При возведении сборных ленточных фундаментов на сильносжимаемых грунтах, а также на площадках с неравномерным напластованием грунтов, значительно отличающихся по своей сжимаемости, необходимо предусматривать армированный шов толщиной 3–5 см поверх фундаментных блоков-подушек и армированный пояс высотой 10–15 см поверх последнего ряда фундаментных стеновых блоков по всему периметру здания.
Кладку стеновых фундаментных блоков вести на цементном растворе марки 50 с перевязкой вертикальных швов на 25 см.
Ленточные монолитные фундаменты (• для бутовой кладки 1:2;
• для бутобетона 1:1,5;
• для бетона 1:1.
Переход ленточного фундамента от меньшей к большей глубине заложения, например переход ленточного фундамента из бесподвальной части здания к подвальной, осуществляется ступенями высотой 0,5–0,6 м и шириной 1,0–1,2 м (Фундаменты проектируемого здания, непосредственно примыкающие к фундаментам существующего, рекомендуется принимать на одной отметке. При расположении смежных фундаментов в разных уровнях линия, соединяющая их края, должна образовывать угол с горизонтальной линией «α» менее угла внутреннего трения грунта «φ» (
Ширина ленточного фундамента подсчитывается по специальной формуле и зависит от нагрузки на фундамент, прочностных характеристик слоя грунта, который является основанием под подошвой фундамента и способом приложения нагрузки (центральной или внецентренной). Ленточные прерывистые фундаменты (
В прерывистых фундаментах фундаментные стеновые блоки должны укладываться с надежной перевязкой вертикальных швов. Вертикальный шов между фундаментными стеновыми блоками нижнего ряда, как правило, должен находиться над блок-подушкой в районе ее середины.
• чем больше ширина блок-подушки «b» при одной и той же их длине «1», тем больший просвет «с» можно установить. Величина просвета «с» должна быть не более 1,2 м и 0,7 1, а ширина блок-подушек в прерывистом фундаменте должна быть не более 1,4 от ширины блок-подушек в сплошном ленточном фундаменте для этих условий;
• в прерывистых ленточных фундаментах наиболее оптимальным является использование блок-подушек меньшей длины (например, использовать блок-подушку не полной длины – 2,4 м, а половинной – 1,2 м).
• грунтовые условия относятся ко II типу по просадочности;
• грунты под подошвой фундамента являются глинистыми с показателями консистенции J1 ≥ 0,5.
• рыхлыми песками;
• просадочными грунтами в районах с сейсмичностью свыше 6 баллов.
Столбчатые фундаменты, как правило, применяются для бесподвальных зданий в случае малой нагрузки на фундаменты или высокой прочности грунтов основания, а также в случае необходимости заглубления фундамента ниже расчетной глубины при малой несущей способности верхних слоев основания (Расстояние между столбами принимается в зависимости от нагрузки на фундамент, несущей способности грунта основания, типа фундаментной балки и составляет, как правило, 2–4 м.
Фундаментные балки бывают железобетонные (сборные и монолитные), а также из стальных профилей (швеллер, двутавр и т. д.), обетонированных на месте. Необходимо отметить, что столбчатые фундаменты имеют меньшую пространственную жесткость, чем ленточные, в связи с чем возведенные на них здания в большей степени испытывают неравномерные осадки.
Фундаменты под колонны выполняются как в сборном, так и в монолитном варианте. В плане фундаменты имеют квадратную или прямоугольную форму. При внецентренном приложении нагрузки фундаменты под колонны могут быть выполнены несимметричными относительной одной из осей.
Свайные фундаменты могут быть выполнены из коротких и длинных свай. Применение коротких свай длиной 5–6 м при прочных грунтах имеет целью уменьшение земляных работ, связанных с устройством фундаментов, придание зданию большей пространственной жесткости, ускорение и удешевление строительства. Этот тип фундамента применяется для бесподвальных зданий или для зданий, у которых площадь подвала не превышает 15 % площади пола 1-го этажа.
Применение длинных свай вызывается необходимостью передачи нагрузок на более прочные слои грунтов в связи с неблагоприятными инженерно-геологическими условиями строительной площадки.
Раньше для свай использовалось дерево, в настоящее время основным материалом для свай служат бетон и железобетон.
По способу изготовления сваи могут быть индустриальные и буронабивные.
По характеру передачи нагрузки на грунт различают сваи-стойки, опирающиеся на практически несжимаемый грунт и передающие нагрузку на грунт только нижним концом, и висячие сваи, передающие нагрузку на грунт нижним концом и боковой поверхностью.
Свайные фундаменты под колонны выполняются в виде куста свай, объединенных ростверком (Свайные фундаменты под несущие стены из забивных или буронабивных свай выполняются в виде одного ряда свай, объединенных монолитным или сборным ростверком (
Буронабивные сваи выполняются путем наполнения бетоном пробуренной скважины. Для сопряжения с ростверком ее армируют на глубину 2–3 м арматурным каркасом или отдельными стержнями.
Если арматурным каркасом свая армируется на всю глубину, то получается железобетонная буронабивная свая.
В случае необходимости достижения высокой несущей способности буронабивные сваи устраивают с уширенной пятой.
• в забивных сваях голову каждой свои необходимо развить и оголенную арматуру завести в тело ростверка на длину 30d арматуры сваи;
• в буронабивных сваях арматуру необходимо завести в тело ростверка на длину 30d арматуры сваи.
Глубина заложения подошвы ростверка должна назначаться в зависимости от конструктивных решений нулевого цикла и планировки (наличие подвала, технического подполья, планировка срезкой или подсыпкой), а также высоты ростверка. Нижний конец сваи надлежит заглублять в малоснимаемые грунты на 1 м.
При возведении фундаментов очень важно предусмотреть мероприятия от горизонтальных сдвигающих сил грунта, действующих на фундаменты в зданиях с подвалами или цокольными этажами. Для этого после устройства фундаментов до обратной засыпки грунтом пазух котлована необходимо уложить перекрытие на отметке пола 1-го этажа и бетонную подготовку пола в подвале или в цокольном этаже (Кроме того, другим конструктивным мероприятием, препятствующим смешению фундаментов, является создание пространственно-жесткой системы фундаментно-подвальной части здания за счет устройства поперечных стен в подвале (цокольном этаже), жестко связанных с продольными стенами (
Границы призмы обрушения целесообразно определять при проведении инженерно-геологических изысканий площадки строительства. Под подошвой фундаментов и ростверков необходимо уложить подготовку из бетона, щебня, песка толщиной 80-100 мм.
Гидроизоляция фундаментов
При возведении фундаментов важно знать местоположение уровня грунтовых вод, а также возможность его повышения или понижения, связанную с застройкой территории.
При высоком стоянии уровня грунтовых или производственных вод, когда последние омывают фундаменты, устанавливается их агрессивность путем лабораторных исследований. Все данные по уровню грунтовых вод и их агрессивности должны быть показаны в инженерно-геологических изысканиях площадки строительства.
Гидроизоляция фундаментов применяется в тех случаях, когда можно ожидать проникновения влаги в подвальные помещения или помещения цокольного этажа, а также в случае возможного разрушения фундаментов агрессивными грунтовыми водами.
• путем обмазки изолируемых поверхностей холодным и горячим битумами или битумными мастиками двумя-тремя слоями;
• путем оклейки изолируемых поверхностей рулонными или листовыми гидроизоляционными материалами – гидроизол, изол, гидростеклоизол, стеклоткань и др.
Гидроизоляция горизонтальных поверхностей может осуществляться путем наклейки на бетонную подготовку ковра из рулонных гидроизоляционных материалов с последующим нанесением на него асфальта, цементной стяжки и др.
В настоящее время все большее применение в качестве гидроизоляции находят рулонные, листовые и жидкие синтетические материалы: этиленовые краски, эпоксидные смолы, перхлорвиниловые эмали, полихлорвинил, винипласт, полиэтилен и др.
К новым материалам относится гидроизолирующая смесь на базе цемента «Гидро-S».
Цемент «Гидро-S» предназначен для производства водонепроницаемых растворов, бетонов и железобетонных конструкций, применяющихся без дополнительной гидроизоляции. Бетоны и растворы приобретают свойства самозалечивания сквозных и несквозных трещин и незначительных дефектов без участия человека. Бетонные растворы на базе цемента «Гидро-S» являются эффективным средством защиты помещения подвала и цокольного этажа от напорных грунтовых вод.
Горизонтальная гидроизоляция стен на отметке – 0, 030 выполняется из двух слоев толя, наклеиваемых на выровненную цементным раствором поверхность слоем битумной мастики.
• от напора грунтовых вод;
• влажностного режима помещений;
• местных климатических условий;
• возможных силовых воздействий на гидроизоляцию;
• агрессивности воды.
1. Устройство гидроизоляции в фундаментах здания без подвала при отсутствии грунтовых вод (
В этом случае при отсутствии грунтовых вод достаточно горизонтальной гидроизоляции стен на отметке – 0,030 для защиты стен и помещений 1-го этажа от проникновения снизу капиллярной влаги.
Если грунтовые воды встречены в пределах фундаментов, то кроме гидроизоляции стен на отметке – 0, 030 необходимо еще выполнить оклеечную или обмазочную гидроизоляцию пола 1-го этажа для защиты стен и помещений 1-го этажа от проникновения снизу капиллярной влаги.
• ввести в бетон для фундаментов специальные добавки, нейтрализующие агрессивность воды (для монолитных фундаментов);
• выполнить обмазочную или оклеечную гидроизоляцию вертикальной поверхности фундаментов;
• под фундаментом устроить щебеночную подготовку толщиной 80 мм и пропитать ее битумом или битумной мастикой до полного насыщения.
2. Устройство гидроизоляции в зданиях с подвалом при отсутствии грунтовых вод (• выполнить горизонтальную гидроизоляцию стен на отметке – 0,30;
• выполнить оклеечную или обмазочную гидроизоляцию пола подвала;
• под фундаментом устроить щебеночную подготовку толщиной 80 мм и пропитать ее битумом или битумной мастикой до полного насыщения;
• боковые поверхности фундаментов окрасить горячим битумом или битумной мастикой за 2 раза.
3. Устройство гидроизоляции в зданиях с подвалом при наличии грунтовых вод.
• выполнить горизонтальную гидроизоляцию стен на отметке 0,030 для защиты стен и помещений здания от проникновения капиллярной влаги;
• выполнить гидроизоляцию стен и пола подвала.
От проникновения напорных грунтовых вод предлагается два варианта.
Выполнить оклеечную гидроизоляцию боковой поверхности фундаментов и пола подвала из двух слоев гидроизола, гидростеклоизола и др. при высоте уровня грунтовых вод от пола подвала до 1,0 м. При более высоком уровне грунтовых вод на каждый метр высоты грунтовых вод необходимо добавлять один слой оклеечной гидроизоляции.
На боковую поверхность фундамента оклеечная гидроизоляция наклеивается по выровненной поверхности и защищается от повреждений прижимной стенкой (например, кирпичной толщиной 1/2 кирпича).
В полу подвала оклеечная гидроизоляция укладывается на бетонной подготовке из бетона марки не ниже 100 толщиной 100 мм и выравнивающей стяжке из цементного раствора толщиной 25 мм.
Поверх гидроизоляции укладывается защитная стяжка из цементного раствора толщиной 25 мм для предотвращения повреждения гидроизоляции, далее монолитная железобетонная плита для восприятия нагрузки от напора грунтовых вод и, наконец, конструкции пола.
В полу подвала уложить бетонную подготовку из бетона марки не ниже 100 толщиной 100 мм. Выше уложить монолитную железобетонную плиту с использованием цемента «Гидро-S». Далее по стенам и полу подвала уложить слой цементного раствора на базе цемента «Гидро-S» толщиной 30 мм.
4. Гидроизоляцию необходимо выводить на 500 мм выше максимального уровня грунтовых вод.
• перед наклейкой или обмазкой изолируемые поверхности должны быть тщательно выровнены штукатуркой и огрунтованы разжиженным гидроизоляционным материалом;
• все гидроизоляционные слои обмазочной или оклеечной гидроизоляции должны наноситься со стороны гидростатического давления;
• в оклеечной гидроизоляции необходимо тщательное перекрытие продольных и поперечных стыков.
Для крепления слоев оклеечной гидроизоляции к конструкциям и между собой используется горячий битум.
Приведенные выше примеры устройства гидроизоляции подвала при наличии грунтовых вод выше пола подвала показывают, насколько это трудоемкое и дорогостоящее дело. Поэтому подвал целесообразно устраивать только в том случае, если грунтовые воды залегают на глубине 0,5–1,0 м от пола подвала, в противном случае от устройства подвала лучше отказаться.Деформация оснований
При строительстве зданий и сооружений деформация оснований, фундаментов и надфундаментных конструкций должна быть в пределах, при которых осуществляется нормальная эксплуатация объектов и отсутствуют недопустимые перемещения (садки, крены, трещины, расстройство соединений и т. д.).
• осадки – деформации, происходящие в результате уплотнения грунта под воздействием внешних нагрузок и в отдельных случаях собственного веса грунта, не сопровождающиеся коренными изменениями его структуры;
• просадки – деформации, происходящие в результате уплотнения и, как правило, коренного изменения структуры грунта под воздействием как внешних нагрузок и собственного веса грунта, так и дополнительно с ним действующих факторов, таких, как например, замачивание просадочного грунта, оттаивание ледовых прослоек в замершем грунте ит. п.;
• набухание и усадки – деформации, связанные с изменением объема некоторых видов глинистых грунтов при изменении их влажности, температуры (морозное пучение) или воздействий химических веществ;
• оседания – деформации земной поверхности, вызываемые разработкой полезных ископаемых, изменением гидрогеологических условий и т. п.
Деформации основания в зависимости от причин возникновения подразделяются на два основных вида.
Наиболее опасными для зданий и сооружений являются неравномерные деформации основания.
• изменение снижаемости обычных грунтов I типа по просадочности из-за неоднородности, выклинивания и непараллельности залегания отдельных слоев, наличия линз, прослоек и других включений, неравномерного уплотнения грунтов, в том числе искусственных подушек, и т. д.;
• особенность деформирования основания как сплошной среды, которая проявляется, например, в том, что осадки основания происходят не только в пределах площадки загружения, но и за ее пределами;
• неравномерное увлажнение грунтов, в том числе просадочных, набухающих и засоленных в пределах деформируемой зоны основания;
• различие величин нагрузок на отдельные фундаменты, их размеров в плане и глубины заложения;
• неравномерное распределение нагрузок на территории в непосредственной близости от сооружения;
• нарушения правил производства строительных работ, приводящие к ухудшению свойств грунтов, ошибки, допущенные при инженерно-геологических изысканиях и проектировании оснований и фундаментов, также нарушение предусмотренных проектом условий эксплуатации здания и сооружения.
• замачивание или существенное повышение влажности грунтов на площадках II типа по просадочности;
• подземные горные выработки;
• изменение температурно-влажностного режима некоторых видов грунтов (например, набухающих), изменение гидрогеологических условий площадки;
• влияние динамических воздействий (например, от проходящего по рядом расположенной дороге тяжелого транспорта).
Таким образом, среди перечисленных причин неравномерных деформаций основания, которые необходимо учитывать, имеются не только инженерно-геологические и гидрогеологические факторы, но также конструктивные и технологические особенности строящихся зданий и сооружений, способы производства работ по устройству оснований и фундаментов, особенности эксплуатации зданий и сооружений.
Исходя из изложенного, очень важно, чтобы инженерно-геологические изыскания и расчеты строительной части (фундаменты, стены и т. д.) были выполнены специалистами, имеющими профессиональную подготовку, ведь те большие средства, которые вкладываются в капитальное строительство, могут быть потеряны, если здание или сооружение начнет деформироваться (трещины, осадки и др.) из-за некачественно проведенных изысканий и расчетов (или их отсутствия).
Особенно это касается строительства коттеджей ввиду их большой стоимости.
Проектные решения фундаментов
Мероприятия, направленные на снижение влияния деформаций оснований, можно квалифицировать следующим образом – проектные решения фундаментов; специальная подготовка и уплотнение грунтов основания; предохранение грунтов от изменения строительных свойств, а также конструктивные и строительные.
• мероприятий по уменьшению возможных деформаций основания либо увеличению его несущей способности;
• конструктивных мероприятий, уменьшающих чувствительность зданий и сооружений к повышенным деформациям оснований;
• строительных мероприятий, снижающих влияние деформаций основания на здание или сооружение.
Специальная подготовка основания
Специальная подготовка основания применяется для изменения физико-механических свойств грунтов природного залегания или замены грунтов с неудовлетворительными строительными свойствами на грунты с лучшими прочностными и деформационными характеристиками.
• уплотнением части или всего грунта основания с неудовлетворительными строительными свойствами;
• полной или частичной (в плане и по глубине) заменой грунтов основания с неудовлетворительными строительными свойствами путем устройства подушки из песка, гравия, щебня или других аналогичных грунтов;
• устройством насыпей, служащих распределительными подушками под фундаментами зданий и сооружений;
• искусственным закреплением грунтов химическим, электрохимическим, термическим и другими способами.
Уплотнение грунтов основания
• трамбованием тяжелыми трамбовками для ликвидации просадочных свойств в верхней зоне просадочной толщи или дополнительного уплотнения недостаточно плотных, например, насыпных грунтов (поверхностное уплотнение);
• грунтовыми сваями, применяемыми преимущественно для ликвидации просадочных свойств грунтов на большую глубину (глубинное уплотнение до 15 м);
• предварительным замачиванием грунтов основания, применяемым преимущественно для уплотнения просадочных грунтов и ликвидации просадочных или набухающих свойств грунтов;
• постоянным или временным водопонижением;
• поверхностным уплотнением песчаных грунтов с использованием вибрационных машин, виброкатков и др.
Способы предохранения грунтов, связанные с изменением их свойств
• водозащитные мероприятия, обеспечиваемые соответствующей компоновкой генеральных планов, планировкой территории, устройством отмосток вокруг зданий и сооружений, размещением на безопасных расстояниях водоводов и емкостей для воды, не допускающих утечки, устройством в основании зданий и сооружений маловодопроницаемых экранов из уплотненного грунта, организацией контроля за утечкой воды и других жидкостей и т. п.;
• мероприятия, направленные на сохранение природной структуры и состояния грунтов основания под влиянием атмосферных воздействий и грунтовых вод, динамических воздействий от работы землеройных и транспортных машин и т. д.;
• мероприятия, исключающие возможность изменения (против принятых в проекте) нагрузок на фундаменты вследствие односторонней пригрузки или обнажения фундаментов, перегрузки основания, а также бровок откосов отвалами грунта, строительными материалами, конструкциями и изделиями и т. п.