Вскользь Свифт упоминает о том, что лапутяне изобрели телескопы, которые превосходят те, которые имеются в Европе. С помощью этих отличных телескопов они открыли у Марса два спутника, которых европейцы не знают. Далее Свифт описывает орбиты и размеры этих лун, и его описания оказались поразительно близкими к тому, что затем обнаружил Холл. В частности, Свифт заявил, что внутренняя луна вращается вокруг Марса быстрее, чем сама планета, так что марсианам казалось бы, что она встает на западе и садится на востоке.
Это — поразительное совпадение. Конечно, Свифт мог рассуждать таким образом. В тот момент, когда он писал свою книгу, было известно, что у Земли есть один спутник, у Юпитера — четыре, а у Сатурна — семь. Было вполне разумно предположить, что у Сатурна есть еще одна, восьмая, луна, которая где-то прячется, и в этом случае, если бы у Марса оказалось две луны, то получился бы красивый ряд чисел. По мере движения от Солнца, начиная с Земли, число спутников для каждой планеты будет 1, 2, 4, 8. Затем, луны Марса должны были оказаться маленькими и располагаться близко от планеты, иначе даже европейцы с их «плохими» телескопами их бы уже обнаружили.
До этого момента за рассуждениями Свифта можно проследить. Однако его догадка о том, что Фобос будет всходить на западе и заходить на востоке из-за скорости его вращения, кажется совершенно сверхъестественной. Это, несомненно, самая удачная догадка в литературе.
«ЗАДЕВАЮЩИЕ ЗЕМЛЮ»
Сейчас известен тридцать один спутник. У Земли — один, у Марса — два, у Юпитера — двенадцать, у Сатурна — девять, у Урана — пять и у Нептуна — два. Если «Троянцы» существует еще какие-то, то они настолько невелики, что не представляют никакого интереса. Значит ли это, что все достойные внимания тела Солнечной системы уже открыты?
Не совсем. Во-первых, остаются еще малые планеты. Как я уже сказал в главе 8, сейчас известно 1500 таких планет, но еще, возможно, остается открыть свыше 40 000. Может показаться, что открытие еще одной или двух не имеет никакого значения — и в большинстве случаев это так. Если малые планеты обычные.
Обычные малые планеты имеют орбиты, которые ограничены промежутком между Марсом и Юпитером. Их орбиты расположены в этом районе почти повсюду — за некоторыми исключениями. В 1866 г. американский астроном Даниэль Керквуд обнаружил некоторые участки, свободные от орбит планетоидов в результате гравитационных эффектов гигантского Юпитера. Эти пустые участки называются «промежутками Керквуда».
Однако есть небольшое количество планетоидов, орбиты которых находятся за пределами области Марс —Юпитер. Их орбиты уходят за Юпитер или ближе Марса. Эти малые планеты с необычными орбитами отличаются от остальных тем, что носят мужские имена.
Например, в 1906 г. Вольф (который первым начал прослеживать малые планеты с помощью фотографии) открыл 588-ю малую планету. Оказалось, что ее орбита почти совпала с орбитой Юпитера. Это удивило Вольфа, и он назвал эту планету Ахиллесом. Однако она не могла столкнуться с Юпитером, потому что отстояла от его места на орбите более чем на 720 миллионов километров, а двигалась с такой же скоростью, что и Юпитер, так что расстояние между ними не менялось.
Если провести линию от Юпитера к Ахиллесу и обратно к Солнцу, то окажется, что образовался равносторонний треугольник, то есть треугольник, все три стороны которого равны. Это необычное положение, но за сто лет до этого французский математик Жозеф Луи Лагранж доказал, что такое положение будет стабильным. Иначе говоря, тела будут оставаться на вершинах равностороннего треугольника, как бы они ни перемещались.
В том же году на орбите Юпитера была открыта еще одна малая планета, а на следующий год — еще две. Некоторые из них были найдены неподалеку от Ахиллеса, некоторые — дальше, по другую сторону от Юпитера, где они образовали второй равносторонний треугольник. Сейчас их известно пятнадцать: десять в группе Ахиллеса, а пять — во второй, и всем им даны названия по именам героев Троянской войны, в соответствии с начатым Вольфом обычаем. Так, среди них есть Патрокл, Гектор, Приам, Нестор, Диомед и Агамемнон. Этодовольно крупные малые планеты, некоторые из них имеют диаметр до 300 километров, но они находятся настолько далеко, что их трудно наблюдать. Вся группа в целом известна как «троянцы».. У них сложные орбиты, и троянская планета может отклоняться от своего должного места до 180 000 000 километров.
Малая планета, еще более удаленная, чем троянские, — это Гидальго. Эту планету обнаружил американский астроном Уолтер Бааде в 1920 г. В перигелии он оказывается почти на уровне Марса, а в афелии доходит до орбиты Сатурна. Больше ни одна малая планета не уходит так далеко от Солнца. Ее период обращения составляет 14 лет.
Гидальго также необычен тем, что имеет самую наклонную орбиту в Солнечной системе — если не считать нескольких комет. Если бы вы смогли нарисовать схему всех орбит Солнечной системы в трех измерениях и посмотреть на нее сбоку, то вы бы увидели, что они все будут лежать плоско или почти плоско, как блины. То, насколько орбита наклонена по отношению к этому блину, называется наклоном. Из старых и хорошо исследованных планет самый большой наклон имеет Меркурий — но и у него он невелик.
А есть ли малые планеты, которые находятся необычно близко к Солнцу? Ответом будет «да»-. В 1898 г. немецкий астроном Карл Г. Витт открыл малую планету номер 433. Когда рассчитали ее орбиту, то оказалось, что, хотя ее афелий лежит за пределами орбиты Марса, в перигелии она приближается к орбите Земли. Сильное приближение к Солнцу делает период обращения равным всего 1¾ года, что для планетоида немного. Планетоиды «большой четверки» имеют периоды обращения от 3¾ до 4¾ года.
Новой малой планете дали название Эрос (который также известен как Купидон), и это положило начало моде на мужские имена для странных малых планет.
Эрос может приближаться к Земле до 22,5 миллиона километров. Это половина расстояния, на которое приближается к Земле Венера, ближайшая к нам планета. Такое большое сближение оказалось очень полезным. Когда Эрос подходит близко, у него появляется большой параллакс, который можно измерить легко и точно. Это дает нам расстояние. Сравнивая его положение с положением Марса и Венеры, можно с помощью тригонометрических уравнений вычислить точное расстояние до Солнца и, в конечном счете, до всех остальных объектов Солнечной системы. В 1890 г. шотландский астроном Дэвид Джилл попытался применить тригонометрию к обычным планетоидам, но теперь, когда был обнаружен действительно близкий планетоид, можно рассчитывать на более точные результаты.
В 1931 г. Эрос приблизился к Земле до 30 миллионов километров. Была разработана обширная и подробная программа. Четырнадцать обсерваторий из девяти стран приняли в ней участие. Проект занял семь месяцев, и было сделано почти три тысячи фотографий. На каждой из них определили положение Эроса. И затем, после десяти лет вычислений, была получена величина расстояния между Землей и Солнцем — гораздо более точная, чем те, что имелись раньше.
Эрос необычен еще и тем, что является единственным небесным телом, про которое известно, что оно несферическое. Это сначала подозревали из-за того, что он неожиданно менял яркость, из-за чего порой казалось, будто на него смотрят вдоль (так что он отражает много света), а иногда — поперек (и тогда он отражает мало света). Эту несферическую форму удалось увидеть при его сближении с Землей в 1931 г. Оказалось, что формой Эрос немного похож на кирпич и имеет длину около 25 километров, а ширину и толщину — около 9 километров. Он вращается вокруг короткой оси, делая один оборот за 5¼ часа.
Как это ни странно, в тот момент, когда Эрос находился на вершине славы, он начал терять свое положение ближайшего соседа Земли. Был открыт целый ряд крошечных малых планет, которые подходят к Земле ближе, чем Эрос.
Например, существует Амур, который подходит к Земле на 18 миллионов километров, Аполлон — 13 миллионов километров, и Адонис — около 3 миллионов километров.
Однако самым удивительным из них является Гермес, который немецкий астроном Карл Рейнмут (открывший также и Аполлон) обнаружил на расстоянии всего 700 000 километров от Земли. Расчеты орбиты Гермеса показали, что временами он может приближаться к Земле до 350 000 километров. Тогда он окажется к нам ближе, чем наша собственная Луна! Аполлон, Адонис и Гермес приближаются к Солнцу сильнее, чем Венера.
Эти соседние малые планеты можно назвать «задевающими Землю». Они очень невелики: например, Гермес имеет диаметр всего около полутора километров. Когда они оказываются близко к Земле, то имеют очень высокую видимую скорость. Из-за этого за ними очень трудно наблюдать, так что не слишком близкий и не слишком маленький Эрос остается самым полезным для определения расстояний.
Следует упомянуть еще об одной малой планете. Это Икар, открытый в 1948 г. Уолтером Бааде. Он может сближаться с Землей до 7 миллионов километров (что произошло в 1968 г.), так что он тоже «задевает Землю»; но прославился Икар в первую очередь не этим.
Его орбита имеет самый большой эксцентриситет во всей Солнечной системе, не считая комет. В афелии он находится в 330 миллионах километров от Солнца, то есть далеко позади Марса. Однако в перигелии он приближается к Солнцу до 30 миллионов километров, ближе, чем Меркурий. Опять же, если не считать комет (комета Галлея подходит к Солнцу на 25 миллионов километров,тогда как комета Донати 1858 г. прошла от Солнца в 54 000 километрах, за три часа сделав полуоборот вокруг его огненной поверхности, а затем умчавшись прочь), ни одно тело Солнечной системы не оказывается так близко от Солнца, как Икар. В перигелии он должен лететь сквозь пространство, раскалившись докрасна. Этому астероиду очень подходит имя героя греческого мифа, летевшего на крыльях, сделанных из крепленных воском перьев. Он подлетел к Солнцу слишком близко, так что воск растаял, перья разлетелись и он погиб, разбившись.
Поскольку и Гидальго, и Икар были открыты Бааде, то он обнаружил как малую планету, которая ближе всего подходит к Солнцу, так и ту, которая удаляется сильнее всех.
ПОСЛЕДНЯЯ ПЛАНЕТА
Однако астрономов не удовлетворял поиск одной только мелочи. Сатурн не был концом Солнечной системы, Уран — тоже. Тогда почему таковым считать Нептун? Разве за Нептуном не может оказаться еще одной планеты?
Если так, то найти ее будет трудно. Уран невооруженным глазом виден. Нептун хотя и не виден невооруженным глазом, но может быть найден с помощью небольшого телескопа. Однако планета, расположенная дальше Нептуна, должна оказаться настолько тусклой, что затеряется среди миллионов звезд. Кроме того, она будет настолько далекой, а ее передвижение — таким медленным, что это движение трудно будет обнаружить.
Начиная с 1905 г. американский астроном Персиваль Ловелл (правильнее — Лоуэлл) пытался сделать то же, что и Леверье. После долгих наблюдений орбита Урана все еще выказывала небольшие отклонения, которые нельзя было объяснить притяжением Неитуна. Эти отклонения были в 60 раз меньшими, чем те, которые привели к открытию Нептуна. Тем не менее Ловелл взялся решать эту проблему. Он использовал эти отклонения для того, чтобы вычислить возможную орбиту и расположение планеты дальше Нептуна, которую он назвал Планетой X. Он опубликовал свои расчеты в 1915 г., но похоже, они никого не заинтересовали.
Однако Ловелл был богатым бостонским аристократом и владельцем собственной обсерватории (Ловелловская обсерватория) в Аризоне, так что начал поиски сам. Он изучал многочисленные фотографии интересовавшего его участка небосвода, которые делались в прошлом, и делал дополнительные снимки. Успеха он не добился и в 1916 г. умер. Какое-то время казалось, что интерес к Планете X умер вместе с ним, но в конце концов его последователи из обсерватории Ловелла решили продолжить его дело.
В обсерватории установили новый фототелескоп (его купил А. Лоренс Ловелл, брат Персиваля). Двадцатитрехлетний Клайд Томбо поступил на работу в обсерваторию в 1929 г. и возобновил поиски. Он был слишком беден, чтобы учиться в университете, но был очарован астрономией и много работал с 9-дюймовым телескопом, который сам сделал из деталей старых механизмов, валявшихся на отцовской ферме. И вот теперь он смог работать на чудесном профессиональном телескопе!
Он действовал так: делал фотографии одного и того же участка неба в два разных дня. На одном снимке могло оказаться от 50 000 до 400 000 звезд. Несмотря на все это множество звезд, два снимка одного и того же участка должны были оказаться идентичными в том случае, если на них были одни только звезды. Два снимка по очереди проецируются на экран, и при этом ни одна из звезд не движется. Это выглядит как одна фотография. Однако если одна из «звезд» на самом деле — планета, то в течение интервала между фотографированием она сдвинется на фоне звезд. На двух снимках она будет занимать разное место и при смене снимков начнет двигаться туда и обратно, создавая быстрое и заметное мерцание.
18 февраля 1930 г. после почти целого года кропотливой сверки фотографий Томбо обнаружил мерцавшую звезду. По тому, насколько медленно она двигалась на фоне звезд, он был уверен, что она расположена дальше Нептуна. Новую планету тщательно наблюдали в течение месяца, после чего объявили о сделанном открытии. Датой объявления было 13 марта 1930 г., годовщина смерти Персиваля Ловелла. Томбо вознаградили стипендией для обучения в Канзасском университете, так что он наконец смог получить высшее образование.
Для новой планеты было предложено название Плутон (рассказывают, что это сделала одиннадцатилетняя девочка), и его приняли. Это удачное название в двух отношениях. Во-первых, Плутон был богом подземного мира, а ни одна планета не находится настолько далеко от света Солнца, в такой глубокой тьме, как Плутон. Во-вторых, первые две буквы его названия — это инициалы Персиваля Ловелла.
Плутон оказался очень странной планетой. Он находится настолько далеко, что наблюдать его трудно, так что астрономам не много удалось о нем узнать. Однако он кажется намного меньше, чем остальные внешние планеты. Возможно, Плутон такой же небольшой, как Земля, или даже меньше. Если это так, то на самом деле он — не та планета, положение которой вычислил Ловелл, и его открытие стало чисто случайным совпадением; орбита Плутона несколько меньше той, которую Ловелл рассчитал для Планеты X.
Среди больших планет Плутон имеет самый большой наклон орбиты, которая также имеет самый большой эксцентриситет. В афелии Плутон находится от Солнца на расстоянии 8220 миллионов километров, почти вдвое дальше, чем Нептун. Однако в перигелии он всего в 4979 миллионах километров от Солнца, и тогда он примерно на 5 миллионов километров ближе к Солнцу, чем Нептун! Однако из-за наклона орбиты Плутона он на самом деле не пересекает орбиту Нептуна, и обе планеты никогда не оказываются близкими друг к другу. Опасности столкновения нет.
Когда Плутон открыли, он» двигался но направлению к перигелию. Он это делает и сейчас. К 1969 г. Плутон оказался к Солнцу ближе, чем Нептун, и с этого момента до 2009 г. он не будет самой отдаленной от Солнца планетой — ею будет Нептун.
Кстати, среднее расстояние Плутона от Солнца укладывается в правило Тициуса — Боде для планеты позади Урана. Число из последовательности Тициуса — 388, а расстояние Плутона — 395. Однако тогда для Нептуна в последовательности места не оказывается. Как бы то ни было, правило Тициуса—Боде уже не принимают слишком серьезно, так что это не имеет значения. Это правило сыграло свою роль, оказав помощь в открытии малых планет и Нептуна. Теперь мы можем оставить его в покое.
Открытие привело Солнечную систему к тому положению, которое нам известно сейчас. В ее входит: Солнце, 9 крупных планет, 31 спутник и около 44 000 малых планет.
Помимо этого, существует некоторое количество комет — возможно, очень большое количество. Одна современная теория говорит о том, что вокруг Солнца вращается громадное облако комет, на расстоянии в тысячу раз большем, чем расстояние Плутона от Солнца. В этом облаке может содержаться до ста миллиардов комет.
Однако кометы — это такие жидкие полупрозрачные штуки, что даже такое громадное их число, вместе взятое, не содержало бы в себе столько вещества, сколько содержится в нашей Луне. Однако кометы могут занимать немало места, потому что разреженный газ некоторых из них занимает даже больший объем, чем само Солнце. Единственной твердой частью кометы является ее ядро, а оно имеет размер планетоида. Ядро кометы Галлея, вероятно, имеет диаметр не более двадцати километров.
Время от времени слабое притяжение одной из планет или даже одной из наиболее близких звезд может возмутить орбиту какой-либо кометы и замедлить ее движение настолько, что она начнет падать по направлению к Солнцу и понесется мимо планет, обогнет Солнце и, возможно, навсегда покинет нашу систему. Или по пути к Солнцу, или обратно комета может еще сильнее подпасть под влияние гравитации одной из планет, мимо которых будет пролетать. Тогда ее могут поймать и сделать постоянным и близким членом Солнечной системы, как это стало с кометой Галлея. На самом деле, оказываясь рядом с планетами, кометы долго не живут. Они слишком нежные, чтобы выдерживать гравитационное притяжение различных тел системы дольше, чем несколько тысяч лет. Несколько комет даже распались прямо в тот момент, когда за ними наблюдали астрономы.
Новые кометы обнаруживают каждый год. Как правило, они настолько тусклые, что их можно увидеть только в телескоп. Их называют в честь тех, кто их открыл, и они также получают номер в соответствии с годом, в который достигают перигелия, и числом комет, открытых в тот год.
И наконец, существуют метеоры, которые заполняют пространство мелкой и очень редкой пылью. Они могут отчасти являться обломками комет, а отчасти — пылью, оставшейся после образования планет. Подавляющее большинство таких метеоров микроскопически малы.
Примерно 100 миллионов из них ежедневно падают на Землю. Почти все они сгорают в атмосфере, не достигнув и ста километров до поверхности Земли. Более крупные оставляют за собой огненный след, благодаря которому их назвали падающими звездами (это было до того, как узнали их подлинную природу).
Самые крупные даже достигают поверхности Земли, не успев полностью испариться. Твердое вещество, падающее на Землю, называют метеоритом. На Землю ежегодно падает 150 — 600 метеоритов, и очень малое их число может оказаться довольно крупным, В Аризоне есть кратер с диаметром примерно около километра, который, вероятно, был образован метеоритом, упавшим десять тысяч лет назад. Есть остатки даже более крупных кратеров, созданных более давними падениями. В двадцатом веке, в 1907 г., великое падение произошло в Сибири. К счастью, не зарегистрировано падений крупных метеоритов на города, хотя существует небольшая вероятность того, что когда-нибудь это произойдет.
Ну, можно ли еще что-то рассказать о нашей Солнечной системе? Да, осталась еще одна история. Не об объекте нашей Солнечной системе, а о том, чего в системе нет, о планете, которой не было.
Глава 10
ЗА НЬЮТОНОМ
ПЛАНЕТА, КОТОРОЙ НЕ БЫЛО
Дело в том, что, несмотря на все победы ньютоновского закона всемирного тяготения, существовало одно планетное движение, которого он объяснить не мог.
В начале главы 7 я упомянул о том, что Эйлер использовал силы гравитации для того, чтобы объяснить, почему положение перигея Луны медленно вращается вокруг Земли. Гравитация должна была также объяснить и то, что положение перигелия планеты вращается вокруг Солнца, а также скорость этого вращения.
Так случилось, что Меркурий имеет орбиту с большим эксцентриситетом и самый быстро движущийся перигелий. В афелии, когда Меркурий отстоит от Солнца дальше всего, до него 78,3 миллиона километров. В перигелии, когда он ближе всего к Солнцу, расстояние сокращается до 51,3 миллиона километров. Местоположение перигелия в пространстве постоянно смещается, и это смещение вперед можно объяснить за счет гравитационного воздействия ближайших планет, таких, как Венера и Земля.
Однако так можно было объяснить далеко не все движение! Как астрономы ни старались, всегда оставалось еще какое-то смещение вперед, которое объяснить не получалось.
В 1845 г. Леверье (которому вскоре предстояло открыть Нептун) обнаружил это, пытаясь составить таблицы для вычисления движения Меркурия. Он рассчитал, что за 100 лет перигелий сместился вперед на 40 секунд больше, чем ему следовало бы. Это не такое уж большое расхождение. Чтобы было понятно, насколько оно невелико, скажу: ширина Солнца или Луны, видимых с Земли, составляет полных 1800 секунд. Следовательно, потребовалось бы не меньше 4500 лет, чтобы перигелий Меркурия отошел от рассчитанного положения на видимую ширину Солнца или Луны.
Однако астрономы привыкли получать очень важные результаты путем объяснения подобных небольших несовпадений. Когда Кеплер попытался подогнать круговые орбиты к позициям Марса, определенным Тихо Браге, ему это почти удалось. Его подгонка никогда не давала расхождения более 500 секунд. Однако 500 секунд оказалось достаточно, чтобы он попробовал вместо этого воспользоваться эллиптическими орбитами. Перемещение Урана отличалось от теории менее чем на 100 секунд, и этого оказалось достаточно, чтобы открыть Нептун. Ловелл даже попытался вычислить положение Плутона по отклонениям, составлявшим менее 2 секунд.
Конечно же можно и нужно было делать что-то с этими 40 секундами в столетие, которые были лишними в движении Меркурия.
Леверье, который к этому времени справился с одним несовпадением, открыв новую планету, приготовился решить эту задачу таким же образом. В конце концов, за Меркурием могла оказаться неизвестная планета — так же, как она оказалась за Ураном. Вероятно, она окажется еще меньше Меркурия и будет находиться настолько близко к Солнцу, что обнаружить ее окажется крайне сложно: ведь планета всегда будет теряться в свете Солнца.
Однако если она действительно там находится, то ее гравитация могла бы объяснить эти 40 секунд за век. Леверье решил, что для этого нужна была бы планета с диаметром приблизительно в 1800 километров, которая бы вращалась на расстоянии 34 миллионов километров от Солнца. Для этой планеты даже предложили название — Вулкан, по имени римского бога огня. Хорошее название, поскольку на таком расстоянии от Солнца планета была бы раскалена докрасна.
Астрономы (особенно астрономы-любители, жаждавшие славы, которую им принесло бы открытие планеты) тут же начали охоту. Наилучшей возможностью обнаружить эту планету были бы наблюдения за окрестностями Солнца во время полного затмения. Еще одной хорошей возможностью было бы наблюдение за самим Солнцем, чтобы увидеть темное тело, которое пересекло бы его диск при прохождении — тело, которое не было бы Меркурием, Венерой или солнечным пятном.
И действительно — в течение следующих десяти —двадцати лет поступило несколько объявлений об открытии Вулкана. По правде говоря, во время затмения 1878 г. сообщалось не об одной, а о двух планетах дальше орбиты Меркурия. Однако все эти сообщения оказались ложными. Другим астрономам не удавалось найти подтверждения этим сведениям.
И до нашего времени планету внутри орбиты Меркурия обнаружить не удалось. Конечно, теперь нам известно и о малой планете Икар, которая подходит к Солнцу в перигелии на 30 миллионов километров, но она такая крошечная, что не могла бы оказать заметного влияния на Меркурий.
Конечно, можно было бы предположить, что невозможность обнаружить Вулкан еще не говорит о том, что его там нет. Однако астрономы довольно скоро удостоверились в том, что его нет. Используя гравитационную математику, можно показать, что если бы Вулкан существовал (как это утверждал Леверье), то он вызывал бы возмущения в движении Венеры и Земли, которых просто нет.
Дополнительному движению перигелия Меркурия пытались найти и другие объяснения. Например, кольцо метеоров вокруг Солнца или особое движение Солнца. Но ничего не получалось. Все, что действовало бы на перигелий Меркурия, должно было действовать и на Венеру с Землей. А так это нечто (чем бы оно ни было) влияло только на Меркурий, хотя закон всемирного тяготения утверждал, что такое невозможно.
К 1900 г. единственным объяснением стало то, что ньютоновский закон всемирного тяготения все-таки не работает безупречно.
ИСКРИВЛЕНИЕ ПРОСТРАНСТВА
Но 1900 г. стал годом научной революции, еще более значительной, чем та, что произошла в 1600-х гг. во времена Коперника и Галилея. Ученые обнаружили, что атомы, считавшиеся самыми маленькими частицами, можно разбить на гораздо более мелкие элементы. Разрабатывались странные понятия в области энергии. Оказывалось, что энергия существует в виде маленьких порций, называемых квантами, точно так же, как материя состоит из атомов.
И что важнее всего, два американских физика, Альберт Майкельсон и Э.У. Морли, в 1887 г. попытались измерить скорость света, когда свет двигался в разных направлениях. С помощью очень чуткого прибора, называемого интерферометром, эти двое измерили скорость света, когда он двигался в направлении движения Земли и поперек этого направления. Они надеялись, что по разнице в этих скоростях смогут определить скорость, с которой движется Земля.
Видите ли, все были согласны с тем, что Земля движется вокруг Солнца с определенной скоростью, 32 километра в секунду. Однако и само Солнце не стоит на месте. Все звезды движутся, хотя они расположены настолько далеко, что изменения их положения нельзя различить невооруженным глазом, пока не пройдет несколько веков (вот почему их всегда и считали «неподвижными звездами»).
Солнце тоже движется, вращаясь вокруг некоторой точки в Млечном Пути и тратя на один оборот миллионы лет. Эта центральная точка Млечного Пути тоже движется.
Тогда встает вопрос: есть ли во Вселенной что-то, что не двигалось бы, оставалось бы абсолютно неподвижным? Если это так, то скорость Земли можно было бы сравнить с ним.
В 1887 г. считалось, что вся Вселенная заполнена веществом, называемым «эфир». Именно эфир переносил световые волны, магнитные силы и тому подобное. Более того, предполагалось, что он совершенно неподвижен. Майкельсон и Морли надеялись, что, обнаружив различие в скорости света, когда она складывается с видимой скоростью Земли и направлена перпендикулярно к ее движению, они измерят «истинное» движение.
К изумлению Майкельсона и Морли, скорость света оказалась одинаковой, вне зависимости от направления. Они повторили этот эксперимент, как это сделали и другие люди, но результат всегда оставался таким. Скорость света (в вакууме) не менялась, независимо от движения объекта, который испускал свет.
Это истолковали так, что эфира не существует и во Вселенной нет ничего, что можно было бы считать неподвижным. Однако наличие Вселенной, в которой все движется и ничто не находится «в состоянии покоя», с которым можно сравнивать все движение, опрокидывало некие основополагающие понятия, которые ученые имели со времени Ньютона.
В 1905 г. двадцатишестилетний немецкий математик но имени Альберт Эйнштейн, работавший в тот момент в патентном ведомстве в Швейцарии, опубликовал статью, в которой выдвинул то, что называют специальной теорией относительности. В ней он попытался разработать систему вселенной, где свет в вакууме всегда двигался с одинаковой скоростью. Оказалось, что такая вселенная должна сильно отличаться от той, которую знали ученые.
Например, длина объекта изменялась в соответствии с его скоростью, и то же происходило с количеством материи в нем. В старой вселенной системы Ньютона длина и количество материи никак не были связаны со скоростью. Опять же, во вселенной Эйнштейна материя была эквивалентом энергии, а энергия — материи, в соответствии с очень простой формулой; одно могло превращаться в другое. В системе Ньютона материя и энергия не были связаны.
Ну, так какая же система правильная? Обе они не могли быть правильными. Проблема в том, что это трудно определить. При обычных условиях система Эйнштейна дает ту же картину, что и система Ньютона. Например, при обычных скоростях, скажем, до полутора тысяч километров в секунду, изменения длины или количества материи настолько малы, что их невозможно обнаружить. При обычных условиях столь малая часть материи переходит в энергию или наоборот, что заметить нельзя.
Только при экстремальных условиях, при скоростях в сотни тысяч километров в секунду или при радиоактивном распаде, появляется огромное различие между системами Эйнштейна и Ньютона, и тогда мы можем вынести решение.
Например, в 1915 г. Эйнштейн опубликовал еще одну статью, где была выдвинута общая теория относительности, в которой он применил новые принципы Вселенной к гравитации. В соответствии с теорией Эйнштейна, гравитация — это не сила, которая удерживает объекты. На самом деле оказывалось, что она появлялась потому, что пространство рядом с массивным телом искривлялось. Чем больше тело, тем более сильным было искривление.
Небольшое скопление материи, приближающееся к более крупному телу, просто следует по изгибу и вращается вокруг него. Это вполне естественная вещь: так сани, быстро мчащиеся с горы и подкатывающиеся к крутому склону, естественно взбираются на этот склон, начиная двигаться по изогнутой траектории.
Конечно, искривление пространства действует так, что движение планет оказывается приблизительно таким, как если бы между ними и Солнцем действительно существовали гравитационные силы, как это предположил Ньютон. Разница становится заметной только при экстремальных условиях.
Одним из экстремальных условий можно назвать ситуацию, когда маленькое тело оказывается очень близко от крупного. В нашей Солнечной системе Меркурий — единственная планета, которая находится достаточно близко от Солнца, так что условия становятся достаточно экстремальными, чтобы продемонстрировать различие между системами Ньютона и Эйнштейна. Это добавочное перемещение перигелия в 40 секунд за сто лет не может быть объяснено с помощью гравитационной математики, зато его можно точно объяснить с помощью релятивистской механики.
РЕШАЮЩЕЕ ЗАТМЕНИЕ
Таким образом, движение перигелия Меркурия было объяснено — при условии, что теория Эйнштейна верна. Но была ли она верна? Астрономам не хотелось без особых оснований отказываться от идей Ньютона.
В конце концов, Эйнштейн заранее знал о наличии 40-секундного несовпадения движения Меркурия, накапливающегося за сто лет. Естественно, он подогнал свою теорию так, чтобы это объяснить. Значит, одного этого было недостаточно, чтобы доказать правильность его теории.
Однако предположим, что удалось бы найти еще какое-то условие, которые окажется достаточно экстремальным, чтобы продемонстрировать различие между системами Эйнштейна и Ньютона, причем такое, которое ученые еще не исследовали. Тогда обе системы будут работать, так сказать, вслепую. Затем можно провести необходимые наблюдения и прийти к выводу относительно обеих систем.
Например, если пространство искривлено, как это утверждал Эйнштейн, то свет должен следовать но кривой, точно так же, как и планеты. Поскольку свет движется чрезвычайно быстро, то он изгибается очень слабо, но Эйнштейн предсказал, что при экстремальных условиях, если бы свет проходил очень близко от Солнца, его искривление станет достаточно большим, чтобы его можно было измерить.