Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Совершенное зрение без очков - Уильям Горацио Бейтс на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

При использовании проверочной таблицы Снеллена и пробных линз выводы должны быть сделаны со слов пациента о том, как он видит, но пациент, зачастую, становится настолько обеспокоен и растерян во время проверки, что не знает, что он видит или делают ли различные очки его зрение лучше или хуже, и, более того, острота зрения — не достоверный показатель состояния рефракции. Один пациент с двумя диоптриями миопии может видеть вдвое больше, чем другой с той же аномалией рефракции. Показания проверочной таблицы, в действительности, полностью субъективны, а ретиноскоп абсолютно объективен и это никак не зависит от утверждений самого пациента.

Короче говоря, тогда как проверка рефракции при помощи проверочной таблицы Снеллена и пробных линз требует достаточного количества времени и может быть осуществлена только в определенных искусственных условиях, с результатами, которым не всегда можно доверять, ретиноскоп может быть использован в нормальных и ненормальных условиях всех видов на глазах как людей, так и животных, и на результаты при его правильном использовании можно всегда положиться. Это означает, что он не должен быть поднесен ближе шести футов к глазу, иначе человек может сделаться нервозным, а рефракция по причинам, которые будут объяснены позже, изменится так, что никакие надежные способы наблюдения станут не возможными. В случае животных всегда необходимо использовать его на гораздо большем расстоянии.

Тридцать лет я пользуюсь ретиноскопом для изучения рефракции глаза. Им я осмотрел глаза десятков тысяч школьников, сотен младенцев и тысяч животных, включая кошек, собак, кроликов, лошадей, коров, птиц, черепах, рептилий и рыб. Я использовал его, когда предметы моих наблюдений отдыхали и когда они были активны — также когда я сам был в движении, когда они спали и когда они бодрствовали или даже были под действием эфира или хлороформа. Я использовал его в дневное время и ночью, когда исследуемым объектам было комфортно и когда они были возбуждены, когда они старались увидеть и когда не делали этого, когда они лгали и когда говорили правду, когда веки были частично прикрыты, закрывая часть поверхности зрачка; когда зрачок был расширен, а также когда он был сужен до размера острия булавки, когда глаз двигался из стороны в сторону, сверху-вниз и в других направлениях. С помощью этого метода я открыл множество фактов, которые не были известны ранее, и которые для меня было достаточно затруднительным согласовать с традиционными учениями по данному предмету. Это привело меня к тому, что я провел серию экспериментов, на которые я уже ссылался. Результаты полностью соответствовали моим более ранним наблюдениям и не оставили мне другого выбора, нежели взять попросту и отвергнуть традиционные учения об аккомодации и аномалиях рефракции. Но до того, как я опишу эти эксперименты, я должен настоятельно попросить читателей набраться терпения, когда я буду представлять то, как я выводил доказательство, послужившее основой принятого мною взгляда на аккомодацию. Это доказательство, как мне кажется, является таким же сильным аргументом, как и любые другие, которые я мог бы предложить в качестве опровержения теории о том, что хрусталик отвечает за аккомодацию, в то же время понимание всего этого необходимо для того, чтобы понять суть моих экспериментов.

Глава III. Доказательства принятой теории аккомодации

Способность глаза изменять свой фокус для того, чтобы видеть на различных расстояниях, озадачила научный мир уже с тех пор, как Кеплер[15] попытался объяснить это, предположив в качестве определяющего фактора изменение расположения кристаллического хрусталика. В дальнейшем, каждая представляемая гипотеза уже опиралась именно на это. Идея Кеплера имела множество сторонников. Так же, как и идея о том, что изменение фокуса было вызвано удлинением глазного яблока. Некоторые придерживались того мнения, что способность зрачка сужаться вносила вклад, достаточный для того, чтобы его можно было бы учитывать в объяснении данного явления до тех пор, пока после проведения операции по удалению радужки не был установлен факт того, что глаз идеально аккомодировал без этой части зрительного механизма. Некоторые, неудовлетворенные всеми этими теориями, отказывались от всех предложенных вариантов и смело утверждали, что никакое изменение фокуса не имело места быть[16] — точка зрения, которая была окончательно опровергнута тогда, когда изобретение офтальмоскопа сделало возможным наблюдать глаз изнутри.

Идея о том, что изменение фокуса может осуществляться за счет изменения формы хрусталика, кажется, была впервые выдвинута, согласно Ландольту[17], иезуитом Шейнером (1619).

Позднее ее развил Декарт (1637). Но первое конкретное доказательство в поддержку этой теории было представлено доктором Томасом Юнгом в публикации, прочитанной перед Лондонским королевским сообществом в 1800 году[18]. «Он привел такие объяснения», говорит Дондерс, «которые, будучи понятыми правильно, должны быть приняты как несомненные доказательства[19]». Правда, в то время, они привлекли мало внимания.


Рис. 9. Схема Изображений Пуркинье.

№ 1 — Изображение свечи: а, на роговице; b, на передней поверхности хрусталика; с, на задней поверхности хрусталика.

№ 2 — Изображения лучей света, проходящих сквозь прямоугольные отверстия в непрозрачной пластине, когда глаз находится в покое (R) и во время аккомодации (А): а, на роговице; b, на передней поверхности хрусталика; с, на задней поверхности хрусталика (согласно Гельмгольцу).

Заметьте, что в № 2, А, центральные изображения меньше по своему размеру и доходят друг до друга — изменение, которое, если оно на самом деле имело бы место, говорило бы об увеличении кривизны передней поверхности хрусталика во время аккомодации.

Где-то полвека спустя, случилось так, что Максимилиану Лангенбеку[20] довелось искать решение данной проблемы с помощью того, что нам известно как изображения Пуркинье[21]. Если маленький яркий источник света, обычно свечу, держат перед глазом и немного в сторону от него, то видны три изображения: один — яркий, в нормальном положении; другой — большой, но менее яркий и также в нормальном положении; а третий — маленький, яркий и перевернутый. Первый исходит с роговицы, прозрачного покрытия радужки, и зрачка, а два других — с хрусталика: тот, что стоит прямо, он с передней его части, а перевернутый — с задней. Отражение от роговицы было известно еще в древности, хотя его происхождение не было открыто до нашего времени; но два отражения от хрусталика были впервые изучены в 1823 году Пуркинье, и, следовательно, это трио изображений сейчас ассоциируется с его именем. Лангенбек изучил эти изображения невооруженным глазом и пришел к выводу о том, что во время аккомодации то изображение, что посередине, становилось меньше, чем когда глаз был в состоянии покоя. А так как изображение было отражено от выпуклой поверхности, то оно уменьшалось прямо пропорционально выпуклости той поверхности. Он сделал вывод о том, что передняя поверхность хрусталика стала более выпуклой, когда глаз настроился на зрение вблизи. Дондерс повторил эксперименты Лангенбека, но не смог сделать каких-либо удовлетворительных наблюдений. Однако, он предположил, что если изучать изображения с помощью увеличительного стекла, то они могли бы «показать с уверенностью», изменялась ли форма хрусталика во время аккомодации или нет. Крамер[22], действуя в предложенном им направлении, изучил изображения, увеличенные в 10–20 раз, и это позволило ему убедиться в том, что то изображение, которое отражается от передней поверхности хрусталика, значительно уменьшилось во время аккомодации.

Позднее Гельмгольц, работая независимо, сделал похожее наблюдение, но с помощью какого-то другого метода. Как и Дондерс, он посчитал изображение, полученное обычными методами, на передней поверхности хрусталика, очень неудовлетворительным и в его «Справочнике по Физиологической Оптике» он описывает его как «обычно настолько нечеткое, что форма пламени не может быть распознана наверняка»[23]. Так, он размещал два источника света или один, размноженный отражением в зеркале, позади экрана, в котором были два маленьких прямоугольных отверстия. Все было организовано таким образом, что свет от источников, который светил через отверстия в экране, формировал два изображения на каждой отражающей плоскости. Во время аккомодации, как ему казалось, два изображения на передней поверхности хрусталика стали меньше и приблизились друг к другу, тогда как, по возвращении глаза в состояние покоя, они увеличивались в размере и отдалялись друг от друга. Это изменение, сказал он, может быть увидено «легко и отчетливо»[24]. Наблюдения Гельмгольца о поведении хрусталика при аккомодации, опубликованные где-то в середине прошлого века, были вскоре приняты за факты и с того времени существуют в качестве утверждений в любом учебнике на эту тему.

«Мы могли бы сказать», пишет Ландольт, «что открытие той части процесса аккомодации, которую выполняет кристаллический хрусталик — одно из потрясающих достижений медицинской физиологии, и теория о его работе, конечно же, одна из наиболее утвердившихся, так как она не только имеет огромное количество ясных и математических подтверждений ее корректности, но и все другие теории, выдвинутые для объяснения аккомодации, могут быть легко и полностью отклонены… Факт того, что глаз аккомодирует вблизи путем увеличения кривизны своего кристаллического хрусталика, следовательно, бесспорно подтвержден».[25]

«Вопрос был решен», говорит Чернинг, «путем наблюдения изменений изображений Пуркинье во время аккомодации, которые подтвердили то, что аккомодация вызывается увеличением кривизны внешней поверхности кристаллического хрусталика».[26]


Рис. 10. Схема, Которой Гельмгольц Иллюстрировал Свою Теорию Аккомодации.

R — предполагаемое состояние покоя хрусталика, при котором он настроен на зрение вдаль. На А поддерживающая мышца, как предполагается, расслабляется через сокращение цилиарной мышцы, позволяя хрусталику выпячиваться вперед ввиду его эластичности.

«Величайшие мыслители», говорит Кон, «сотворили множество трудностей в изучении данного аспекта, и только до недавнего времени эти процессы начали излагаться четко и ясно в работах Сансона, Гельмгольца, Брюке, Хенсена и Волькерса».[27]

Хаксли ссылается на наблюдения Гельмгольца как на «достоверные факты, которым должны соответствовать все объяснения этого процесса»,[28] а Дондерс называет свою теорию «истинным принципом аккомодации».[29]

Арльт, развивший теорию удлинения глазного яблока и веривший в то, что ничто другое не было возможным, поначалу был против заключений Крамера и Гельмгольца,[30] но позже принял их.[31]

Еще изучая доказательства теории, мы можем только удивляться легковерию науки, которая позволяет себе в столь важной области медицины, как лечение зрения, быть основанной на таком обилии противоречий. Гельмгольц хоть, очевидно, и был убежден в правильности своих наблюдений, показывавших изменение формы хрусталика во время аккомодации, но все же чувствовал себя не способным говорить с уверенностью о том, каким же образом осуществлялось предполагаемое изменение кривизны,[32] и достаточно странно, что этот вопрос до сих пор обсуждается. Как он утверждает, не найти «абсолютно ничего, кроме цилиарной мышцы, чему могла бы быть приписана аккомодация».[33] Гельмгольц заключил, что вроде как наблюдаемое им изменение кривизны хрусталика должно быть вызвано деятельностью этой мышцы, но он не смог предложить какой-либо удовлетворительной теории о том, каким же образом действует мышца, чтобы достичь таких результатов, и он недвусмысленно заявляет о том, что предложенная им точка зрения имеет исключительно вероятностный характер. Некоторые из его последователей, «более лояльно, нежели сам король», как это описал Чернинг, «провозгласили истинным то, что он сам с большой осторожностью объяснял как вероятное».[34] Но принятие в этом случае не было таким же единодушным, как тогда, когда дело касалось наблюдений за поведением изображений, отраженных от хрусталика. Никто, кроме настоящего автора, насколько я знаю, не осмелился задаться вопросом, а является ли цилиарная мышца ответственной за аккомодацию. Но что касается того, каким образом она работает, здесь, как правило, чувствуется сильная необходимость более подробно осветить этот вопрос. Так как хрусталик не является фактором в аккомодации, то не является странным и то, что никто так и не смог обнаружить, каким же образом он изменял свою кривизну. Но ведь что действительно странно, так это то, что эти трудности ни коим образом не потревожили всемирную убежденность в том, что хрусталик изменяет свою кривизну.


Рис. 11. Томас Юнг (1773–1829).

Английский врач и ученый, первым представивший серьезный аргумент в поддержку точки зрения о том, что аккомодация происходит в результате деятельности хрусталика.

Когда хрусталик удален из-за катаракты, у пациента обычно обнаруживается утрата аккомодации, и ему не только приходится носить очки для возмещения утраченного элемента, но и приходится надевать более сильные очки для чтения. Однако, немногие из этих пациентов после привыкания к новому состоянию становятся способными видеть вблизи без каких-либо изменений в их очках. Существование этих двух классов пациентов — это огромный камень преткновения для офтальмологии. Как оказалось, очень многие поддержали теорию о хрусталике как факторе в аккомодации, но второе было трудно объяснить, и одно время, как заметил доктор Томас Юнг, существовало «великое неодобрение» этой идеи. Большое количество таких случаев заметного изменения фокуса в глазе без хрусталика докладывается Королевскому Сообществу компетентными наблюдателями. Доктор Юнг, прежде чем продвигать свою теорию аккомодации, потрудился исследовать некоторые из них и счел для себя оправданным заключить, что в наблюдении была сделана ошибка. Однако, в то время как он был убежден в том, что в таком глазе «действительное фокальное расстояние остается полностью неизменным», он охарактеризовал свой собственный аргумент в поддержку этой точки зрения как лишь «допустимо убедительный». В более поздний период Дондерс провел несколько исследований, из которых заключил, что «при афакии[35] остается не то, что называется едва заметным следом способности аккомодировать».[36] Гельмгольц изъявил похожую точку зрения, а фон Грефе, хоть он и видел «легкий остаток» способности к аккомодации глаза без хрусталика, все же решил, что это не является существенным для того, чтобы отвергнуть теорию Крамера и Гельмгольца. Это может быть, как он сказал, из-за аккомодативного действия радужки и, возможно, также из-за удлинения зрительной оси посредством действия внешних мышц.[37]


Рис. 12. Герман Людвиг Фердинанд фон Гельмгольц (1821–1894), чьи наблюдения в вопросе поведения изображений, отраженных от передней поверхности хрусталика, предположительно, демонстрируют то, что кривизна этого тела изменяется в процессе аккомодации.

В течение около трех четвертей века мнения этих специалистов прошли отголосками через литературу по офтальмологии. И очень широко известный и бесспорный сегодня существует факт того, что многие люди после удаления хрусталика, вследствие катаракты, могут видеть в совершенстве на любых расстояниях, не меняя очков. Каждый офтальмолог, которого я когда-либо встречал, видел такого рода случаи, и многие из них изложены в литературе.

В 1872 году профессор Форстер из Бреслау доложил[38] о серии двадцати двух случаев явной аккомодации в глазах, из которых был удален хрусталик, вследствие катаракты. Возраст этих людей разнился от одиннадцати до семидесяти четырех лет, и те, что были моложе, имели больше способности аккомодации, чем люди более старшего возраста. Годом позже Войнов из Москвы[39] сообщил об одиннадцати случаях; возраст был от двенадцати до шестидесяти лет. В 1869 и 1870 годах, соответственно, Лоринг доложил[40] Нью-Йоркскому Офтальмологическому Сообществу и Американскому Офтальмологическому Сообществу о случае с молодой женщиной восемнадцати лет, которая без смены очков читала двенадцатифутовую строку проверочной таблицы Снеллена в двадцати футах от нее, а также читала шрифт «диамант» с расстояний от пяти до двадцати дюймов. 8 октября 1894 года пациент доктора Дэвиса, который, как оказалось, мог в совершенстве аккомодировать без хрусталика, согласился представиться Нью-Йоркскому Офтальмологическому Сообществу. Доктор Дэвис сообщает[41]: «Члены сообщества были разделены во мнениях о том, как пациент мог аккомодировать вблизи в очках для дали», но факт того, что он мог видеть на этом расстоянии без смены очков, обсуждаться не стал.

Пациент работал шеф-поваром, ему было сорок два года, и 27 января 1894 года доктор Дэвис удалил черную катаракту из его глаза, снабдив его тут же обычным комплектом очков: одни — для возмещения хрусталика, для зрения вдаль, и более сильные — для чтения. В октябре он вернулся к доктору. Вернулся не потому, что с его глазом что-то было не в порядке, а потому что боялся, что он, возможно, «напрягает» свой глаз. Он перестал пользоваться очками для чтения, спустя несколько недель, и с тех пор носил только очки для дали. Доктор Дэвис усомнился в правдивости утверждений пациента, так как не имел подобных случаев раньше, но после обследования обнаружил, что то, что говорил пациент, было похожим на правду. Своим глазом с удаленным хрусталиком и с помощью выпуклого стекла в одиннадцать с половиной диоптрий пациент читал десятифутовую строчку на проверочной таблице с расстояния в двадцать футов. С тем же стеклом, не изменяя своего положения, он читал мелкий шрифт с расстояний от четырнадцати до восемнадцати дюймов. Доктор Дэвис потом представил этого пациента Офтальмологическому Сообществу, но, как он утверждал, он не получил от них ничего вразумительного. Четыре месяца спустя, 4 февраля 1895 года, пациент продолжал читать 20/10 с дальнего расстояния, а диапазон расстояний, с которых он читал вблизи, увеличился так, что он мог читать «диамант» с расстояний от восьми до двадцати двух с половиной дюймов. Доктор Дэвис провел с ним несколько тестов и, хоть так и не смог найти какого-либо объяснения его странным представлениям, он все же сделал несколько интересных наблюдений. Результаты проверки на глазу без хрусталика, которыми Дондерс убедил сам себя в том, что глаз с отсутствовавшим в нем хрусталиком не имел аккомодационной способности, были несколько отличны от тех, что были представлены авторитетным голландским доктором, и доктор Дэвис поэтому заключил, что эти тесты были «совершенно недостаточными для того, чтобы решить спорный вопрос». Во время аккомодации офтальмометр[42] показал, что кривизна роговицы изменилась и что роговица немного выдвинулась вперед. Под воздействием скополамина, препарата, иногда используемого вместо атропина, для паралича цилиарной мышцы (1/10 процентный раствор каждые пять минут в течение тридцати пяти минут, после чего ожидание в течение получаса), эти изменения имели место, как и раньше. Они также имели место, когда веки придерживались в верхнем положении. Таким образом, с помощью возможного влияния давления век и удаленной цилиарной мышцы, доктор Дэвис почувствовал, что он, похоже, нашел объяснение этим изменениям, заключавшимся в том, что это «должно воспроизводиться действием внешних мышц». Под действием скополамина аккомодация человека также была слегка изменена, диапазон зрения вблизи был уменьшен только до двух с половиной дюймов.

Дальше офтальмометр показал, что у пациента совсем не было астигматизма. Он показал то же самое около трех месяцев спустя после операции, но через три с половиной недели после нее у него было четыре с половиной диоптрии.

В поисках более конкретных объяснений данного явления доктор Дэвис провел похожие тесты, как и в случае, описанном в докладе Вебстера в «Архивах Педиатрии».[43] К доктору Вебстеру привели десятилетнего пациента с двойной врожденной катарактой. Левый хрусталик весь был в частых проколах, наподобие проколов булавкой, оставив только непросвечивающую мембрану, капсулу хрусталика, тогда как правый хрусталик не был поврежден. Вокруг, по краям, он был достаточно прозрачным для того, чтобы можно было хоть как-то видеть. Доктор Вебстер сделал отверстие в мембране, заполнявшей зрачок левого глаза, после чего зрение этого глаза в очках, заменивших хрусталик, стало почти как зрение правого глаза без очков. По этой причине доктор Вебстер решил, что не обязательно прописывать пациенту очки для дали, и прописал ему только очки для чтения: плоское стекло для правого глаза и +16 диоптрий — для левого. 14 марта 1893 года пациент вернулся и сказал, что носил очки для чтения, не снимая их. С этими очками он обнаружил, что мог читать двадцатифутовую строку на проверочной таблице с расстояния двадцати футов и мог без труда читать шрифт «диамант» с расстояния четырнадцати дюймов. Позже был удален правый хрусталик, после чего никакой аккомодации в этом глазу не наблюдалось. Два года спустя, 16 марта 1895 года, его осматривал доктор Дэвис. Он обнаружил, что левый глаз уже мог аккомодировать в диапазоне расстояний от десяти до восемнадцати дюймов. В этом случае никаких изменений роговицы не наблюдалось. Результаты тестов Дондерса были похожими на эти в более раннем случае, и под действием скополамина глаз аккомодировал, как и раньше, но уже не так легко. Никакой аккомодации не наблюдалось в правом глазу.

Эти и подобные им случаи вызывают огромное недоумение у тех, кто осознает, что должен сопоставить их с принятыми теориями. С помощью ретиноскопа глаз без хрусталика может быть увиденным в процессе совершения им аккомодации, но теория Гельмгольца довлеет над умом офтальмолога настолько сильно, что он не может поверить даже в доказательство объективной проверки. Очевидный факт аккомодации называют невозможным, и многие теории, очень любопытные и ненаучные, были развиты с расчетом на это. Дэвис имеет такое мнение, что «легкие изменения кривизны роговицы и ее легкое увеличение, наблюдавшееся в некоторых случаях, может там осуществляться за счет присутствия каких-то аккомодационных сил, но это настолько незначительный фактор, что им можно полностью пренебречь, так как в некоторых из наиболее заметных случаев аккомодации в афакических глазах не наблюдалось».

Намеренное воспроизведение астигматизма — еще один камень преткновения для тех, кто поддерживает принятые теории, так как оно включает в себя изменение формы роговицы, а такое изменение не совместимо с идеей «нерастяжимого»[44] глазного яблока. Однако, кажется, что им это доставляет меньше беспокойства, чем аккомодация глаза с отсутствовавшим в нем хрусталиком, потому что таких случаев наблюдалось меньше, и еще меньше было позволено печатать в литературе. Некоторые интересные факты, касательно этого, к счастью, были описаны Дэвисом, изучавшим этот вопрос по той причине, что им было замечено изменение формы роговицы в глазу с отсутствующим хрусталиком. Случай был с хирургом-практикантом в Больнице Глаза и Уха в Манхеттане, доктором Джонсоном. Обычно этот джентльмен имел полдиоптрии астигматизма в каждом глазу, но он мог усилием воли увеличивать его до двух диоптрий в правом глазу и до одной с половиной — в левом. Он делал это много раз в присутствии множества членов из персонала больницы, а также делал это, когда верхние веки придерживались в верхнем положении, показывая то, что давление век ничего общего с этим явлением не имело. Позже он поехал в Луисвилл, и там доктор Рэй по рекомендации доктора Дэвиса проверил его способность воспроизводить астигматизм под действием скополамина (четыре закапывания 1/5 процентного раствора). В то время как глаза были под действием препарата, астигматизм, казалось, что увеличивался, согласно показаниям офтальмометра, до одной с половиной диоптрии в правом глазу и до одной диоптрии — в левом. Исходя из этих фактов, влияние век и цилиарной мышцы были исключены, и доктор Дэвис заключил, что изменение формы роговицы было «воспроизведено практически полностью за счет действия внешних мышц». Какое объяснение дали другие этому явлению, я не знаю.

Глава IV. Правда об аккомодации. Демонстрация во время экспериментов с глазными мышцами рыб, кошек, собак, кроликов и других животных

Функция мышц, находящихся на внешней части глазного яблока, помимо вращения глаза в глазнице, стала причиной большого количества споров. Но после мнимой демонстрации Гельмгольцем того, что аккомодация зависит от изменения кривизны хрусталика, их возможное предназначение настраивать глаз на работу на различные расстояния или их участие в создании аномалий рефракции было отвергнуто и больше не считалось достойным какого-либо внимания. «Прежде чем физиологи ознакомились с изменениями в диоптической системе[45]», говорит Дондерс, «они часто приковывали свое внимание к внешним мышцам глаза в процессе совершения аккомодации. Сейчас, когда мы знаем, что аккомодация зависит от формы хрусталика, нет оснований опровергать данную точку зрения». Он решительно заявляет о том, что «наблюдается много случаев, когда аккомодация полностью парализована без какого-либо воспрепятствования этому со стороны внешних мышц», а также, что «во многих зарегистрированных случаях паралича всех или практически всех мышц глаза, а также при отсутствии этих мышц ослабления способности к аккомодации не наблюдалось».[46]

Если бы Дондерс не счел этот вопрос решенным, он, возможно, изучил бы более скрупулезно все эти случаи. И если бы это произошло, то он мог бы быть менее категоричен в своих заявлениях, потому что, как было показано в предыдущей главе, существует огромное множество признаков, указывающих на то, что на самом деле все происходит с точностью до наоборот. В моих собственных экспериментах с внешними мышцами глаз рыб, кроликов, кошек, собак и других животных было полностью продемонстрировано, что в глазах этих животных аккомодация целиком зависит от деятельности внешних мышц и безо всякого участия хрусталика. Производя манипуляции с этими мышцами, я смог, по своему усмотрению, воспроизводить или не давать происходить аккомодации, воспроизводить миопию, гиперметропию и астигматизм или же предотвращать возникновение этих состояний. Полное описание этих экспериментов вы можете найти в «Бюллетени Нью-Йоркского Зоологического Общества» за ноябрь 1914 года и в «Нью-Йоркском Медицинском Журнале» за 8 мая 1915 года и за 18 мая 1918 года. Но для тех, кто не имеет времени или возможности прочитать эти издания, их содержание я описал ниже.

Существует шесть мышц, находящихся на внешней части глазного яблока, четыре из которых известны как «прямые», а две другие — как «косые». Косые мышцы практически полностью опоясывают глазное яблоко посередине, и, в соответствии с их расположением, они также известны как «верхние» и «нижние». Прямые мышцы присоединены к склеротической, или внешней, оболочке глазного яблока, ближе к передней его части, и идут, минуя верх, низ и боковые части глазного яблока, прямо до задней части глазницы, где они присоединяются к костным тканям по краям круглого отверстия, через которое проходит зрительный нерв. В соответствии с их расположением, они носят названия «верхних», «нижних», «внутренних» и «внешних» прямых мышц. Косые мышцы — это мышцы аккомодации, прямые воспроизводят гиперметропию и астигматизм.


Рис. 13. Демонстрация, На Примере Глаза Кролика, Того, что Нижняя Косая Мышца Является Существенным Фактором в Процессе Аккомодации.


№ 1 — Нижняя косая мышца была подвержена воздействию электрического тока, и две нити были присоединены к ней. Стимуляция глазного яблока электрическим током вызвала аккомодацию, как показала симультативная ретиноскопия.

№ 2 — Мышца была разрезана. Стимуляция электрическом током не вызывает аккомодации.

№ 3 — Концы разрезанной мышцы сшиты друг с другом. Стимуляция электрическим током способствует возникновению нормальной аккомодации.

В некоторых случаях одна из косых мышц отсутствует или не развита. Но когда две эти мышцы присутствовали и могли действовать, то аккомодация, как было измерено при помощи объективного теста в виде ретиноскопии, всегда происходила под действием стимуляции электрическим током либо глазного яблока, либо нервов аккомодации возле участка в головном мозгу, откуда они выходили. Аккомодация также воспроизводилась путем любой манипуляции с косыми мышцами, в результате которой усиливалось их натяжение. Такое натяжение осуществлялось при помощи операции по подворачиванию одной из или обеих мышц (англ. tucking operation — прим. перев.), или путем увеличения расстояния до точки, в которой они присоединялись к склере. Когда одна и более прямые мышцы были разрезаны, эффект от операции, увеличивающий натяжение косых мышц, был усилен.


Рис. 14. Демонстрация, на Примере Глаза Карпа, Того, Что Верхняя Косая Мышца Играет Значимую Роль в Процессе Аккомодации.

№ 1 — Верхняя косая мышца приподнята от глазного яблока с помощью двух нитей, и ретиноскоп показывает отсутствие аномалий рефракции. № 2 — Стимуляция электрическим током приводит к возникновению аккомодации, как определил ретиноскоп. № 3 — Мышца была разрезана. Стимуляцией глазного яблока электрическим током не удалось воспроизвести аккомодацию. № 4 — Разрезанная мышца была вновь соединена путем затягивания швов. Аккомодация возникает, как и прежде, в результате стимуляции электрическим током.


Рис. 15. Демонстрация, На Примере Глаза Кролика, Того, Что Возникновение Аномалий Рефракции Зависит от Деятельности Внешних Мышц Глаза. Шнур Привязан к Месту Крепления Верхней Косой и Прямой Мышц Глаза.


№ 1 — Нить тянется назад. Возникает миопия.

№ 2 — Нить тянется вперед. Возникает гиперметропия.

№ 3 — Нить тянется вверх в плоскости радужки. Возникает смешанный астигматизм.

После того, как были разрезаны поперек одна или обе косые мышцы, или после того, как их парализовывало в результате инъекции атропина глубоко в глазницу, аккомодация никогда не вызывалась при помощи стимуляции электрическим током. Но после окончания действия атропина или когда разделенные концы мышцы сшивались друг с другом, за электрическим разрядом, как и обычно, следовала аккомодация. И вновь, когда одна косая мышца отсутствовала, как было обнаружено в случае морской собаки, акулы и нескольких окуней, или была неразвита, как в случаях всех исследованных кошек, нескольких рыб и у кролика, не удавалось воспроизвести аккомодацию при помощи стимуляции электрическим током. Но когда неразвитая мышца была усилена дополнительным удлинением или отсутствующую мышцу заменял шнур, поддерживавший необходимое натяжение, всегда удавалось воспроизвести аккомодацию при помощи электрического тока.


Рис. 16. Демонстрация, На Глазу Рыбы, Того, Что Воспроизведение Миопической и Гиперметропической Рефракций Зависит От Действия Внешних Мышц.

Шнур привязан к основанию верхней прямой мышцы. Сильно потянув за конец шнура, повернули глазное яблоко в глазнице, и, путем затягивания нити, с помощью фиксирующего зажима, захватывающего нижнюю челюсть, он установлен в этом положении. Симультативная ретиноскопия зарегистрировала воспроизведение высокой степени смешанного астигматизма. Когда верхняя косая мышца разделена, миопическая составляющая астигматизма исчезает, а когда разрезана нижняя прямая мышца, то гиперметропическая составляющая исчезает, и глаз становится нормальным — настроенным на зрение вдаль — хотя поддерживается натяжение шнура той же силы. Тем доказано, что эти мышцы являются существенными факторами в создании миопии и гиперметропии.

После того, как одна или обе косые мышцы были разрезаны, и в то время, как две и более прямых мышц присутствовали и были активны[47], стимуляция глазного яблока или нервов аккомодации электрическим током всегда воспроизводила гиперметропию. В то же время, манипуляцией с одной из прямых мышц, обычно нижней или верхней, так, чтобы усилить их натяжение, получался такой же результат. Паралич прямой мышцы при помощи атропина или разрезание одной или нескольких таких мышц не позволяли возникнуть гиперметропической рефракции путем электрической стимуляции. Но после окончания действия атропина или после того, как разрезанные концы мышцы были сшиты друг с другом, как обычно, в результате стимуляции электрическим током возникала гиперметропия.

Следует подчеркнуть, что для того, чтобы парализовать либо прямые мышцы, либо косые оказалось необходимым производить инъекции атропина далеко позади глазного яблока при помощи иглы для подкожных инъекций. Предполагалось, что препарат парализует аккомодацию, когда его закапывают в глаза людей или животных, но во всех моих экспериментах было обнаружено, что когда его использовали таким образом, он оказывал очень небольшой эффект на способность глаза изменять свой фокус.


Рис. 17.

№ 1 — Воспроизведение смешанного астигматизма в глазу у карпа путем оттягивания нитей, прикрепленных к конъюнктиве, в противоположных направлениях. Заметьте овальную форму на передней части глазного яблока.

№ 2 — После перерезания нитей глазное яблоко возвращает свою нормальную форму и рефракция становится нормальной.

Астигматизм обычно возникал в комбинации с миопической или гиперметропической рефракциями. Его также удавалось воспроизвести при помощи различных манипуляций и с косыми, и с прямыми мышцами. Смешанный астигматизм, который является комбинацией миопической и гиперметропической рефракций, всегда воспроизводился при натяжении в местах крепления верхней или нижней прямых мышц в направлении, параллельном плоскости радужки, при условии, что обе косые мышцы присутствовали и могли действовать. Но если одна или обе косые мышцы были разрезаны, миопическая составляющая астигматизма исчезала. Подобным образом, после разрезания верхней или нижней прямых мышц исчезала гиперметропическая составляющая астигматизма. Перемещение двух косых мышц с перемещением верхней и нижней прямых мышц всегда воспроизводило смешанный астигматизм.


Рис. 18. Демонстрация, на Глазном Яблоке Кролика, Того, Что Косые Мышцы Удлиняют Зрительную Ось При Миопии.

R, состояние покоя. Глазное яблоко имеет нормальную длину и находится в состоянии эмметропии — то есть полностью настроено на зрение вдаль. Му, миопия. Натяжение косых мышц было усилено путем их перемещения, и ретиноскоп показал, что возникла миопия. Легко заметить, что глазное яблоко стало длиннее. Было невозможно избежать какого-либо движения головы между съемкой этих двух кадров для демонстрации результата манипуляции с нитями. Но линейка показывает, что фокус камеры не был сильно изменен такими перемещениями.


Рис. 19. Демонстрация, На Примере Глаза Карпа, Того, Что Прямые Мышцы Укорачивают Зрительную Ось При Гиперметропии.

R, состояние покоя. Глазное яблоко имеет нормальную длину и находится в состоянии эмметропии. Ну, гиперметропия. Натяжение внешней и внутренней прямых мышц было усилено путем перемещения, и ретиноскоп показывает, что возникла гиперметропия. Еще легче заметить, что глазное яблоко стало короче. Линейка показывает, что фокус камеры не был существенно изменен между этими двумя фотографиями.

Глаза, из которых был удален хрусталик или в которых он был смещен со зрительной оси, реагировали на стимуляцию электрическим током точно так же, как это делали нормальные глаза при условии, что мышцы были активны. Но когда они были парализованы инъекцией атропина глубоко в глазницу, стимуляция не оказывала никакого влияния на рефракцию.


Рис. 20. Хрусталик Смещен со Зрительной Оси.

В этом эксперименте на глазу карпа хрусталик был вытеснен со зрительной оси. Аккомодация имеет место после этого смещения точно так же, как и в предыдущих случаях. Заметьте точку на ноже в зрачке на передней поверхности хрусталика.



Поделиться книгой:

На главную
Назад