Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Веревка вокруг Земли и другие сюрпризы науки - Карл Саббаг на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Мог ли разум породить Вселенную?

Не правда ли, этот вопрос звучит довольно странно, но за ним стоит сложная цепочка рассуждений ряда ученых, пришедших к умозаключению, что Вселенная может существовать только при наличии обладающих самосознанием наблюдателей. А до тех пор, полагают некоторые, это всего лишь математическая абстракция.

Большинство дискуссий ведется вокруг так называемого антропного принципа. Его возникновение больше ста лет назад предугадал видный британский натуралист Альфред Рассел Уоллес (1823–1913): «Человек — этот венец сознательной органической жизни — мог развиться здесь, на Земле, только при наличности всей этой, чудовищно обширной материальной Вселенной, которую мы видим вокруг нас»[12].

Впоследствии ученые узнали, сколь невероятной была та цепь событий, которая привела к зарождению жизни и, наконец, к появлению человека — единственного существа, способного рассуждать о своем собственном происхождении. Исследователи указывают на тот факт, что некоторые физические характеристики Вселенной обретают смысл и ценность только при условии, что в этой самой Вселенной изначально подразумевалось возникновение разумных живых существ. Возраст Вселенной, темпы ее расширения, количество электронов и протонов и даже, казалось бы, такая неизбежная данность, как количество измерений: три пространственных и одно временное, — все говорит о том, что человек просто обязан был появиться. Однако каким бы невероятным ни казалось такое стечение обстоятельств, невероятность эта довольно шаткая. Порой она напоминает высказывания типа: «Какова вероятность того, что сегодня ровно в 11.03 зазвонит телефон и агент по продаже стеклопакетов с инициалами А. Н. попытается всучить мне стеклопакеты по цене 3500 фунтов?» Вообще-то, если вы задаете этот вопрос до описанного события и без всяких к тому предпосылок, вероятность крайне невелика. Но если вы спросите об этом постфактум, тут все просто: событие уже произошло, так что вероятность стопроцентная.

Разумеется, мы задаем вопрос о людях и Вселенной в контексте знания о том, что мы существуем (почти по Декарту), а следовательно, нет особого смысла задаваться вопросами о вероятности или невероятности этапов, которые привели к нашему появлению здесь. Если бы исходные данные были немного другими, это был бы другой мир, без нас, и решительно некому было бы беспокоиться об этом. На мой взгляд, восхищаться тем фактом, что развитие человечества как нельзя лучше вписывается в физические характеристики Вселенной, столь же бессмысленно, сколь разглагольствовать о странном совпадении, благодаря которому наш скелет как нельзя лучше вписывается под кожу и кости не торчат наружу (за исключением каких-нибудь несчастных случаев).

Однако «антрописты» (с вашего позволения назову их так) хотят непременно доискаться причины, почему только в этой и никакой иной Вселенной могла возникнуть разумная жизнь. (А некоторые убеждены, что это произошло только на Земле и больше ни на одной другой планете.) Они убеждены, что Вселенная являет собой то, что она являет, не просто так, а с какой-то целью. И хотя «антрописты» необязательно упоминают Бога, в своих различных толкованиях антропного принципа они подходят к этому все ближе и ближе. Среди многочисленных вариаций и трактовок можно выделить так называемый Слабый антропный принцип (СлАП), который гласит, что разнообразные физические характеристики Вселенной сформировались именно в том виде, какие они есть, специально чтобы породить формы жизни на основе углерода и чтобы Вселенная существовала достаточно долго, чтобы это — рождение жизни — наконец произошло.

Есть также Сильный антропный принцип (СилАП), согласно которому основная задача Вселенной — привести к возникновению и расцвету разумной жизни. Это дерзкая и небезопасная отсылка к спору о разумном начале, подогреваемому американскими креационистами[13].

Еще одна трактовка принципа, позволяющая поставить вопрос, который стал названием этой главы моей книги, известна как Антропный принцип участия (АПУ). Ее выдвинул физик Джон Уилер, считающий, что никакая Вселенная не может существовать, если в ней нет наблюдателей, обладающих самосознанием. Наблюдая за Вселенной, мы даем ей возможность существовать.

Наконец, есть Конечный антропный принцип (КАП), проистекающий из предыдущего и утверждающий, что теперь, коль скоро жизнь уже возникла, ее невозможно уничтожить, иначе Вселенная лишится всех своих наблюдателей и исчезнет.

Американский писатель Мартин Гарднер[14], глядя на эти преподносимые с максимальной серьезностью, но большей частью недоказуемые цепочки умозаключений, предложил переименовать КАП в ХЛАМ — Хронически Липовую Антропную Модель[15].

Почему ночью небо темное?

Вот еще один из тех на первый взгляд простых вопросов, которыми ученые задавались издавна и которые привели к удивительным и довольно глубоким ответам. Выросши в мире, где естественный цвет ночного неба — темный (если только мы не живем за Полярным кругом), большинство из нас наверняка ответит вопросом на вопрос: а почему бы ночному небу не быть темным? Когда очевидный источник света — Солнце — скрывается за горизонтом, стоит ли удивляться, что, подняв глаза к небу, мы видим бездонную черноту, разбавленную лишь крупинками звезд и время от времени, конечно, Луной. (Обсуждение интересной подробности, что с Луны даже при наличии Солнца небо все равно кажется черным, оставим на другой раз.)

Когда этот вопрос был задан впервые, люди верили, что Вселенная бесконечно велика и содержит бесконечное количество звезд. Если бы дело было только в этом, то, откуда бы вы ни посмотрели в ночное небо, линия вашего взгляда — прямая, проведенная от вашего глаза далеко в космос, — обязательно уткнулась бы в поверхность какой-нибудь звезды. Это все равно что пытаться оглядеться в лесу с бесконечным количеством деревьев, понатыканных в случайном порядке. Куда бы вы ни посмотрели, линия обзора неминуемо окажется заслонена древесным стволом.

Итак, если из любой точки Земли линия вашего взгляда упирается в звезду, логично полагать, что все ночное небо должно быть столь же светлым и ярким, как поверхность звезды. Вы можете возразить на это наблюдением, что «чем звезды дальше, тем меньше света они дают». Общая светимость звезды действительно уменьшается с расстоянием, но это потому, что и диск звезды, который мы видим, намного меньше, чем он есть на самом деле. Любая точка на поверхности звезды, видимой с Земли, светится очень ярко, но, поскольку диск звезды очень мал, таких «точек» в сумме видно немного, и общая яркость звезды не так уж велика. Впрочем, будь Вселенная бесконечной, вы видели бы точки звездных поверхностей повсюду, куда ни глянь, и небо по ночам сияло бы ослепительным светом.

В XIX веке, в те времена, когда научные знания еще не стали вотчиной одних только ученых и фанатов самообразования, американский поэт и прозаик Эдгар Аллан По настолько заинтересовался парадоксом ночного неба, что выдвинул свое объяснение и включил его в произведение, которое он сам называл стихотворением в прозе:

«Будь череда звезд бесконечной, театральный задник небесных декораций являл бы собой сплошное свечение, словно бы Галактика решила перед нами похвастаться — не было бы ни единой точки на всем протяжении неба, где не нашлось бы звезды. Исходя из этого, единственный способ постичь при таком положении дел существование пустот, обнаруживаемых нашими телескопами в бесчисленных направлениях, это предположить, что толщина невидимого небесного задника столь невообразима, что ни один луч света не способен пробиться к нам сквозь него»[16].

И что в этих рассуждениях не так? Да нет, вообще-то все верно. В бесконечно большой Вселенной с бесконечно большим числом случайно разбросанных в пространстве звезд ночное небо ослепительно сверкало бы. Значит, нужно разобраться, какое из исходных допущений ошибочно. А может, свет многих далеких звезд приглушен встретившейся ему на пути звездной пылью? — спросите вы. Но пыль не в состоянии полностью затмить звездный свет. В межзвездном пространстве действительно есть пыль, однако на практике она нагревается от света звезд и частично отражает его, так что общее количество света не меняется. Что касается ученых, впервые затронувших эту тему, среди них наиболее известен английский астроном Эдмунд Галлей (1656–1742), чье имя получила комета, но лавры человека, первым сформулировавшего парадокс ночного неба, достались немецкому астроному и физику Генриху Вильгельму Ольберсу (1758–1840): «Вселенная бесконечно огромна и вместе с тем бесконечно стара. Любые попытки ограничить ее во времени и пространстве слишком сковывают это Божье творение. Возможно, нам стоит пожертвовать одним или обоими этими допущениями — бесконечностью размеров и бесконечностью возраста, и тогда мы сможем разгадать тайну черноты ночного неба».

Мы, как и современная наука, придерживаемся теории, что Вселенная возникла 13–15 миллиардов лет назад в результате Большого взрыва (см. главу «Вселенная — это вам не сарай»). Образовавшись из одной-единственной точки, Вселенная расширялась, сперва очень стремительно, а потом медленнее. Она продолжает расширяться и по сей день, и «граница» ее сейчас пролегает примерно в 13–15 миллиардах световых лет от нас. Возможно, ночная темнота объясняется тем, что там, за этой границей, нет звезд, которые могли бы добавить ночному небу света, как если бы частокол деревьев, о которых я упоминал чуть раньше, кончался в двадцати километрах от нас, и нам были бы видны пробивающиеся с той стороны леса узкие полоски света.

Что ж, неплохая попытка объяснить ночную тьму, но один английский математик доказал, что даже при ограниченных размерах нашей Вселенной в ней и до предполагаемой границы вполне достаточно звезд, чтобы обеспечить нам еженощную яркую иллюминацию. Так что придется искать другое объяснение.

Идея о расширении Вселенной получила признание только к концу первой трети XX века. Попутно с этим ученые пришли еще к целому ряду выводов: например, что звезды, удаляющиеся от наблюдателя, кажутся менее яркими благодаря эффекту Доплера (см. главу «Нечестно по отношению к Бёйс-Баллоту?»). Как и в случае со сменой частоты звука, издаваемого движущимся источником, спектр света звезды изменяется в зависимости от скорости движения, а свет от удаляющейся звезды смещается в сторону красной части спектра. Глаза млекопитающих в ходе эволюции стали максимально чувствительны к диапазону цветов, образующих в совокупности белый свет, а при смещении звездного света в сторону красного некоторые из цветов спектра выпадают, поэтому свет кажется менее ярким. Так что одна из причин того, что ночное небо не такое светлое, как могло бы быть, возможно, связана с эффектом Доплера: быстро движущиеся звезды, которые вроде бы должны быть столь же яркими, что и расположенные ближе и движущиеся медленнее, на деле смотрятся значительно тусклее.

Пожалуй, одного этого объяснения хватило бы, если бы новые данные о Большом взрыве и расширении Вселенной не добавили к общей картине еще один фактор. Большой взрыв явно был очень ярким благодаря огромной энергии, которая, как мы знаем, была сосредоточена в одной точке. Так разве в ночном небе по сей день не должны быть видны следы того свечения? Как выяснилось, обнаружить световое «эхо» Большого взрыва (см. главу «Вселенная — это вам не сарай») действительно возможно, но, как и в случае со звездным светом, эффект Доплера, вызванный стремительным расширением Вселенной, изменил оттенок отсветов той давней вспышки, в результате чего световые волны оказались далеко за красной границей спектра: они теперь не видны глазом и фиксируются только как микроволновое излучение.

Обманчиво простой вопрос, сформулированный в 1823 году Генрихом Вильгельмом Ольберсом, за два прошедших столетия привел ученых, жаждавших найти ответ, к целой череде новых открытий, да таких, о которых Ольберс не мог и мечтать.

Сколько длится световой год?

По мнению многих обывателей, такой вопрос звучит вполне нормально и осмысленно. Словосочетание «световой год» похоже на единицу измерения времени. Краткая прогулка по просторам Интернета приносит следующие перлы:

«Кажется, с тех пор, как Скотт Фицджеральд воспевал гибких и податливых девушек-подростков во взрослых нарядах, прошла уйма световых лет» (журнал «Пипл»).

«…в Америке это на протяжении долгих световых лет воспринималось как нечто само собой разумеющееся» («Крисчен сайенс монитор»).

«Ему чудилось, что после поездки в Севилью прошло несколько световых лет. Вспомнив Испанию, О’Нил понял, что настало время серьезных перемен…» («Дейли мейл»).

«101 световой год тому назад» (название альбома одной рок-группы).

«Звездный свет, который мы видим, можно сказать, уже устарел, ведь достигающий Земли свет покинул испускающее его небесное тело много световых лет назад» (из письма, опубликованного в газете «Таймс»).

И — ох, неловко же в этом признаваться! — я сам когда-то пропустил в телеэфир детскую передачу, в которой ведущий сказал группе детей: «Увидимся через пару световых лет!»

В действительности же в световых годах измеряется не время, а расстояние, поэтому единственно правильный ответ на вопрос, прозвучавший в заголовке этой главки, таков: «365 дней, 6 часов, 9 минут и 9,7676 секунд, иными словами столько же, сколько и любой другой год».

Это понятие, сбивающее многих с толку, приходится использовать по той причине, что расстояния до интересующих нас объектов во Вселенной очень велики: попробовав выразить их в любых земных единицах измерения, мы получим слишком громоздкие числа. Самая крупная единица измерения расстояния, используемая на Земле, а точнее, на суше, — это миля, и, поскольку до ближайшей к нам звезды (если не считать нашего Солнца) около 24 689 700 000 000 миль (39 734 220 000 000 километров), гораздо удобнее обозначить столь большое расстояние как 4,3 световых года: 4,3 года потребуется свету, чтобы проделать путь от этой звезды до Земли. Разумеется, можно было бы сказать: «25 триллионов миль», — это выглядит не так уж и устрашающе, но как быть, если речь зайдет о более отдаленных объектах, таких, как «далекая-далекая галактика» (как тут не вспомнить «Звездные войны»?!) под названием IOK-1? Расстояние до нее в милях — 75 715 квинтиллионов, это гораздо сложнее запомнить и выговорить, чем «12,88 миллиарда световых лет».

Все познается в сравнении. Если бы мы, говоря о земных расстояниях, оперировали бы только самыми мелкими единицами длины — если бы мы, скажем, были вирусами гриппа, чьи размеры измеряются микрометрами (1/1000000 метра), — тогда нам было бы сложновато обсуждать расстояние от Лондона до Нью-Йорка. (Впрочем, тут могли бы возникнуть и другие препятствия — например, отсутствие голосовых связок.) Если бы самой крупной нашей единицей длины был микрометр, что было бы в сто раз больше нашего роста, то расстояние до Нью-Йорка в 5 585 000 000 000 микрометров, мы могли бы выразить гораздо короче —1/5 световой секунды.

Если вы до сего дня заблуждались и считали световой год единицей времени, знайте, что вы, сами того не подозревая, оказались в хорошей компании. Даже профессиональные астрономы и люди, которые живо интересуются астрономией, порой допускают ту же ошибку. Вот вам еще одна подборка цитат из Интернета, на сей раз с сайтов, дающих консультации по вопросам астрономии или содержащих астрономическую информацию:

«До чего же удивительно, что мы можем заглянуть так далеко в прошлое… Эх, если бы мы только могли пообщаться там с кем-нибудь, мы бы тогда расспросили их, что происходило на этом месте 7 миллиардов световых лет назад» (из блога).

«Предположим, вы направите “Хаббл” (телескоп) в какую-нибудь сторону и станете наблюдать свет из галактики А, которая двинулась прочь от центра Вселенной 13,7 миллиарда световых лет назад, почти сразу после Большого взрыва. Если луч света покинет галактику А прямо сейчас, он доберется до вас лишь через 46,5 миллиарда световых лет» (сайт для любителей астрономии).

«Таким образом, 12 миллиардов световых лет назад эта масса, которую мы с вами сейчас видим, двигалась намного быстрее, потому что находилась на краю Большого взрыва, конечно, при условии, что Большой взрыв произошел примерно тогда» (форум, посвященный физике).

«До нашей ближайшей соседки Андромеды 2,5 миллиона световых лет. И опять-таки мы видим не ту Андромеду, которая существует сейчас, а ту, какой она была 2,5 миллиона световых лет назад» (www.scienceray.com, сайт о различных вопросах науки).

«Свет покинул проксиму Центавра 4,3 световых года назад, поскольку свет перемещается со скоростью света, а звезда расположена от нас на расстоянии 4,3 световых года» (сайт фирмы «Sky-Watcher», производящей телескопы).

«Если наша Галактика вращается, то можно ли будет, когда она окажется по другую сторону круга, в точке, противоположной нашему нынешнему местонахождению, увидеть Землю, какой она была миллионы световых лет назад?» (вопрос в разделе «Спросите у астронома»).

Хотя последний вопрос был задан дилетантом, отвечал на него профессиональный астроном, который даже не указал собеседнику на ошибку.

Самый древний в мире ядерный реактор

Построить атомную электростанцию стоит в среднем около 1,5 миллиарда фунтов стерлингов. Посреди станции располагается ядерный реактор — тонкое и сложное устройство, снабженное системами контроля, чтобы отслеживать события, занимающие всего лишь долю секунды, и обеспечивать постоянную выработку тепла, которое приводит в действие турбины, производящие электричество. В некоторых типах реакторов исходным веществом в процессе выработки электричества служит уран. Общеизвестно (ведь именно это многие считают существенным недостатком использования атомной энергии), что атомные электростанции производят радиоактивные отходы. В этих отходах содержится непереработанный уран, обладающий весьма характерными свойствами. В общем, если ученые наткнутся на это конкретное вещество, то не ошибутся, предположив, что где-то поблизости находится ядерный реактор, созданный человеком.

Единственным исключением из этого правила стало центрально-африканское государство Габон. Здесь геологи, работавшие на урановом месторождении в местечке Окло, обнаружили в 1972 году образцы урана, обладавшие явными чертами радиоактивных отходов. Но в те времена на всем африканском континенте не было ни одной атомной электростанции. Судя по всему, в этом месте произошло что-то очень странное.

Горные породы с естественным содержанием урана включают в себя атомы урана двух типов: U238 и U235[17]. Преобладают атомы U238, а на долю U235 приходится всего 0,7 %. В ядерном реакторе атомы U235 бомбардируют ядерными частицами под названием «нейтроны». Один нейтрон, попавший в атом U235, выбивает из него еще два или три нейтрона, те бомбардируют другие атомы, из которых вылетают новые нейтроны, и так далее. При соблюдении всех условий запускается цепная реакция, в ходе которой все большее количество атомов распадается, выделяя тепло, которое перерабатывается в энергию. В числе этих необходимых условий — присутствие замедлителя нейтронов (чаще всего это обычная или тяжелая вода; последняя вместо водорода содержит его изотоп дейтерий), который действует как защитная оболочка: не дает излишкам нейтронов вылететь наружу из среды, где происходит реакция, что привело бы к остановке цепной реакции.

Отходы, образующиеся при работе ядерного реактора, содержат куда меньшую долю U235, чем изначальные 0,7 %, ведь большинство атомов было расщеплено в ходе цепной реакции. В горных породах из месторождения в Окло было найдено то же небольшое количество этого изотопа урана, как если бы на этом месте когда-то произошла цепная ядерная реакция. Большинство ученых отказывались в это верить, но, как выяснилось, американский химик японского происхождения Пол Курода (он же Кадзуо Курода, 1917–2001) еще в 1956 году высказал гипотезу о возможности при определенных обстоятельствах протекания цепной реакции с распадом урана в естественной среде. Среди упомянутых обстоятельств фигурировали более высокая доля U235, чем в большинстве ураносодержащих пород, и наличие воды в качестве замедлителя нейтронов.

Ученые, исследовавшие найденные в Окло породы, наконец пришли к заключению, что требуемые условия сложились примерно два миллиарда лет назад, когда доля урана U235 была значительно выше и доходила до 3 %. Сейчас уровень содержания этого вещества намного ниже, потому что, как и все радиоактивные элементы, уран со временем распадается на другие атомы (см. главу «Что ускоряет ускоритель ядерных частиц?»). Скорость распада урана зависит от параметра, получившего название «период полураспада», — это время, за которое данное количество того или иного радиоактивного элемента уменьшается вдвое по сравнению с первоначальной массой. Период полураспада U235 составляет 704 миллиона лет. Итак, несколько периодов полураспада назад, то есть примерно за 2 миллиарда лет до нас, в залежах горных пород содержалось намного больше U235 — а именно как раз то количество, которое вызывает устойчивую цепную реакцию. При этом поблизости была вода — естественный замедлитель, не позволявший беглым нейтронам вырываться на свободу. Вот такое стечение обстоятельств наблюдалось тогда в Окло. Более того, нынешние ученые, детально обследовав местность, установили, что ядерная активность происходила в интересном ритме: это был циклический процесс, который длился миллионы лет. Цепная реакция возникала в горных породах, окруженных водой, атомы при расщеплении выделяли тепло, вода под действием высокой температуры испарялась и лишалась свойств замедлителя, в результате нейтроны разлетались кто куда и цепная реакция прекращалась. Пар конденсировался и снова превращался в воду, та, словно одеяло, укрывала нейтроны, которые все еще выделял уран. Большая их часть теперь не улетучивалась, а оставалась в породе, расщепляя атомы урана и снова запуская цепную реакцию.

В 2004 году группа американских ученых, исследовав обломок скальной породы из Окло шириной всего несколько миллиметров, пришли к выводу, что природный реактор производил тепло примерно в течение получаса, потом «отключался» на два с половиной часа, после чего вновь начинал работать. В таком состоянии он находился в течение 150 миллионов лет, работая со средней мощностью 100 киловатт — примерно такова мощность двигателя обычного автомобиля.

Под конец этих изысканий всплыл один приятный сюрприз — приятный прежде всего для тех, кого беспокоит проблема захоронения радиоактивных отходов. Продукты распада, образовавшиеся в ходе естественной цепной реакции, не вызвали радиоактивного заражения окрестной природы, а спокойно лежали себе на месте, окруженные со всех сторон скальной породой, состоящей из гранита, песчаника и глины. За два миллиарда лет эти отходы, включая наиболее токсичный элемент плутоний, проникли в скалу не более чем на три метра. Взяв в Окло пробы пород, ученые укрепились во мнении, что отходы современных атомных электростанций можно будет точно так же держать под контролем, поместив их в подземные каменные хранилища, — именно подобным образом намереваются решать проблему отходов в будущем.

Озера-убийцы

Одной августовской ночью 1986 года в деревнях поблизости от озера Ниос, расположенного в гористой области африканского государства Камерун, во сне умерло сразу 1700 человек. Причиной их гибели стало озеро, даже при том, что некоторые несчастные жили в 25 километрах от его берегов. Однако этого расстояния оказалось недостаточно, чтобы уберечь их от огромного облака углекислого газа, который поднялся со дна озера и накрыл соседние холмы и долины, лишив кислорода все живые существа на этой территории и тем самым вызвав у них удушье.

В этой части Африки находятся три крайне необычных озера. Одно из них, Моноун, за два года до описанной трагедии привело к гибели 37 человек, но выброс газа со дна Ниоса оказался куда страшнее. Третье озеро, Киву, пока ни разу не выделяло в воздух двуокись углерода, хотя в его водах этого смертоносного газа растворено ничуть не меньше.

Опасный характер этих озер проистекает из их местоположения — все они образовались в кратерах вулканов, и на протяжении веков двуокись углерода просачивалась из жерла вулкана и скапливалась в придонных водах. В других, более мелких озерах газ в таких случаях благодаря естественному движению воды распространяется по поверхности, а потом испаряется. Но у этих трех камерунских озер стоячая вода и очень большая глубина, которая создает усиленное давление на подводные газы и не дает им подняться наружу, из-за чего возникает некое подобие сифона с газировкой. Собственно, газировка — это и есть углекислый газ, растворенный в воде. Время от времени — как правило, после грозы или схода оползня — неподвижный слой воды с растворенной в ней двуокисью углерода оказывается потревожен, и озеро с пугающей скоростью начинает выделять газ; образуется гигантский пузырь, который, добравшись до поверхности, превращается в облако. Сначала оно поднимается на несколько десятков метров над водой, а потом, будучи тяжелее воздуха, опускается до самой земли и расползается по окрестностям. Из озера Ниос в воздух было выброшено около кубического километра газа (этого хватило бы, чтобы наполнить 500 больших стадионов), а расползалось облако (скорее, разбегалось!) со скоростью 60 километров в час. Если бы по берегам озера стояли датчики, подающие сигнал тревоги, то у тех из погибших, кто жил дальше всего, оказалось бы в распоряжении около пятнадцати минут и кто-нибудь из них наверняка успел бы спастись.

Чтобы избежать повторения катастрофы, французские ученые опустили в озеро двухсотметровую полиэтиленовую трубу, которая доходит до самого дна и выводит двуокись углерода в атмосферу, не давая ей скапливаться до критической массы. Ученые из своей лаборатории в Париже следят за озером по спутниковой связи и в том случае, если, несмотря на меры предосторожности, количество газа приблизится к опасным показателям, могут открыть в трубе клапаны и стравить излишки газа.

К несчастью, детальное обследование этого странного озера выявило еще один потенциальный источник угрозы. На северном берегу водоема есть ветхая дамба, прорыв которой вызовет наводнение и выброс газа, от которого могут задохнуться до десяти тысяч человек.

Недавние новости тоже не радуют. Хотя газоотводная труба и сыграла свою роль, команда ученых, посетивших озеро Ниос в 2006 году, доложила, что в озере по-прежнему полно газа, представляющего для местного населения смертельную опасность, и он может вырваться наружу в любой момент.

Лед в бокале океана

Одним из последствий мощного глобального потепления станет подъем уровня моря по всему миру, поскольку повышение температуры растопит полярные шапки льда. Как известно, и Северный, и Южный полюса покрыты льдом, и за последние годы появились признаки уменьшения ледяного покрова, а это наводит на мысли, что процесс уже пошел. Арктическая ледяная шапка за последние тридцать лет уменьшилась на 20 %. Однако на деле проблема и вполовину не так страшна, как кажется, особенно в том, что касается изменения уровня моря. Если обе полярные шапки растают полностью, только таяние льдов Южного полюса повлияет на уровень моря.

Нет, по физическим свойствам лед на Северном полюсе ничем не отличается от своего южного собрата, и вода, в которую оба они превращаются при таянии, — тоже. Однако фундаментальное отличие заключается в том, что лежит под каждой из этих ледяных шапок. Северная шапка представляет собой огромную ледяную плиту, плавающую в воде, а южная — это огромная ледяная плита, которая покоится на суше. Чтобы разобраться, почему эта разница так важна, рассмотрим пример с айсбергом. Кусок льда, образовавшийся при замерзании воды, по плотности немного уступает исходной воде. В жидком агрегатном состоянии каждая молекула Н20 свободно крепится к трем-четырем другим молекулам. При понижении температуры вода становится льдом, теперь каждая молекула жестко сцеплена с четырьмя другими, образуя кристаллическую решетку, в которой между молекулами остается чуть больше пространства, чем в воде. Поэтому лед не тонет в воде, а плавает, ведь кусок льда менее плотен, в нем больше пространства, чем в аналогичном объеме воды. (По той же причине кусок свинца тонет в воде — он плотнее, чем аналогичный объем воды.)

Так что произойдет, если плавающая в море ледяная глыба начнет таять? Подводная часть айсберга станет растворяться, образующаяся при этом вода будет занимать меньший объем, чем занимал лед до таяния, но верхушка айсберга, растаяв, покроет разницу в объемах. Так что при таянии льда никакой лишней воды в море не прибавится. Все дрейфующие в океанских водах айсберги вместе с ледяной шапкой Северного полюса могут растаять за одну ночь, и это никак не скажется на уровне моря. (Вот вам простенький эксперимент: опустите кубики льда в стакан воды, наполненный до половины, а затем долейте воды доверху. По мере таяния льда стакан не переполнится.)

В случае же с Южным полюсом лед вовсе не плавает в море. Он неподвижно лежит на твердой земле материка Антарктиды. С началом таяния образовавшаяся вода потечет в Южный океан, окружающий сушу со всех сторон, и это повлечет за собой повышение уровня моря. Если ледяной щит Антарктиды растает целиком, уровень моря поднимется как минимум на 10 метров и вода затопит немало низменных участков суши.

Все сказанное вовсе не означает, что по поводу таяния шапки Северного полюса можно не волноваться, — процесс идет намного быстрее, чем прогнозировали ученые. К тому же таяние льдов, помимо прибывания воды, оказывает на хрупкое мировое экологическое равновесие и другое воздействие. Таяние арктической ледяной шапки хоть и не вызовет потопов, однако сократит количество отражаемого Землей солнечного света; планета вберет в себя этот свет и тепло и это приведет к повышению температуры.

Все эти соображения наверняка заставят вас добавить в свой коктейль лишний кубик льда и переключиться на просмотр очередного фильма-катастрофы.

Из праха восставшие

Прах матери, отца или какого другого любимого члена семьи — казалось бы, вещь безобидная, особенно если отвезти его куда-нибудь в горы или в любое иное живописное место, где усопшему нравилось бывать при жизни, и развеять там, устроив скромную поминальную церемонию. Однако сейчас кремируют до 70 % процентов всех умерших (во всяком случае, так обстоит дело в Великобритании), и большинство семей стремятся уважить желание покойного пребывать в виде праха не в урне на полочке в гостиной, а в каком-нибудь более приятном и спокойном месте. Поэтому живописные уголки Англии уже страдают от нарушения химического равновесия, вызванного не чем иным, как скоплением пепла, который образовался в ходе кремаций.

На самой высокой горе Великобритании, Бен-Невисе, ситуация обострилась настолько, что местные власти попросили граждан прекратить развеивать там прах. Высокое содержание в прахе кальция и фосфора влияет на химический состав грунта и ставит под угрозу высокогорные растения, которые очень чувствительны к кислотно-щелочному балансу почвы и уже оказались на грани выживания.

По иронии судьбы, убивая одни растения, пепел служит удобрением для других, которые благодаря ему расширяют свой ареал обитания. Сходного эффекта добиваются садоводы, удобряя овощи золой или костной мукой. На больших высотах пепел стимулирует рост мхов и дерна, которые ныне покрывают камни и почву, ранее вовсе лишенные растительности.

Один ученый назвал пепел пиршеством для отдельных видов растений и объявил, что на некой горе в Шотландии, за которой он наблюдал в ходе исследований, прах одного-единственного покойника за шестнадцать лет вызвал заметные и устойчивые изменения в жизни растений.

Глобальный катаклизм собственной персоной

Действие факторов риска, угрожающих окружающей среде, а именно глобального потепления, загрязнения природы и тому подобного, представляется нам столь значительным и широкомасштабным, что трудно даже вообразить, будто заметную роль в нынешнем плачевном состоянии природы мог сыграть всего один-единственный человек. Тем не менее ответственность за два нововведения, оказавших едва ли не самое губительное воздействие на окружающую среду, лежит на одном человеке, американском изобретателе, который придумал добавлять в бензин соединение свинца и ввел в обиход хладагент фреон.

Томас Миджли-младший предложил добавлять в бензин свинец, чтобы избавиться от «стука» в двигателе, — прежде топливо сгорало в двигателе внутреннего сгорания слишком быстро, что вызывало шум и повреждение мотора. Даже во времена внедрения этого изобретения было общеизвестно, что свинец ядовит, поэтому производители схитрили, назвав добавку «этил» (вместо полного наименования «тетраэтилсвинец»). За несколько лет работы над добавкой Миджли и сам пострадал от своего изобретения: у него обнаружились симптомы отравления свинцом. Однако Миджли это не остановило. Несмотря на собственный печальный опыт и смерть десяти рабочих на заводе-изготовителе (в то время как у других рабочих появились галлюцинации и симптомы психического расстройства), Миджли пытался успокоить общественность, плеская добавку себе на руки и вдыхая ее испарения из мензурки. При этом он заявлял, что может проделывать подобные экзерсисы ежедневно и без всякого вреда для здоровья, однако не похоже, чтобы это вошло у него в привычку.

Следующей медвежьей услугой, оказанной Миджли человечеству, стало изобретение хлорфторуглеродов (ХФУ) — соединений хлора, фтора и углерода — в качестве альтернативы существовавшим тогда охлаждающим жидкостям, крайне токсичным при утечках. Фреон, также известный под названием «дихлордифторметан», поначалу казался поистине чудесным соединением. Это было бесцветное, лишенное запаха, неогнеопасное, некорродирующее и на первый взгляд совершенно безвредное летучее вещество, которое спокойненько циркулировало себе в охлаждающей системе холодильника, переходя из жидкости в газ и обратно и сохраняя свежесть продуктов.

Прошло всего несколько лет, и фреон стал стандартным хладагентом, использовавшимся в большинстве домашних холодильников. Как и в случае с более вредоносными своими изобретениями, Миджли лично продемонстрировал публике низкую токсичность и исключительно благую сущность фреона, вдохнув полные легкие этого газа и выдохнув его на горящую свечу, отчего пламя сразу потухло.

Оба главных изобретения Миджли принесли производившим и распространявшим их фирмам целые состояния и на несколько десятилетий заняли лидирующие позиции на рынке. Однако настал час, когда сперва тетраэтилсвинец, а потом фреон и сходные с ним хладагенты были признаны соединениями, оказывающими катастрофическое воздействие на окружающую среду. Свинец, поступавший в атмосферу с автомобильными выхлопами, попадал в кровь и вызывал у детей неврологические заболевания; а химические реагенты из отслуживших свой срок холодильников внесли существенный вклад в образование дыры в озоновом слое Земли.

Но к тому времени, когда человечество осознало вред, нанесенный изобретениями Миджли, их автор давно уже умер. Можно сказать, что под конец жизни его настигло справедливое возмездие — причиной смерти изобретателя стало его же собственное детище. В 1940 году Миджли заболел полиомиелитом и оказался прикован к постели. Он придумал специальное приспособление, которое позволяло ему вставать, но, как всегда, Миджли не разглядел таящейся в нем опасности. 2 ноября 1944 года он запутался в тросах своего устройства и был ими задушен.

Плюс и минус

Самая важная машина, которой никогда не было

Одним из основоположников современной вычислительной техники стал британский математик Алан Тьюринг. А прославился он отчасти благодаря так называемой «машине Тьюринга», которая существовала исключительно умозрительно — в воображении ученого и его научных трудах. Тем не менее нынешние компьютеры работают во многом на базе гениальных догадок Тьюринга и небольшой группки его единомышленников, чьи главные открытия пришлись на 1930-е годы.

Тьюринг пытался найти ответ на вопрос, поставленный в 1928 году немецким математиком Давидом Гильбертом: возможно ли найти алгоритм, позволяющий в любой математической системе определять, верно ли в этой системе то или иное утверждение или нет. В итоге Тьюринг доказал, что существуют системы — и одна из них арифметика, — в которых невозможно, пользуясь единым методом, определить истинность утверждения.

В научной работе, посвященной этой проблеме, Тьюринг придумал воображаемую машину — это был отличный образец того, что ученые именуют «мысленным экспериментом». Машина состояла из бесконечной ленты, разделенной на ячейки, и головки, которая, действуя по принципу головки магнитофона, могла записывать в ячейки символы и стирать их.

В своей работе Тьюринг описывает изменения в ячейках, производимые так называемым компьютером, или вычислителем (в те времена слово «компьютер» означало человека, а не предмет):

«Вычисление обычно осуществляется путем записи неких символов на бумаге. Представим себе, что эта бумага поделена на клеточки, как тетрадка по арифметике… Поведение компьютера в любой момент времени определяется символами, которые он воспринимает, и его состоянием в данный конкретный момент»[18].

Простейший репертуар символов состоит из 0 и 1, и к этому репертуару прилагается таблица инструкций. Такая таблица может включать в себя, например, следующие правила:

Если головка находится над ячейкой, содержащей 0, то 0 стирается и на его место записывается 1, после чего лента сдвигается вправо.

Если головка находится над ячейкой с символом 1, то 1 стирается и на ее место записывается 1 (снова), после чего лента сдвигается влево.

Если головка находится над ячейкой с символом 0, то 0 стирается и на его место записывается 1, после чего лента сдвигается влево.

Если головка находится над ячейкой с символом 1, то 1 стирается и на ее место записывается 1 (снова), после чего лента сдвигается вправо.

Если головка находится над ячейкой с символом 1, то 1 стирается и на ее место записывается 1 (снова), после чего лента остается на месте.

Эти инструкции (всего лишь часть полной таблицы правил) можно коротко выразить так:

(0,1, П), (1,1, Л), (0,1, Л), (1,1, П) и (1,1, Н)

Таблица инструкций используется снова и снова, пока машина от некоего начального состояния (определенного набора символов) не перейдет к конечному состоянию. При должном применении правил начальное состояние ленты — скажем, двоичное отображение числа 27 — может прийти к конечному состоянию — 729, — нужно только воспользоваться набором инструкций для умножения чисел на самих себя.

Умозрительно изобретя «машину Тьюринга», которая способна решить некую одну задачу с помощью набора инструкций, предназначенного именно для этой задачи, ученый продемонстрировал, что можно изобрести «универсальную машину Тьюринга», способную имитировать все остальные «машины Тьюринга». Набор правил для такой машины эквивалентен программному обеспечению современных компьютеров, которое позволяет использовать их самыми различными способами.

Хотя эта «машина Тьюринга» так и не была создана в действительности, Тьюринг вовсю трудился над производством других, уже вполне реальных устройств для решения задач. Одна из важнейших задач, которую Тьюринг пытался решить и которая остается нерешенной по сей день, — это математическое выражение, названное «гипотезой Римана», оно касается распределения простых чисел среди натуральных.

В 1939 году Тьюринг получил грант на сборку машины, которая состояла из тридцати сцепленных между собой шестеренок с разными количествами зубцов, соответствующими определенным логарифмам. У каждой шестерни была своя гиря, подвешенная на том или ином расстоянии от центра, шестерни были взаимно соединены в группы и приводились в движение большим рычагом.

Биограф Тьюринга Эндрю Ходжес (р. 1949) писал:

«Летом 1939 года в комнате [Тьюринга] чаще всего можно было найти нечто вроде головоломки из шестерней, распределенных по всему полу… Алан пытался, но самым жалким образом не мог объяснить, для чего все это нужно. Если движение шестерней и было как-то связано с закономерностью распределения простых чисел, которых по мере приближения к бесконечности становится все меньше, то совершенно не ясно, как именно».

Потерпев неудачу при создании машины Римана, Тьюринг, однако, внес существенный вклад в разработку одного из самых важных в истории вычислительной техники приборов — машины для расшифровки кода «Энигма», которым Германия пользовалась в ходе Второй мировой войны. Эта работа, как принято считать, помогла закончить войну на два года раньше и принесла Тьюрингу орден Британской империи.

π = 3

Все мы слышали о числе «пи», обозначаемом на письме греческой буквой π, но немногие из нас осведомлены о его занятных свойствах.



Поделиться книгой:

На главную
Назад