Однако если все предыдущие конструкции все же требуют наличия парашюта для приземления человека, то, по словам одного из разработчиков нынешней конструкции, студента 5-го курса МФТИ Романа Анисовича, новый костюм парашюта уже не потребует.
Человек в таком костюме будет походить на гигантскую летучую мышь — с хвостом и перепонками между руками и телом. Спускающегося без купола десантника будет очень трудно заметить с земли. Тем более, что при необходимости он может сложить руки-крылья и придать телу максимальное ускорение, буквально падая камнем. Однако при приближении к земле, подтянув специальные стропы, солдат сможет почти мгновенно снизить скорость до минимальной и спокойно приземлиться на ноги.
Не исключено, что, в отличие от мягкого винг-сьюта, наши специалисты предложат жесткую модель летательного костюма. Он будет напоминать панцирь с выдвигающимися в области лопаток крыльями. Сейчас разработчики рассчитывают оптимальные параметры костюма.
Новинку, которая пока находится на этапе компьютерного моделирования, уже изъявили желание испытать курсанты Рязанского высшего воздушно-десантного командного училища.
P.S. Когда статья была уже подготовлена к печати, пришло известие, что наряду с нашими изобретателями над аналогичной конструкцией работают и иностранные специалисты. Например, немецкая компания
На высоте 10 000 м над землей из самолета выпрыгивает или катапультируется человек в высотно-компенсирующим костюме и шлеме с кислородной системой, а за спиной у него закреплены широкие жесткие крылья. В руке десантник вместо вытяжного кольца держит джойстик управления элеронами. На стекло его шлема проецируется информация карманного компьютера: скорость полета, высота, координаты контрольных путевых точек, направление и расстояние до них.
Вскоре после прыжка скорость полета стабилизируется. Пилот стремительно и бесшумно приближается к цели на скорости порядка 400 км/ч. Преодолев с момента отделения от самолета более 50 км по горизонтали, десантник сбрасывает скорость и на высоте нескольких сот метров раскрывает парашют. Вскоре он приземляется прямо у цели, не замеченный радарами и часовыми.
СОЗДАНО В РОССИИ
Помощь приходит с неба
Самый быстрый вид транспорта сегодня — воздушный. Только вот беда — даже вертолетам удается приземлиться далеко не везде и для них нужны какие-то посадочные площадки. Изобретатель из Краснодарского края Валерий Семенович Киселев предлагает аппарат, который позволяет садиться и взлетать практически с любого пятачка. Применим же он может быть во многих случаях.
«В последние годы все чаще в различных уголках Земли возникают климатические аномалии, приводящие к засухам и пожарам огромных масштабов, — рассказывает изобретатель. — Россия не исключение. Причин у лесных пожаров много, но, как показывает практика, самая главная — так называемый человеческий фактор».
И в самом деле, непогашенный костер, оставленный отдыхающими или туристами, намеренное выжигание травы местными жителями, поджоги с целью сокрытия незаконной вырубки леса частенько приводят к тому, что выгорают большие массивы леса. Бороться с пожарами мешают огромные площади пожароопасных районов. Контролировать большие массивы лесонасаждений с воздуха не всегда возможно, да и стоит полетный час самолета, а тем более вертолета очень дорого. И количества летательных аппаратов для таких целей явно не хватает.
Проблему решить можно, если массово использовать для визуального наблюдения за лесными массивами и тушения небольших очагов возгорания небольшие и простые по конструкции аппараты с мягким газонаполняемым крылом. Эта аппараты дешевы, не сложны в эксплуатации и не требуют специальных взлетно-посадочных площадок.
Для них B.C. Киселев предлагает использовать особое, запатентованное им мягкое газонаполняемое крыло, которое представляет собой усовершенствованную модификацию традиционного крыла параплана (патент РФ № 2121943). Ряд конструктивных дополнений позволяет ему сочетать в себе преимущества как мягкого, так и жесткого крыла.
Такое крыло состоит из внешней оболочки, разделенной вертикальными перегородками-нервюрами на секции, — рассказывает он. — Секции, в свою очередь, разделены дополнительными горизонтальными перегородками-«мембранами». Образовавшиеся при этом, соединенные между собой отсеки можно наполнить легким газом, и летательный аппарат получит дополнительную подъемную силу.
При необходимости, например перед приземлением, пилот может открыть выпускные клапаны. Встречный воздух через отверстия воздухозаборников попадет в полости купола и, прижав дополнительные перегородки к верхней части крыла, вытеснит воздух (или легкий газ) из газонаполняемых отсеков в атмосферу. После этого мягкое газонаполняемое крыло будет вести себя как обычное крыло параплана.
Теоретические расчеты полностью подтверждены испытаниями модели газонаполняемого крыла. По мнению автора, такой летательный аппарат может пригодиться не только при наблюдении с воздуха за лесными массивами и тушении лесных пожаров, но и для нужд МЧС, пограничников, а также нефтяникам, газовикам и электрикам, ведущим контроль за исправностью нефтегазопроводов и линий электропередачи.
Словом, работы для такого аппарата много. А недостаток просматривается пока один, но существенный. Нет пока такого аппарата в действительности; есть только его чертежи и расчеты. Изобретатель настойчиво ищет спонсоров, которые бы помогли ему претворить свою мечту в реальность для всеобщего блага.
РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…
Может ли реактор стать безопасным?
Катастрофы в Японии в очередной раз заставляют людей подумать: можно ли сделать АЭС безопасными или лучше отказаться от них совсем. Интересно, что вы думаете по этому поводу?
Алексей Калачев, г. Семипалатинск
Обычно крупные атомные реакторы строят на расстоянии в десятки километров от населенных районов, чтобы в случае аварии уменьшить угрозу для людей. Однако Сингапур, например, территория которого составляет всего 700 кв. км, не имеет такой возможности. Поэтому осенью 2010 года специалист по энергетической безопасности Хуман Пеймани из Национального университета Сингапура предложил помещать небольшие реакторы мощностью до 50 МВт под землю, на глубину около 50 м.
Сингапур расположен в безопасном с точки зрения сейсмической активности районе. А размещение корпуса реактора в толще гранита, на котором стоит этот город-государство, даст еще и естественную защиту от радиации.
Собственно, строить АЭС под землей предлагали еще советские академики П. Капица и А. Сахаров. В Железногорске (Красноярский край) уже 40 лет работает опытная подземная АЭС, и, как отмечают ее сотрудники, за это время не было ни одной нештатной ситуации.
Сейчас сотрудники американских компаний
Реакторный модуль
Компактная установка
Стоить реакторы будут примерно 25 млн. долларов штука. Для сообщества в 10 тысяч домохозяйств это окажется весьма доступным приобретением — всего по 2500 долларов на хозяина. Три завода в разных частях света в период с 2013 по 2023 год способны выпустить 4000 таких установок. Перезаряжать реактор планируется на заводе-изготовителе. А перевозить можно на грузовике.
Первый экземпляр уйдет на одно из предприятий чешской компании
Впрочем, небольшие реакторы сами по себе — не новость. Достаточно вспомнить атомные субмарины, авианосцы и ледоколы. Но там ядерные установки обслуживают дипломированные специалисты. А как справятся с реакторами обыватели?
Авторы технологии уверяют, что жителям вообще не надо следить за реактором. Все сделает автоматика. Причем реактор сделан так, что никогда не выйдет на сверхкритический режим и не оплавится от перегрева. А из имеющегося в устройстве ядерного топлива при всем желании нельзя получить оружейный уран. Внутри основного модуля нет подвижных частей, что еще повышает надежность системы. Срок ее работы на одной заправке — от 5 до 10 лет. При этом ядерные отходы поместятся в объеме вдвое меньше футбольного мяча.
Эта разработка не единственная. Можно еще вспомнить мини-АЭС
Японцы предложили установить такую мини-станцию на Аляске — в городке Галена, где менее 700 жителей. Причем
Станция
Та же
Тем не менее, никто уже не берется ставить реакторы на автомобили и локомотивы, а также на самолеты. Уж слишком велика опасность. В общем, для атомной энергетики, судя по всему, наступают не лучшие времена. Наверное, все-таки благоразумное человечество отдаст предпочтение альтернативным источникам энергии.
УДИВИТЕЛЬНО, НО ФАКТ…
Притяжение света
…Откроем учебник физики. Казалось бы, о природе света там сказано все: законы отражения и преломления, явления дифракции, интерференции, поляризации… И конечно, не забыты знаменитые опыты русского ученого П. Н. Лебедева, экспериментально обнаружившего давление света еще в 1900 году. Но вот в 1989 году московский ученый Е. И. Демин подал заявку на открытие, в которой утверждал, что свет обладает не только давлением, но и совершенно до этого неизвестным науке… притяжением…
Так писали мы в 1991 году (см. «ЮТ» № 4), рассказывая об опытах Евгения Ивановича, в частности, о таком эксперименте. Демин взял обыкновенную электрическую лампочку, на пути лучей поставил экран — обычную картонку, а за ним пробную массу, которую подвесил на коромысло крутильных весов.
До включения лампы масса оставалась неподвижной. Но когда лампочка загорелась, массивный шарик потянулся к экрану, за которым горел свет. Поначалу Демин подумал, что тут все дело в воздействии тепловых потоков от лампочки. Но когда экспериментатор поставил толстый экран из теплоизоляционного материала, эффект получился тот же: масса притягивается…
Более того, действие эффекта Демина проверяли в газовой среде, вакууме, жидкости, меняли источник света (вместо белой лампочки использовали синюю) — эффект упорно проявлялся вновь. И это понятно: ведь прежде чем представить эффект на суд строгой научной общественности, автор более 20 лет сам подвергал его всестороннему сомнению, опробовал всевозможные варианты эксперимента.
— Главная трудность, — сказал тогда Евгений Иванович, — в объяснении механизма явления. Даже высокие авторитеты физики, ознакомившись с эффектом, не спешат объяснить его природу…
И все же один смельчак-теоретик нашелся. Василий Петрович Селезнев — доктор технических наук, профессор, автор двух учебников по астронавигации для космонавтов, председатель секции физики Московского общества испытателей природы, где Демин также показывал свои опыты, — выдвинул такую версию:
У света есть силы отталкивания. Наиболее яркий пример тому — лазер. Так почему бы не быть и силам притяжения? — решил профессор. С точки зрения диалектики, такое положение вещей вполне возможно. Лучи света, попав на экран, влияют на его структуру, меняют его взаимодействие с окружающими веществами…
Профессор В.П. Селезнев, что называется, как в воду глядел. Правда, понадобилось еще двадцать лет, чтобы в данном эффекте смогли разобраться ученые из университета Фудань в Шанхае. Они недавно показали, что можно создать экзотические пучки света, которые способны притягивать, а не отталкивать объекты. И объяснили, как это может быть.
Когда свет падает на непрозрачный объект, поверхность отражает большую часть фотонов обратно. При этом давление фотонов отодвигает и сам объект, отталкивая его от источника света. Причем эффективность толчков зависит от величины объекта. Чем легче объект, тем ощутимее толчок.
Далее китайские исследователи показали, что для частиц размерами в тысячную долю миллиметра, свет может стать притягивающим. И частицы начнут двигаться к источнику излучения. А секрет заключается в том, что световые волны представляют собой не только фотоны, но еще и электромагнитные волны. Волны же могут возбуждать токи в крошечной частице, словно магнитом подтягивают ее к источнику излучения света.
ЗА СТРАНИЦАМИ УЧЕБНИКА
Быстроногий беглец
Меркурий находится ближе всех других планет к Солнцу. И потому до недавних пор о нем было известно довольно мало. Ведь наблюдать за Меркурием с Земли — значит, смотреть прямо на Солнце. Увидеть на его фоне Меркурий астрономам удается лишь в короткие минуты заката и рассвета — на вечерней и утренней заре. И все-таки наша копилка сведений об этой планете пополняется с каждым днем.
Еще халдейские пастухи, провожая и встречая рассветы и закаты более десяти тысяч лет назад, заметили яркие точки на небосводе, сопровождающие дневное светило. То одна из звезд-спутников ненадолго появлялась вслед за Солнцем после заката, то другая в предутренние часы возвещала восход светила.
Знали о существовании этих звездочек и древние египтяне, давшие им имена богов Сета и Горуса — спутников Великого Ра, бога солнца. Индусы называли их Буддой и Рохинеей. Лишь древние греки догадались, что наблюдатели видят на закате и восходе одно и то же небесное тело. А жители Древнего Рима назвали его Меркурием, в честь посланца богов — быстроного покровителя торговли и путешествий, которого скульпторы часто изображали стремительно бегущим юношей с крылышками на сандалиях и шлеме.
Наблюдать за Меркурием действительно трудно. Особенно в средних и высоких широтах, где сумерки наступают медленно, а горизонт большей частью закрыт облачностью. Так что не случайно даже великий польский ученый Николай Коперник не смог заметить изменения его фаз, подобно тому, как мы замечаем фазы Луны.
А это было очень важно. Поскольку, разрабатывая гелиоцентрическую систему, Коперник говорил о том, что не Земля, а Солнце находится в центре мира. Противники же его ссылались на Меркурий, якобы опровергавший его гипотезу. «Если Меркурий обращается вокруг Солнца, — говорили они, — то у него должны наблюдаться фазы, подобные лунным»…
Коперник в ответ только разводил руками: у него не было фактов, чтобы опровергнуть слова своих оппонентов. Он лишь надеялся, что со временем «люди создадут инструменты, которые так усовершенствуют зрение, что позволят видеть их» (то есть фазы Меркурия).
И Коперник оказался прав. Современные астрономы отчетливо различают: когда Меркурий виден на небе подальше от дневного светила, вид у него точно такой же, как у нашей Луны в первой или последней четверти: в телескоп виден лишь светлый серп. По виду пятен на этом серпе наблюдатели в свое время заключили, что Меркурий повернут к Солнцу все время только одной стороной, так же, как и Луна к Земле. Были даже составлены карты этого полушария, не внушавшие, впрочем, большого доверия: слишком уж разными они получались у разных авторов.
Да и вообще с Меркурием связано столько недоразумений, что некоторые исследователи не случайно прозвали его «планетой ошибок». Вот вам хотя бы такие факты.
Одним из первых, кто стал наблюдать за Меркурием в телескоп, был городской судья и астроном-любитель из города Лилиенталь по имени Иоганн Иероним Шретер, живший во второй половине XVIII — начале XIX веков.
Рассматривая Меркурий в телескоп, почтенный судья-астроном однажды заявил, что им открыты на поверхности Меркурия горы высотой до двадцати километров, моря и реки… Сами понимаете, что такие детали больше говорили о богатой фантазии судьи, нежели о его хорошем зрении и качествах его инструмента.
Другой случай связан с именем французского математика и астронома Урбана Леверье. В истории астрономии он прежде всего известен тем, что в 1846 году, исследуя неправильности, или неувязки, как их называют специалисты, в движении Урана, указал место, где следовало искать причину возмущений — неизвестную планету. Так был открыт Нептун.
И в движении Меркурия Леверье заметил некие неточности. По его расчетам получалось, что ближайшая точка орбиты Меркурия к Солнцу — перигелий орбиты — движется на 31 секунду в столетие быстрее, чем положено.
Леверье резонно решил, что объяснить феномен можно следующим образом — вокруг Солнца по орбите, более близкой, чем у Меркурия, обращается еще одна неизвестная нам планета. Своим полем тяготения она и вносит возмущения в движение Меркурия. Авторитет Леверье после случая с Ураном был чрезвычайно высок, и гипотетическая планета даже получила имя. Назвали ее Вулканом. Оставалось ее только обнаружить…
За поиски Вулкана принялись многие наблюдатели. И многие видели таинственную планету. Но все почему-то наблюдали ее в разных местах. Наконец, собрав данные о 50 сообщениях, Леверье попытался вычислить орбиту Вулкана и предсказал, что 22 марта 1877 года она пройдет по диску Солнца так, что ее можно будет заметить.
Однако астрономы ничего не увидели. И рассудили, что либо большинство наблюдателей принимали за Вулкан круглые солнечные пятна плюс собственную фантазию, либо Леверье ошибся в расчетах.
Однако на деле все оказалось интереснее. В начале XX века смещение перигелия — а оно оказалось даже большим, чем вычислил Леверье, поначалу объяснили с помощью общей теории относительности, созданной Альбертом Эйнштейном. До недавних пор смещение перигелия Меркурия считалось даже одним из важных доказательств справедливости этой теории.
Тем не менее, смещение движения Меркурия вызвано не только им. В непосредственной близости от Солнца, внутри орбиты Меркурия, астрономы обнаружили еще один, третий по счету, пояс астероидов. Два других находятся значительно дальше. Один — между орбитами Марса и Юпитера, а второй — вообще на окраине Солнечной системы. Так что Леверье все-таки оказался прав в своем предвидении. И гипотетический Вулкан скорее всего является одним из астероидов недавно открытого пояса.
Но вернемся к Меркурию. И сведем еще одно знакомство — с известным итальянским астроном Джованни Скиапарелли. Наблюдая за Меркурием в течение 8 лет, в декабре 1889 года Скиапарелли подытожил их результаты на ежегодном заседании Римской академии наук.