера.

Важно, что фрагментация таблиц и индексов прозрачна для приложений, работающих с базой данных. Изменение правила фрагментации не требует никаких изменений в прикладных системах - оно лишь повышает (или снижает) скорость и экономичность их выполнения.

2.2.5 Параллельная обработка запросов

Параллельная обработка запросов (Parallel Data Query, PDQ) - это технология, которая позволяет распределить обработку одного сложного запроса на несколько процессоров, мобилизовать для его выполнения максимально доступные системные ресурсы, во много раз сокращая время получения результата. Основные типы заданий, на которых проявляется эффект технологии PDQ:

обработка сложных запросов, включающих сканирование больших таблиц, сортировку, соединения, группирование, массовые вставки;построение индексов;сохранение и восстановление данных;загрузка, выгрузка данных, реорганизация баз данных;массовые операции вставки, удаления, модификации данных.

Практически это означает, что отчет или ответ на сложный запрос, от которого зависит принятие ответственного решения, можно получить не завтра (после ночной обработки), а непосредственно во время обычной оперативной дневной работы. Снимаются проблемы, связанные с обработкой и обслуживанием (архивированием, копированием) очень больших таблиц - благодаря фрагментации, параллельной обработке и возможностям выполнения административных действий в оперативном режиме. В результате расширяется класс потенциальных приложений, и, соответственно, круг пользователей, более гибким становится режим работы ИС, причем все это достигается не на узкоспециализированных, а на обычных широко распространенных аппаратных платформах. Таким образом, можно говорить о новом качестве, которое привносит с собой технология PDQ.

Максимальные преимущества эта технология дает на многопроцессорных платформах в условиях применения фрагментации таблиц, где время выполнения запроса сокращается в десятки раз; однако выигрыш в производительности достигается и на однопроцессорных машинах и нефрагментированных таблицах за счет того, что доступ к дискам осуществляется параллельно с другими видами обработки, и за счет максимально полного использования памяти.

2.2.5.1 На чем основана технология PDQ

Реализация запроса состоит из отдельных действий - сканирования, сортировки, группирования и др. Эти действия называются итераторами. Итераторы образуют дерево реализации запроса в том смысле, что результаты выполнения одних итераторов являются исходными данными для других. При обычной обработке итераторы выполняются последовательно. В основе технологии PDQ лежат следующие виды оптимизации и регулирования:

Параллельный ввод и вывод (на основе горизонтальной фрагментации таблиц).Распараллеливание отдельных итераторов (на основе методов разбиения данных).Распараллеливание плана выполнения запроса (путем разбиения дерева реализации запроса на независимые поддеревья; за счет применения техники потоков данных).Снижение вычислительной сложности алгоритмов (применение основанных на хешировании алгоритмов сортировки, соединения, вычисления агрегатных функций (sum, min, max, avg, ...)).Управление ресурсами, регулирование степени распараллеливания (под PDQ выделяется определенная доля системных ресурсов).

2.2.5.2 Итераторы

Итератор - это программный объект, который осуществляет итеративную (циклическую) обработку некоторого множества данных. Итераторы различаются типом производимой обработки, но имеют единообразный внешний интерфейс. Каждый итератор открывает один (или более) входных потоков данных (data flow), последовательно считывает их и, после обработки, помещает результаты в выходной поток. Итератору безразличен источник входного потока и назначение выходного потока - это может быть диск, другой итератор, сетевое соединение. Мы будем говорить о поставщиках и потребителях потоков данных. Ниже перечислены типы итераторов, применяемые в INFORMIX-OnLine DS:

SCAN - Сканирует фрагментированные и нефрагментированные таблицы и индексы. NESTED LOOP JOIN - Реализует стандартную логику соединений методом вложенных циклов (читает строку из одной таблицы, находит все совпадения во второй таблице, читает следующую строку из первой таблицы и т. д.). MERGE JOIN - Выполняет фазу слияния для соединения методом сортировки и слияния. HASH JOIN - Реализует новый метод соединений с хешированием. Для одной из двух соединяемых таблиц строится хеш-таблица, вторая таблица зондируется. Оптимизатор решает, какая из таблиц будет хешироваться. GROUP - Группирует данные (GROUP BY) и вычисляет агрегатные функции. SORT - Сортирует данные. MERGE - Выполняет объединения UNION и UNION ALL (для UNION используется комбинация итераторов MERGE и SORT). REMOTE - Реализует удаленные сканирования для операторов SELECT.

Итератор как программный объект состоит из статических и динамических структур данных. Статическая структура содержит ссылки на функции (или методы), применимые к итератору. Динамическая структура содержит информацию о текущем состоянии итератора (открыт, закрыт, выполняет очередную итерацию), одну или две ссылки на поставщиков.

Методы итератора

CREATE() - Создает итератор. Выделяет память для итератора, инициализирует его структуры, а также остальные методы (open(), next(), close(), free()), т.е. устанавливает ссылки на функции, соответствующие данному типу итератора. Затем вызывает метод create() для своих итераторов-поставщиков, которые создадут своих поставщиков, если таковые имеются, и т. д. Таким образом, вызов метода create() для корневого итератора приводит к созданию всего дерева итераторов.

OPEN() - Запускает итератор. Выполняются специфические для данного типа итератора инициализирующие действия, возможно, запрос дополнительной памяти. Например, при запуске итератора сканирования определяется, какие фрагменты необходимо сканировать, устанавливается указатель на первый из них, создается временная таблица (если она нужна), посылается сообщение

MGM (MGM - компонента сервера, которая регулирует выделение ресурсов под запросы, обрабатываемые средствами PDQ; см. об этом ниже, п. "Баланс между OLTP и DSS-приложениями") о запуске потока сканирования. Далее применяется метод open() по отношению к поставщикам итератора, которые применят его к своим поставщикам и т.д. Таким образом, для запуска всего дерева итераторов достаточно применить метод open() к корневому итератору.

NEXT() - Выполняет одну итерацию. Выполнение начинается с того, что итератор применяет метод next() к своим поставщикам, заставляя их также применить next() к своим поставщикам и т. д., пока не сработают итерации поставщиков нижнего уровня. Затем данные поднимаются снизу вверх - каждый итератор, получив данные от своего поставщика, применяет к ним свой специфический вид обработки и передает результат своему потребителю. Метод next() применяется циклически, пока не поступит признак конца потока данных.

CLOSE() - Закрывает итератор. Высвобождает память, выделенную при запуске. Фактически, эта память могла уже быть высвобождена методом next(), когда он получил признак конца данных, поскольку общий принцип состоит в том, чтобы освобождать память сразу же, как только она становится не нужна. Однако, это не всегда возможно. Поэтому на метод close() возлагается ответственность за то, чтобы память в любом случае была освобождена.

Метод close() рекурсивно применяется к поставщикам, тем самым, закрывается все дерево итераторов.

FREE() - Освобождает итератор. Высвобождает память, выделенную при создании. Применяет free() к поставщикам, таким образом, освобождается все дерево итераторов.

Благодаря единообразию интерфейса, итераторы разных типов могут соединяться друг с другом произвольным образом (рис. 5). Итератор не заботится о том, какой тип имеют его поставщики, поскольку он взаимодействует с ними только посредством методов. Из описания методов следует, что запуск дерева, составленного из итераторов, реализует их параллельное выполнение. Для каждого итератора создается поток выполнения, который продвигается по мере того, как получает данные от своих поставщиков. Таким образом в сервере реализуется вертикальный параллелизм - одновременное, конвейерное выполнение различных итераторов.

Другой вид параллелизма - горизонтальный - заключается в том, что вместо одного итератора (например, сканирования) создается несколько однотипных параллельно выполняемых итераторов. Горизонтальный параллелизм реализуется при помощи итераторов специального вида - итераторов обмена (EXCHANGE). После того, как дерево реализации запроса построено, оптимизатор определяет, какие его компоненты имеет смысл распараллелить. Над такой компонентой вставляется итератор EXCHANGE. Итератор EXCHANGE создает и запускает несколько экземпляров своего поставщика, обеспечивает координацию поступающих от них потоков данных и их передачу своему потребителю. Передача данных осуществляется в этом случае не через входы потребителя, а через очереди пакетов в разделяемой памяти.

Степень и наиболее оптимальные способы применения вертикального и горизонтального параллелизма для каждого конкретного запроса определяется оптимизатором. Оптимизатор принимает решения, исходя из значений параметров конфигурации, устанавливаемых администратором, пользователем и клиентским приложением, а также с учетом некоторых внутренних соображений, таких как число наличных процессоров, фрагментация участвующих в запросе таблиц, сложность запроса и т. д.

Результаты тестов показывают, что механизмы PDQ и оптимизации INFORMIX-OnLine DS обеспечивают с увеличением числа процессоров практически пропорциональный рост производительности.

2.2.5.3 Примеры применения параллелизма

Параллельная сортировка

Сортировка - это фундаментальная операция обработки баз данных, применяемая при выполнении таких действий, как построение индексов, соединение методом сортировки и слияния, группирование; поэтому ускорение сортировки улучшает качество многих приложений.

При параллельной сортировке совокупность данных разбивается на секции, которые передаются для сортировки нескольким процессорам. Затем выполняется слияние отсортированных секций.

На практике скорость сортировки ограничивается временем сканирования данных из таблиц. Это ограничение в значительной мере снимается применением PDQ-алгоритмов параллельного сканирования.

Параллельное сканирование

Операции построения индексов, соединений, подготовки отчетов, необходимые в большинстве приложений, требуют сканирования больших объемов данных, если в них участвуют большие таблицы. Технология PDQ позволяет существенно снизить время сканирования. Если таблица фрагментирована, то секции сканируются параллельно, при этом выигрыш во времени примерно пропорционален числу дисков. При сканировании последовательных таблиц или индексов применяется конфигурация сервера OnLine DS с опережающим чтением - время отклика сокращается за счет того, что чтение очередных страниц идет параллельно с обработкой уже прочитанных.

Параллельное построение индексов

Процедура построения индекса начинается с оценки объема данных и определения числа потоков, необходимых для их сканирования. Затем выполняется параллельное сканирование данных с применением, там, где это возможно, опережающего чтения. Считанные данные помещаются в участки разделяемой памяти, и запускается параллельная сортировка участков, для каждого из которых строится Вподдерево; затем из них формируется общий индекс. Потоки сортировки начинают выполняться, не дожидаясь завершения всех потоков сканирования, точно так же, поток построения индекса не ожидает завершения всех потоков сортировки - все, что можно, выполняется параллельно. В результате достигается ускорение, вплоть до десятикратного, по сравнению с последовательными методами построения индексов - в зависимости от объемов данных, числа используемых дисков и доступной памяти.



Поделиться книгой:

На главную
Назад