Аналогично — со спутниками Юпитера. Измерив их периоды обращения, Галилей оставил их дальнейшее изучение астрономам. Оставил он также им в наследство свою идею использовать эти спутники в качестве универсальных часов для определения долготы. Для этого требовалось знать периоды обращения спутников, или расписание их затмений, как можно точнее, чем астрономы и занялись, стремясь к свойственной им астрономической точности. Через тридцать лет после смерти Галилея астрономы накопили достаточное количество наблюдений, чтобы обнаружить странную неравномерность хода космических часов. Период обращения спутника иногда был короче, иногда длиннее. В этой неравномерности обнаружилась своя закономерность: короче период становился, когда Земля приближалась к Юпитеру, и длиннее — когда удалялась. Тогда-то астрономы, изучавшие Галилеевы спутники, вспомнили об уверенности Галилея в том, что свет распространяется с огромной, но конечной скоростью. Соединив наблюдения периодов спутников со знанием планетных движений, и получили впервые величину скорости света — 220 тысяч километров в секунду, что близко к истинной величине — около 300 тысяч километров в секунду.
Таким образом, интуиция Галилея оправдалась, как ни удивительно. А это очень удивительно. Ведь не было никаких наблюдаемых свидетельств в пользу конечной скорости света. И выдающиеся современники Галилея, которые занимались наукой о свете, Кеплер и Декарт, считали скорость света бесконечной. Почему Галилей оказался проницательней своих коллег? Потому что был гением и фундаментальным физиком.
Размышляя о скорости света, Галилей видел весь мир физических явлений и верил в глубинное единство этого мира. Зная, что солнечный свет, собранный в вогнутом зеркале, способен расплавить свинец, он сопоставил это «яростное» действие света с разрядом молнии и взрывом пороха, которые «сопровождаются движением и притом очень быстрым». И заключил: «Поэтому я не представляю себе, чтобы действие света обходилось без движения, притом наибыстрейшего».
Галилей был уверен, что Книга Природы «написана на языке математики», но знал, что содержание этой книги — физика. Поэтому, слушая свою интуицию, он не верил ей на слово, а придумывал, как проверять ее самым надежным для физика путем — измерительными экспериментами. Со светом ему это не удалось — точность измерений была слишком мала. Но ему удалось подарить физике саму идею конечной скорости света. Эта идея, благодаря другому подарку — Галилеевым спутникам Юпитера — стала достоверным фактом науки спустя лишь несколько десятилетий после его смерти, в самом начале его бессмертной славы.
Послушаем теперь фрагмент беседы из последней книги Галилея «Беседы и математические доказательства, касающиеся двух новых наук», где впервые поставлен вопрос о скорости света:
О наибыстрейшем движении света
Сагредо. Я видел, как солнечный свет, собранный вогнутым зеркалом диаметром около трех ладоней, быстро плавил свинец и зажигал разные горючие материалы. Неужели столь яростное действие света возможно без движения?
Сальвиати. В других случаях — таких как разряд молнии и взрыв пороха — горение и распад сопровождаются движением, и притом очень быстрым. Поэтому я не представляю себе, чтобы действие света обходилось без движения, притом наибыстрейшего.
Сагредо. Но какой степени быстроты должно быть это движение? Оно мгновенно или совершается во времени, как другие движения? Нельзя ли в опыте узнать, каково оно?
Симпличио. Повседневный опыт показывает, что свет распространяется мгновенно. Если издалека наблюдать за выстрелом пушки, то вспышка выстрела достигает наших глаз сразу же, а звук доходит до ушей лишь через заметный интервал времени.
Сагредо. Из подобных опытов можно лишь заключить, что звук движется медленнее света, но не то, что свет доходит мгновенно.
Сальвиати. Неубедительность таких наблюдений побудила меня придумать способ выяснить, распространяется ли свет действительно мгновенно.
Пусть два экспериментатора держат по фонарю, которые можно открывать и закрывать. Сначала, стоя рядом, они упражняются открывать свой фонарь, заметив свет другого. Затем расходятся мили на три и, дождавшись ночи, повторяют свое перемигивание фонарями. Если второй фонарь откроется так же быстро, как и вблизи, значит, свет доходит мгновенно, а если свету требуется время, то расстояния в три мили хватило бы, чтобы обнаружить задержку. Делая опыт на расстоянии, скажем, десяти миль, можно использовать телескопы, чтобы увидеть слабый свет от далекого фонаря.
Сам я провел этот опыт лишь на расстоянии одной мили и не убедился, возвращается ли свет мгновенно. Ясно лишь, что чрезвычайно быстро, почти мгновенно. Я бы сравнил это со сверканием молнии, видном на расстоянии 8—10 миль. Мы видим начало вспышки, или ее источник, в определенном месте среди туч и видим, как молния пронзает соседние тучи. Значит, для распространения требуется некоторое время. Ведь если бы вспышка молнии возникала во всех частях сразу, мы не могли бы различить ее источник, середину и удаленные части. В каком же океане мы незаметно для себя оказались?! Пустота и бесконечности, неделимые атомы и мгновенные движения — сможем ли мы достичь берега, хотя бы и после тысячи обсуждений?
На патетический вопрос в конце фрагмента Галилей ответил своей книгой отважно и оптимистически. Но сам вопрос изобличает физика — фундаментального физика. Его выдающиеся коллеги математического склада мышления — Кеплер и Декарт — смело ставили перед собой задачу полностью и окончательно объять реальный физический мир каким-то единым математическим принципом или небольшим набором, и думали, что достигли своей цели: у Кеплера — кубок шести планет, у Декарта — семь принципов физики. А Галилей понимал, что находится лишь в начале великого пути, где работы хватит на всех, у кого хватит свободы и смелости задавать вопросы об устройстве мироздания и искать на них убедительные — измерительные — ответы.
Заряжаясь его смелостью, очень хотелось бы задать вопросы и ему самому.
Почему он думает, что скорость света не просто конечна, но и «наибыстрейшая»? Как вообще какая-то скорость может быть максимальной? Догадывается ли он, что скорость света — фундаментальная константа природы, причастная к любому физическому явлению, даже протекающему в кромешной тьме?
Наука ответила на эти вопросы три века спустя после жизни Галилея, после нескольких драматических преображений фундаментальной физики, связанных с именами Ньютона, Максвелла и Эйнштейна. Остается лишь изумляться, что изобретатель фундаментальной физики открыл путь и к первой фундаментальной константе в истории.
Глава 3
Гравитация — первая фундаментальная сила
С небес на землю и обратно
В современной физике говорят о четырех фундаментальных силах. Первой открыли силу гравитации. Известный школьникам
Школьникам обычно не говорят, что сам Ньютон такую формулу не писал. Он лишь утверждал, что притяжение пропорционально количеству вещества и обратно пропорционально квадрату расстояния. Пропорциональность количеству вещества не удивительна, а вот как Ньютон догадался, что сила зависит от расстояния именно в квадрате, а, скажем, не в кубе?
Школьникам также обычно не говорят, что догадался он не первым. Открытие Ньютоном закона гравитации можно даже назвать закрытием. Он закрыл вопрос, подтвердив догадку астрономическими наблюдениями, подытоженными Кеплером в его планетных законах. Величайший успех Ньютона в глазах его современников — то, что он вывел законы Кеплера из закона гравитации. Для этого ему пришлось сделать дело, великое уже в глазах мировой истории: создать общую теорию движения — механику, изобретя для нее новый математический язык. Главный закон движения связал ускорение
а изобретенный математический аппарат (дифференциальное исчисление) позволил решать любую задачу о движении тел на небе и на земле.
Первую небесную задачу решил астроном Эдмонд Хэли (Галлей). Опираясь на закон движения и закон гравитации, он предсказал, что комета 1682 года вернется через 76 лет. И она действительно явилась в должное время! До того можно было еще сомневаться в теории Ньютона, которая «всего лишь» вывела старые законы Кеплера из новых законов движения и гравитации. Но небесный триумф физики обещал ей победы и в задачах земных.
По этому поводу один историк заметил: «Современная наука спустилась с небес на землю по наклонной плоскости Галилея». Не меньше оснований сказать, что — по той же наклонной плоскости — земная физика поднялась до небес. Галилей получил с неба лишь один вопрос: почему столь неощутимо движение Земли вокруг своей оси и вокруг Солнца с огромными скоростями в тысячи километров в час? Ответ на этот вопрос он искал — и нашел — на Земле, изучая движение с помощью двух своих главных инструментов — эксперимента и математически точного языка. Его ответ — закон инерции и принцип относительности — Ньютон назвал Первым законом механики. А Галилеев закон свободного падения, обнаружив ключевую роль ускорения, дал подсказку для Второго закона — главного закона движения.
Лишь в законе гравитации роли Галилея не видно. Исправляя эту несправедливость спустя два века после его смерти, некий умелец с антикварным уклоном смастерил коллекцию исторических документов, которую получила Французская академия наук. Бумаги — с именами Галилея, Паскаля, Ньютона и других видных фигур — рисовали такую картину. В последние годы жизни (итальянец) Галилей якобы теоретически вывел из второго закона Кеплера, что небесные тела притягиваются обратно пропорционально квадрату расстояния. Об этом открытии он сообщил (французу) Паскалю, который на этой основе построил небесную механику, вычислив еще и массы планет, о чем сообщил (англичанину) Ньютону. А уж тот без стыда и совести опубликовал чужие результаты как свои собственные.
Во Французской академии, ревностно следившей за успехами англичан, азартно изучали сенсационные документы, пока не обнаружили, что одно из писем коллекции адресовано Ньютону, когда тому было всего 10 лет от роду. Автор коллекции не ладил с хронологией. И совсем не ладил с историей науки.
История, конечно, зависит от сохранившихся документальных свидетельств — писем, рукописей, публикаций. Но когда свидетельств о каком-то человеке сохранилось много, подделать совершенно новое свидетельство очень нелегко. Поверить, что 75-летний Галилей вывел закон гравитации из второго закона Кеплера, может лишь тот, кто не читал их книг и совсем не понимает, как можно вывести одно из другого.
Галилей не придавал значения законам Кеплера и тем более его высказываниям о Солнце как источнике силы, движущей планетами, о том, что сила эта убывает обратно пропорционально расстоянию (а не его квадрату), и о силе притяжения как о «симпатии родственных тел», их «стремлении к соединению». «Стремление» это Кеплер иногда лишь уподоблял магнетизму, иногда отождествлял с ним. Из его текстов неясно, имел ли он в виду одну силу или две. Ясно лишь, что он надеялся на физиков, раз писал: «Пусть физики проверят…»
В 1600 году англичанин Гильберт опубликовал книгу «О магните, магнитных телах и большом магните — Земле», где, кроме прочего, высказал идею о том, что Земной шар — огромный магнит, и экспериментально обосновал это с помощью модели Земли — шарообразного магнита, следя за поведением стрелки компаса на поверхности шара. Под впечатлением от этой книги Кеплер и писал о магнитных силах в планетной системе, внедряя последнее слово физики в астрономию. Но, в отличие от Гильберта, Кеплер не дал никаких конкретных, хотя бы качественных, доводов и никак не связал магнитную физику ни с его гипотезой о планетных силах, убывающих обратно пропорционально расстоянию, ни с собственными точными законами планетного движения. В таком обращении с наукой физик Галилей видел проявление «слишком свободного» ума, а попросту — легкомыслие. По поводу же исследований Гильберта он, высоко их оценив, пожелал, чтобы тот был «немного больше математиком». Не потому что Галилей любил математику, а потому что математически точный язык открывает путь к экспериментальной проверке и, стало быть, к точному знанию.
Фундаментальный физик Галилей мог смотреть на законы Кеплера как на математические соотношения, не менее изящные, чем космография планет юного Кеплера, но и не более проникающие в физическую суть планетной системы. Через две точки можно провести только одну прямую, а через множество точек планетных наблюдений — сколько угодно разных кривых, в том числе, быть может, и изящных. С планетами не поэкспериментируешь, меняя параметры их движения. Поэтому Галилей старался проникнуть в фундаментальные законы планетной физики, опираясь на земной эксперимент, который надо придумать, и используя простейшую орбиту из возможных — круговую, тем более что орбиты Земли и Венеры почти точно круговые.
Чтобы вывести закон гравитации, надо было слово «притяжение» сделать физическим понятием, доступным для экспериментального исследования. Надо было связать это понятие с измеримыми величинами, прежде всего с самим движением. Это и сделал Ньютон. А до того о планетных силах и их зависимости от расстояния можно было лишь говорить.
Самый ранний «разговор» о силе, пропорциональной 1/
Что же получается?! Важнейшая физическая идея родилась незаконно и долгое время жила подкидышем?! А ее рождению более всех противился отец современной физики?! Так, но не совсем. Во-первых, и к научным идеям применимы слова поэта: «Когда б вы знали, из какого сора растут стихи, не ведая стыда…» Рождение нового — всегда чудо. А во-вторых, идея 1
История науки, как и всякая интересная история, — это неповторимый ход событий. Отсюда шаблонная фраза о том, что история не знает сослагательного наклонения. История не знает, но физик, вглядываясь в историю, привычно делает
Перенося этот прием из физики в ее историю, зададим вопрос: «Мог ли Галилей узнать скорость света?», разумеется, в пределах его исторически реальных возможностей — его знаний, способа мышления и его предубеждений. На этот вопрос история позволяет ответить отрицательно. В эксперименте придуманного им типа, даже если дать ему все ресурсы тогдашней техники, заведомо не хватало точности. А чтобы придумать эксперимент с участием спутников Юпитера, ему надо было оставить физику, стать астрономом-наблюдателем и не менее года вести наблюдения, зачем-то уточняя уже измеренные им периоды спутников. Это кажется невероятным. Так что скорость света открыть он не мог, хоть и был предубежден, что она конечна.
Галилей был также предубежден, что никакого планетного притяжения нет. Но это не значит, что ясен ответ на вопрос:
Мог ли Галилей открыть закон всемирного тяготения?
Выдающийся физик и веселый человек Ричард Фейнман так изложил предысторию закона гравитации:
Во времена Кеплера некоторые считали, что планеты движутся вокруг Солнца, потому что невидимые ангелы толкают их вдоль орбиты. Это не так уж далеко от истины: ангелы толкают планеты, но не вдоль, а поперек орбиты, в направлении к ее центру.
Стремясь к краткости, Фейнман опустил важный промежуточный этап. Галилей обходился вовсе без ангелов, считая круговое движение планеты вокруг Солнца движением естественным, свободным. Вопрос о размерах орбит и о скоростях планет оставался открытым, но Галилей видел массу открытых вопросов, что его не огорчало и не смущало, а лишь раззадоривало. Как и Кеплер, Галилей верил, что другие планеты по своей природе подобны Земле, и укрепил свою веру, увидев в телескоп гористую поверхность Луны. Его вера давала надежду, что изучение законов природы на Земле поможет понять и законы планетных движений.
На Земле Галилей открыл закон свободного падения, а также закон движения тела, брошенного под углом к горизонту. Траектория такого движения, как знают ныне школьники, — парабола. Это свое открытие Галилей долго не публиковал. Он понимал, что результат получен в приближении «плоской Земли»: парабола тем точнее описывает траекторию, чем ее размер меньше по сравнению с радиусом Земли, то есть чем меньше начальная скорость, или же чем меньшую часть траектории рассматривать. Он не знал, какова форма траектории в случае «большого движения», когда начальная скорость достаточно велика, и уже нельзя пренебречь сферичностью Земли.
Трудность была теоретической, и эксперимент не мог помочь: чтобы в лаборатории заметить сферичность Земли, размеры лаборатории должны быть сравнимы с радиусом Земли. Галилей мог, однако, воспользоваться мысленным экспериментом, в чем был большой мастак. Надо было лишь придумать вопрос для мысленного экспериментатора.
Например, такой. Если бросить шар в горизонтальном направлении с небольшой скоростью, он упадет на землю поблизости, двигаясь по крутой параболе. Если начальную скорость увеличить, парабола станет более пологой. А с какой скоростью надо бросить шар, чтобы, падая, он оставался на одном и том же удалении от поверхности Земли, уходящей «вниз» из-за своей сферичности?
Эту задачу Галилей мог решить, пользуясь математикой не сложнее теоремы Пифагора, зная радиус Земли
Это конечно же
Он бы легко убедился, однако, что для Луны полученное соотношение, увы, не выполняется, и очень сильно. Скорость Луны в 60 раз меньше, «чем надо». Поскольку скорость Луны и расстояние до нее были хорошо известны, Галилей подумал бы об ускорении свободного падения
здесь G — константа, одинаковая для любого небесного тела, а значит, константа фундаментальная.
Как Галилей мог открыть общий закон свободного падения
Исследуя свободное падение, Галилей выяснил, что шар, брошенный горизонтально в пустоте, падает по параболе, форма которой определяется начальной скоростью
Сделаем мысленный эксперимент, поднявшись вместе с мысленным Галилеем на легендарную башню. Будем бросать шары горизонтально со все большей скоростью. Если скорость броска мала, шар упадет — по крутой параболе — на землю поблизости от башни. А если скорость очень велика, парабола станет очень пологой, и шар улетит очень далеко от Земли.
Спрашивается, с какой скоростью надо бросить шар, чтобы, свободно падая, он оставался на той же высоте от земной поверхности, уходящей закругленно «вниз»?
На этот вопрос ныне может ответить и школьник, нарисовав указанную схему, применив теорему Пифагора и учтя, что радиус Земли
и равна примерно 8 км/сек. Летя с такой скоростью, шар оставался бы на постоянном удалении от земной поверхности. Совсем как Луна.
Однако Галилей легко обнаружил бы, что лунные величины
Отсюда, с учетом предыдущего соотношения, следует, что скорость спутника меняется с расстоянием
А если небесное тело имеет несколько спутников, то для них всех величина
Подтвердить это свойство Галилей мог на им же открытых спутниках Юпитера:
Подтвердили бы это и спутники Солнца, то есть планеты (орбиты которых близки к круговым).
Так закон свободного падения, установленный в земных физических опытах, поднялся бы до астрономических высот. И так Галилей пришел бы к новому закону природы, который мог назвать
где
Из наблюдательных данных Галилей мог вычислить соотношения таких констант для Земли, Юпитера и Солнца:
Глядя на эти три величины, характеризующие Землю, Юпитер и Солнце, естественно было спросить, какие различия небесных тел ведут к различиям их констант
В результате Галилей получил бы общую зависимость сразу для всех трех небесных тех — Земли, Юпитера и Солнца:
и здесь константа
Это и есть общий закон свободного падения, открыть который вполне мог Галилей на его уровне знаний и умений.
Новый закон уже намекает на гравитацию Ньютона, до которой оставалось более полувека. Но для Галилея всего важнее было бы оправдание его веры в физическое единство мира — и мира подлунного, и мира надлунного. Он понял бы, что причина падения тел на Земле и причина, определяющая орбиты планет, — одна и та же. А поскольку причину падения естественно называть притяжением (к Земле), то так можно назвать и планетную силу. Мысленный спутник Земли помог бы Галилею увидеть, что свободное падение и движение планет — явления глубоко родственные.
Так он понял бы, что слова Кеплера о планетно-солнечных притяжениях не столь и ребяческие. Никакой солнечной силы, движущей планетами, конечно, нет, но притяжение есть и подчиняется вполне определенному закону. Более того, из этого закона следует и (третий) закон Кеплера, связывающий время, за которое планета проходит свою орбиту, с ее радиусом
Имея в своем распоряжении мысленный спутник, Галилей вряд ли бы остановился на достигнутом, а понял бы также, что законы Кеплера… лишь приближенные. Запуская мысленный спутник на разных расстояниях от Земли, легко дойти до места посередине между Землей и Марсом. А тогда возникнет вопрос: мы запускаем спутник Земли или Марса? Владея понятием составного движения, Галилей «сложил» бы оба ускорения свободного падения с учетом разных направлений (нынешними словами — векторно) и получил бы суммарное движение, совсем не похожее на эллипс. Отсюда следовало бы, что законы Кеплера — приближенные, они тем точнее, чем дальше находятся все массивные тела от одного, «центрального». И возникла бы общая задача о движении «спутника» вблизи нескольких массивных тел. Все это вело к представлению о всеобщем — «всемирном» — притяжении. Но оно уже было бы основано не на словах полуастрологического происхождения, как у Кеплера, а на физическом исследовании свободного падения вблизи поверхности Земли.
Кроме прочего, в итоге Галилей убедился бы, что был прав, взяв фундаментальной моделью планетного движения не эллипс Кеплера, а круговую орбиту. Только это простое движение позволило нам — вместе с Галилеем или вместо него — пройти путь от закона свободного падения до закона всеобщего притяжения, откуда уже рукой подать до Ньютоновой физики, если под рукой окажется человек уровня Ньютона.
Почему же Галилей не пошел по этому пути?
Вглядываясь в его многотрудную и многогранную жизнь, можно предположить, что главная причина такой незадачи — его религиозная вера. Будь он атеистом, его бы устроила формула, предложенная ему Папой Римским для спокойной научной работы, — называть свои научные исследования гипотезами. Ироничный Галилей вовсе не был фанатиком. Общественные условности его смешили, но искоренять их — не его забота. Будь он атеистом, он бы вовсе не думал о том, соответствуют ли его «гипотезы» Библии — старой ненаучной книге, которую многие люди почему-то принимают всерьез. Он бы не тратил время и силы на свои «Диалоги» и «Беседы» с такими людьми, а делал бы чисто научные работы, излагал бы их профессионалам, предохраняя себя парой ритуальных фраз о гипотетичности науки. И тогда не отняли бы у него столько времени и сил преследования Церкви и пожизненное домашне-тюремное заключение.
Историк науки, однако, — в интересах самой же науки — поостерегся бы советовать Всевышнему лишить Галилея веры в Него. А вдруг, чем черт не шутит, эта вера каким-то образом помогла Галилею открыть закон свободного падения? Например, тем, что дала ему веру в существование подобного закона, веру, совершенно необходимую для поиска… Но к этому странному вопросу вернемся, подождав, пока Ньютон откроет закон всемирного тяготения, изобретет математические инструменты, с помощью которых выведет из этого физического закона все астрономические законы Кеплера, и создаст первую всеобъемлющую физическую теорию, которую называют классической механикой.
Сделал все это Ньютон на основе трудов Галилея, которые помимо изложения найденных Галилеем научных истин дали новый метод поиска истины. А метод дороже отдельных результатов — с его помощью можно получить и многие другие результаты. Книги Галилея, прочитанные в Европе, сделали для современной науки не меньше, чем его результаты — яркие демонстрации его метода.
Рождение теории гравитации
Вернемся из сослагательной истории в реальную, где закон всемирного тяготения носит имя Ньютона. Это непростая и невеселая история, в которой неустанно обсуждают вопрос, по праву ли этот закон носит его имя. При всей мировой славе сэра Исаака Ньютона, начавшейся при его жизни, ему давно предъявляют моральную претензию в том, что он якобы не поделился славой с Робертом Гуком, выдающимся физиком-экспериментатором. Тот очень даже претендовал на соавторство, считая, что именно он сообщил Ньютону ключевую гипотезу: притяжение планет к Солнцу, обратно пропорциональное квадрату расстояния, определяет эллиптическую форму орбиты. Сам он это доказать не мог и в 1679 году обратился за помощью к Ньютону, уже славному своей математической мощью.
История надежно подтверждает и это обращение, и тот факт, что лишь после него Ньютон написал свой знаменитый труд «Математические начала натуральной философии», или просто «Начала», где изложил и теорию гравитации, и общую теорию движения. Однако Ньютон претензию Гука на соавторство отвергал, указывая, что о притяжении, обратно пропорциональном квадрату расстояния, говорили до Гука, начиная с Буйо, что вообще дело не в словесных гипотезах, а в точных количественных соотношениях, и, наконец, что сам он — Ньютон — открыл закон всемирного тяготения задолго до письма Гука, но об этом не сообщал из-за неправильного значения радиуса Земли, которое он тогда брал в свои вычисления.
Эти доводы Ньютона не убеждают многих историков, особенно любителей, которые смотрят на фундаментальную физику «сбоку» — со стороны математики или судебной психологии. В приоритетном конфликте Гука с Ньютоном действовали совершенно разные человеческие характеры и чувства, которые трудно оценить однозначно. Очевидны раздражение и досада Ньютона, но что за этим стояло: жадность к славе, личная антипатия или нежелание признать правдой неправду, пусть и «во имя мира»? Отвечая на этот вопрос, обычно меряют на свой аршин, а этот измерительный прибор у каждого действительно свой. Характер Гука, даже по свидетельствам его друзей, был далеко не ангельским. Плодовитый и разносторонний экспериментатор, он предъявлял свои авторские претензии — в самой острой форме — далеко не только Ньютону. И сочувствие к Гуку нередко питается тем, что материально и социально он был гораздо менее благополучен, чем Ньютон.
Вместо того чтобы погружаться в личностные детали этого конфликта, сосредоточимся на его научном драматизме. Оба прежде всего были людьми науки, для каждого наука — дело жизни.
Те, кто оправдывают претензии Гука, опираются на то, что тот поставил перед Ньютоном
Еще менее серьезно сторонники Гука относятся к знаменитой истории — или легенде? — о падающем яблоке, которое якобы помогло Ньютону в его открытии. Эта история привлекла новое внимание, когда недавно Лондонское Королевское общество опубликовало рукопись одной из самых первых биографий Ньютона, написанную человеком, лично знакомым с ним. Биограф, кроме прочего, рассказал о своем визите к 83-летнему сэру Исааку в апреле 1726 года. После обеда они вышли в сад:
Мы пили чай в тени яблонь, беседуя на разные темы, когда он мне рассказал, как в точно такой обстановке ему в голову пришла идея гравитации. Он был погружен в размышления, когда увидел падающее яблоко. И подумал: «Почему яблоко всегда падает отвесно вниз, к земле, а не в сторону или вверх? Конечно, причина в том, что Земля притягивает его. В веществе должна быть какая-то притягивающая сила. А суммарное притяжение вещества Земли должно быть в ее центре. Потому-то яблоко падает по направлению к центру. И притяжение должно быть пропорционально количеству вещества. Яблоко притягивает Землю так же, как Земля притягивает яблоко». Значит, сила, подобная той, что мы называем тяжестью, простирается по всей Вселенной. <…> Так родилось поразительное открытие, которое легло в фундамент построенной им науки — к изумлению всей Европы.
Рассказ, написанный четверть века спустя после смерти Ньютона, содержит его прямую речь и мысли, откуда ясно, что рассказчика более заботит литературное качество истории, чем необходимость изложить свои воспоминания как можно точнее. Рассказчик не был ни физиком, ни историком науки, он был археологом и относил себя к «друидам» (жрецам кельтов в древности). Есть все основания принимать его свидетельство лишь условно. Во-первых, «точно такой» обстановка быть не могла — в апреле яблоки еще не падают. Во-вторых, вряд ли Ньютон объяснял гуманитарию ход своих астрофизических мыслей. Еще менее вероятно, чтобы нефизик точно воспроизвел их спустя много лет. Скорее, он свои давние воспоминания скрестил с научно-популярными описаниями достижений Ньютона.
В сухом остатке простое свидетельство: падение яблока каким-то образом направило мысль Ньютона к идее всемирного тяготения. Надеюсь, я не единственный историк физики, для кого объяснение археолога-друида не работает: не видна убедительная последовательность мыслей Ньютона, в начале которой «яблоко падает отвесно вниз», а в конце — великий закон. Поэтому я бы рискнул предположить, что тот счастливый для Ньютона день был ветреный, а ветер — порывистый. Тогда Ньютон мог увидеть, как порыв ветра сорвал яблоко, и оно падало не отвесно вниз, а по законной Галилеевой параболе. Физик-теоретик вполне мог спросить себя: а как бы оно падало, если бы порыв ветра был сильней, еще сильней, гораздо сильней?.. И этот мысленный вопрос привел бы его к открытию закона всемирного тяготения тем путем, которым в предыдущей главе прошли «мы с Галилеем».
Для такого предположения есть несколько оснований. Из записных книжек Ньютона, относящихся к 1660-м годам, ясно, что он пришел к зависимости 1/
Удивляться надо не тому, что он изменил характер изложения, а тому, что начал с научно-популярного. Возможно, он брал пример с «Диалогов» Галилея. Но уж очень они с Галилеем различались и характерами, и обстоятельствами жизни. Галилей был общителен, красноречив, рвался в бой, стремился к публикации; Ньютон — молчалив, уединен, избегал открытых конфликтов, замыкал свои рукописи на десятилетия. У Галилея было мало коллег для общения на равных, Ньютон уже входил в научное общество, которое издавало научный журнал. Галилей знал, что за его словами бдительно следит инквизиция, Ньютон жил в условиях академической и изрядной духовной свободы. Так что у Ньютона не было резонов, подобных Галилеевым, чтобы публиковать общедоступное изложение своих идей.
К счастью, его рукопись сохранилась и была издана посмертно под названием «Трактат о Системе Мира». Первая иллюстрация в этой книге изображает ту самую мысленную пушку:
Возвращаясь к малоприятному конфликту между Гуком и Ньютоном, отделим
Отношение Ньютона к предшественникам, по книгам которых он учился, и к собственным исследованиям видно в его словах из записной книжки: «В науке нет иного правителя, кроме истины… Кеплеру, Галилею, Декарту следует поставить памятники из золота, на каждом написав: „Платон — друг, Аристотель — друг, но главный друг — истина“».
Мировая слава пришла к Ньютону при жизни, что выразил его современник-поэт с библейской лаконичностью: «Природа и ее законы были скрыты во тьме, когда Бог сказал: „Да будет Ньютон“. И осветилось все».
Но сам Ньютон видел себя иначе: «Себе я кажусь ребенком, который нашел пару камешков поглаже и ракушек покрасивее на берегу океана нераскрытых истин».
Это касалось и его главного открытия: «Причину свойств гравитации я до сих пор не мог вывести из явлений…»
Ньютон легко бы понял и принял два уточнения теории гравитации, ждать которых пришлось целый век. Сначала британский физик Кавендиш сумел измерить в лаборатории крошечную силу гравитационного притяжения между двумя телами известных масс. Массы он взял 350 и 1,5 килограмма, а измеренная сила притяжения оказалась равна весу песчинки. Это измерение дало возможность точно определить массу нашей планеты, а значит, как мы видели в предыдущей главе, и массы других небесных тел. И это же измерение позволило определить фундаментальную константу гравитации
Однако вряд ли Ньютон мог предположить, что пройдет еще два столетия, прежде чем физики узнают нечто более глубокое о гравитации. За это время физики расширили применения физики Галилея — Ньютона, не зря называемой ныне классической. Тем труднее было предположить появление новых фундаментальных понятий, сопоставимых по глубине с первыми понятиями современной физики. Метод, изобретенный Галилеем и триумфально примененный Ньютоном, дал новые плоды в руках Дж. Максвелла, М. Планка, А. Эйнштейна, Н. Бора и других современных физиков.
Глава 4
Загадка рождения современной физики
Вопрос Нидэма
Наука в самом общем смысле, как получение знаний о природе, даты и места рождения не имеет. Тысячи лет жила она, соединенная с техникой и другими формами народной мудрости, в самых разных культурах. Однако, если говорить о физике, в семнадцатом веке родилась, можно сказать, новая —
Мало кто сомневается в том, что основатель современной физики — Галилей, хоть он и опирался на законы Архимеда, вдохновлялся открытием Коперника, поддерживался Кеплером, и лишь Ньютон развил его идеи до полного триумфа.
Знатоки спорят, однако, о вопросе Джозефа Нидэма, знаменитого историка китайской науки:
Почему современная наука, с ее математизацией гипотез о природе и с ее ролью в создании передовой техники, возникла лишь на Западе во времена Галилея? Почему она не развилась в Китайской цивилизации (или Индийской), а только в Европе? [Ведь] до пятнадцатого века Китайская цивилизация была намного эффективнее Западной в применении знаний о природе к практическим нуждам человека.
Эйнштейн, отвечая на сходный вопрос, обострил его еще более:
Развитие западной науки основано на двух великих достижениях — на греческом изобретении формально-логической системы (в геометрии Евклида) и на открытой в эпоху Возрождения возможности находить причинные связи посредством систематических опытов. Меня не удивляет, что китайские мудрецы не сделали этих шагов. Изумляет, что эти открытия были сделаны вообще.