ЖУРНАЛ «ЮНЫЙ ТЕХНИК»
НАУКА ТЕХНИКА ФАНТАСТИКА САМОДЕЛКИ
№ 2 январь 2011
Популярный детский и юношеский журнал.
Выходит один раз в месяц.
Издается с сентября 1956 года.
ВЫСТАВКИ
Для тех, кто нас кормит
Очередная, XII Российская агропромышленная выставка «Золотая осень», прошедшая на ВВЦ, в этот раз показала немало любопытного. Вот некоторые новинки, которые там отметил наш специальный корреспондент Станислав СЛАВИН.
Идея, что называется, давно носилась в воздухе. Летают в небе самолеты с автопилотами, плавают в морях корабли с киберрулевыми. Так почему бы не создать кибершоферов и кибертрактористов?
Это легко сказать, но довольно трудно сделать. Мы уже не раз рассказывали вам, как идут дела с вождением автомобилей с помощью компьютера. Решен лишь первый этап этой проблемы. Ныне во многих автомобилях стоят GPS-навигаторы, которые позволяют водителям быстро находить путь. Но полностью доверить управление автомобилем автоматике инженеры пока не решаются. Слишком уж медленно она реагирует на дорожную обстановку.
Чуть легче оказалось решить эту проблему с сельскохозяйственной техникой. Ведь на поле трактор, как правило, один, и столкновений ожидать не приходится, а потому для управления вполне можно использовать систему GPS/ «ГЛОНАСС». Но одной только системой глобального позиционирования здесь не обойтись. Она позволяет определить местонахождение объекта в безоблачную погоду с точностью до 1–2 м, а трактору нужна точность один-два сантиметра, иначе он срежет все, что уже посеяли… При пахоте тоже необходима точность. И при севе… И при уборке…
Тем не менее, решение уже найдено.
На выставке демонстрировалась универсальная голландская автоматическая система управления «SBGuidance», которая предназначена для работы с самыми различными сельскохозяйственными культурами и любыми сельскохозяйственными машинами.
Сейчас 29 спутников «GPS» и 17 спутников «ГЛОНАСС» посылают сигналы на Землю и используются для определения местоположения. «SBGuidance» может использовать как GPS-сигналы, так и сигналы «ГЛОНАСС». Однако, чтобы машины двигались точнее, посылает со своей корректирующей станции дополнительные сигналы, позволяющие позиционировать положение машин на поле с точностью 1–2 см, передавая сигнал на трактор или комбайн с помощью мобильного Интернета на расстояние до 20 км от передатчика.
В Голландии — в одной из самых развитых сельскохозяйственных стран мира — система «SBGuidance» уже широко используется. Фермеры там иногда доверяют управление машинами своим сыновьям-школьникам — настолько проста и удобна эта киберсистема. Теперь она доступна и в России.
1 — бокс датчиков; 2 — радиоантенна; 3 — терминал; 4 — GPS-антенна; 5 — датчик определении угла колеса; 6 — контроль гидравлики.
Еще в 30-е годы XX века наш знаменитый селекционер И.В. Мичурин говорил, что удобрение нужно не высыпать на землю вокруг растений, а подавать прямо к их корневой системе. Со временем идею взяли на вооружение израильтяне, разработавшие систему так называемого капельного полива. Они не ленятся прокладывать на каждом поле подземную водопроводную систему. Вода с питательными веществами при поливе распространяется по трубам прямо к корням растений, не испаряясь понапрасну под жарким южным солнцем. А потому даже в пустыне специалисты Израиля ухитряются выращивать столько овощей и фруктов, что хватает даже для России.
Теперь эта технология принята на вооружение во всем мире. Причем, чтобы упростить прокладку трасс водопровода, разработана специальная техника. Вот как, например, выглядит система капельного орошения в исполнении ВНИИ систем орошения и сельхозводоснабжения «Радуга».
По полю движется колесный трактор с тремя огромными катушками, на которых намотаны пластиковые шланги с небольшими дырочками. Трактор движется, шланги разматываются, а с помощью культиватора их заглубляют в почву и присыпают сверху землей. Глубина заделки зависит от той культуры, которая растет на данном поле, и колеблется от 10 до 40 см.
В конце поля пластиковые трубки подсоединяют к магистральному трубопроводу, оборудованному узлом ввода удобрений, клапаном с регулятором давления и прочими приспособлениями.
Процедура полива сведена к минимуму. Достаточно оператору открыть задвижку на магистральном трубопроводе, и вода буквально по каплям начинает поступать к корням растений. По осени, перед уборкой урожая, тот же трактор проходит по полю еще раз, сматывая пластиковые трубки до следующей весны. Система уже испытана и с успехом применяется в поселке Радужный Коломенского района Московской области.
В нашей стране за трудное дело роботизации сельского хозяйства одними из первых взялись сотрудники Академии инженеров сельскохозяйственного производства под руководством кандидата технических наук В. Васянина. Еще в 80-е годы XX века они начали создавать первые сельхозроботы.
Одним из них был мобильный автономный робот МАР-1, который предназначался для ухода за животными. Конечно, чтобы как следует выполнять свои обязанности, такой робот должен уметь различать и двери коровника, и самих коров, отыскивать необходимый инвентарь — лопату или ведро…
Человеческий мозг сравнивает увиденное с тем изображением, которое хранится в его памяти. Так должен поступать и робот, решили ученые. А роль памяти — хранительницы «галереи» образов — они доверили видеомагнитофону. Специальный прибор — телевизионная сравнивающая трубка — сличал изображение, принятое телекамерой, с записями на ленте видеомагнитофона. Если изображения совпадали, появлялся электрический сигнал, который означал, что робот узнал увиденное. И тогда он брал нужный ему предмет, скажем, то же ведро.
Робот МАР-1 прошел серию испытаний, но на том все и кончилось. Причин тому было множество. Одна из них — техника того времени не позволяла полностью реализовать идею. Даже сейчас, когда вместо видеомагнитофона можно использовать мощные блоки быстрой памяти и сверхскоростные процессоры, создать робота, который бы один выполнял все работы на ферме — задача архисложная. До конца она не решена и по сей день. А потому вместо роботов-универсалов инженеры предпочитают создавать узкоспециализированных роботов. Одни кормят коров, другие их доят, третьи убирают навоз…
Уборка — это, пожалуй, одна из самых неприятных, грязных работ. Легендарный Геракл, чтобы очистить авгиевы конюшни, направил туда поток воды, которая смыла всю грязь. Но ведь в античные времена не приходилось заботиться об экологии и никого, наверное, не волновала чистота сточных вод. Да и навоз, как известно, — ценное удобрение, стоило бы распорядиться с ним по-хозяйски. Вот, например, как это делает робот-уборщик
В конструкции такого уборщика есть некоторые характерные черты двух агрегатов. Во-первых, уборочных машин, в том числе и тех, что у нас наводят чистоту на станциях метро. Во-вторых, домашних пылесосов-роботов, которые, словно черепахи, ползают по квартире, тщательно выискивая сор по всем углам.
Но, конечно, на ферме есть своя специфика. Поэтому робот-уборщик может работать лишь на современной ферме, оборудованной щелевыми полами. В эти щели, по идее, и должен проваливаться при уборке навоз в специальные канавы под полом, откуда он самотеком попадает в резервуары-сборники, а затем вывозится на поля.
Робот-уборщик представляет собой мобильное устройство, работающее от аккумулятора. Маршрут, по которому он перемещается, программируется с помощью пульта дистанционного управления.
Поначалу оператор с пультом дистанционного управления в руках проходит вместе с роботом весь маршрут по коровнику, нажимая соответствующие кнопки в тех местах, где уборщику нужно поворачивать вправо или влево.
Начинается и заканчивается маршрут у зарядной станции, которая устанавливается в определенном месте в коровнике и служит для автоматической подзарядки аккумуляторов робота.
По мере движения расположенные в нижней части робота щетки проталкивают навоз через отверстия щелевого пола. Устройство приводится в движение и управляется двумя ходовыми колесами в задней части робота. Вместо видеокамеры используется простой ультразвуковой датчик, который и обеспечивает перемещение робота на определенном расстоянии от стены.
Увидеть такое устройство можно не только на выставке. За рубежом роботы-уборщик и уже работают на многих фермах. И у нас ООО «Фермы Ясногорья», расположенное в г. Подольске, предлагает их всем желающим.
Кстати, стоит такой комплекс не дороже самого простого трактора, способен работать круглые сутки все 7 дней в неделю. По расчетам, он окупает себя за 2–3 года.
ИНФОРМАЦИЯ
НАШИ НА «СОЛНЫШКЕ». Недавно научные журналисты России совершили пресс-тур по крупнейшим научным центрам Франции. Вот что они узнали, например, о работе синхротона «Солей» — первого французского ускорителя третьего поколения, оснащенного самым лучшим оборудованием.
— Многие составляющие этого синхротона были сделаны с участием российских исследователей, — сказала Мари Полин, заместитель директора по связям с общественностью. — Так что наше «Солнышко» получилось совместного производства («Солей» в переводе с французского и есть «Солнце» — Ред.).
Здесь электроны разгоняют почти до скорости света. При этом они избавляются от излишней энергии, излучая свет. В общем, получается как бы огромная лампочка — своего рода рукотворное солнце. При этом спектр излучения — от инфракрасного света до гамма-излучения.
Ускоритель дает около 3 гигаэлектронвольт и позволяет изучать строение материи в любых состояниях. Причем не только мертвую, но и живую.
Таким образом, можно изучить геометрию того или иного вещества — скажем, размещение атомов в пространстве. Можно определить, какую форму имеет тот или иной вирус или белок. При этом используется жесткое излучение.
Если надо изучить электромагнитные или иные свойства материала, то пользуются мягкой составляющей рентгеновского излучения или инфракрасной частью спектра.
— Мы принимаем примерно около 2000 научных работников со всего мира в год, — сказала Мари. — Вокруг кольца имеется 26 рабочих станций. И еще 6 станций сей час готовят к работе. Тут выполняются самые разные работы — от археологии до медицины. Дважды в год администрация центра открывает вакансии на тендеры и отбирает самые интересные проекты.
КАСПИЙ ПОД КАСПИЕМ. Интересные исследования Каспийского моря выполнили в последние годы российские ученые, рассказал вице-президент РАН академик Николай Лаверов: «Оказывается под дном Каспийского моря содержится больше воды, чем в самом Каспии. Это объясняет, куда девается вода. Ведь Каспийская впадина получает огромное количество воды из Волги и других рек. Так вот часть этой воды пересекает водоносные слои и уходит вглубь»…
Такой феномен, кстати, объясняет, почему Каспий то увеличивает, то уменьшает свои размеры и куда девается лишняя вода. Если бы не это подземное море, то вода за прошедшие десятилетия могла разлиться до самой Москвы.
Таким образом, изменения очертаний Каспия зависят не только от метеорологических изменений в данной местности.
БОРЕЦ ЗА ЧИСТОТУ. Прибор, определяющий степень загрязнения водоемов, разработали студенты Южно-Уральского государственного университета из Челябинска. «С помощью этого устройства можно распознать не видимую глазу пленку бензина на поверхности воды, — рассказал научный консультант проекта Федор Подгорнов. — В случае удаленного мониторинга воды прибор можно поставить на вертолет и за несколько секунд определить, как расползлось нефтяное пятно по поверхности озера, моря или океана»…
У ВОИНА НА ВООРУЖЕНИИ
Корабли-невидимки
Невидимость все больше интересует конструкторов. Вслед за незаметными самолетами, танками и спутниками на повестке дня создание кораблей-невидимок.
В конце 80-х — начале 90-х годов прошлого века в открытой печати впервые появились публикации, рассказывающие о том, что «невидимками» могут быть не только самолеты, построенные по технологии «Стелле», но и корабли.
Первенцем был
Оказалось, что первоначально это массивное (560 т) и малоподвижное (13 узлов) судно замышлялось как плавучий ракетодром — платформа для запуска баллистических ракет. Но потом его решили использовать как плавучую лабораторию для испытаний аппаратуры автоматизированного судовождения, а также оборудования, обеспечивающего скрытность от радаров.