Для адаптации устройства с усилителем мощности в быту требуется аккуратно припаять проводники к контактной площадке, на конце которых устанавливают геркон или включатель (кнопку) с нормально замкнутыми контактами. Проводники могут быть выполнены из гибкого медного многожильного провода МГТФ-0,6 или аналогичного.
Длина проводников (чтобы не было ложных срабатываний от наводок напряжения) не должна превышать 0,5 м.
Практика озвучивания открывания двери с помощью «игрушечных» звуков
Допустим, геркон на размыкание установлены на косяке двери, а в само подвижное полотно «вживлен» магнит напротив геркона. Тогда при закрытой двери контакты геркона разомкнуты и генератор «му» молчит.
При открывании двери магнит перестает воздействовать на геркон, в нормальном состоянии контакты которого замыкаются, устройство срабытывает и излучает звук «му» (или иной, если применяется другая звуковая игрушка).
Далее, даже если дверь будет открыта продолжительное время, генератор молчит (такова особенность игрушки); новый звук появится при следующем замыкании контактов (или открывании двери после ее закрытия).
В принципе, по той же логике можно переделывать или дообрабатывать под свои задачи практически любые электронные игрушки.
Глава 3
Безопасная доработка промышленных электронных устройств
3.1. Что можно сделать из старого светодиодного светильника
Заполнившие прилавки магазинов электронные игрушки и простейшие бытовые приборы– помощники (автоматические подсветки, миниатюрные светильники, индикаторы задымленности, индикаторы критического насыщения природного газа в воздухе и многие подобные им) привлекают покупателей своей низкой ценой и эстетичным внешним исполнением, позволяющим компактно встраивать их практически в любой интерьер. Ниже рассмотрим некоторые из простых промышленных приборов– миниатюрные светильники. Простые светильники предназначены для местной (локальной) подсветки небольшой территории, которая осуществляется путем нажатия на кнопку (верхнюю часть корпуса светильника) рукой человека. Кнопка одновременно является и матовым пластмассовым «окном», через которое из недр прибора проникает свет. При следующем нажатии на кнопку свет погаснет.
Источником света служит электрическая лампа накаливания, рассчитанная на напряжение 3…6 В (разные варианты светильников). При выключенной лампе накаливания электрическая цепь разомкнута и от источника питания ток не потребляется.
Вариант светильника с двумя последовательно включенными лампами накаливания 3 В'0,03 5 А дает больше света, хотя встречаются аналогичные примеры, где установлена одна лампа накаливания на напряжение 6,3 В. Нажатие на клавишу производится под углом – сверху в низ. На оборотной (тыльной) стороне прибора есть отсек для батарей питания (4 элемента типа АА дают напряжение 6 В) и места для крепления к стене (для эксплуатации в вертикальном положении).
Есть светильники, аналогичные по принципу действия, но включение света производится прямым нажатием на матовую панель. Питание– два элемента АА (соответственно 3 В). Световой индикатор– лампа накаливания 5 В'0,065 А.
Встречаются минисветильники с электронными часами-будильником с питанием для осветительной части 4,5 В и отдельным питанием 3 В (только на элементах ААА) цифровой схемы часов. Принцип действия тот же.
Остальные различия заключаются в особенностях исполнения и не принципиальны.
Эффективно используют такие светильники практически везде: в коридоре и жилых комнатах, устанавливая их чуть выше плинтуса и, таким образом, включая свет ногой (объединяют несколько светильников в параллельную электрическую цепь, и получают оригинальную световую цепочку из нескольких точек мягкого света), на стене на уровне пояса или головы человека, при входе в квартиру для подсветки между дверного пространства (если две двери), для подсветки основных приборов включения света и в аналогичных случаях. Спектр их возможной установки для обеспечения комфорта в быту практически не ограничен.
Только несколько недостатков (замеченных автором) упрощают их применение и бросают легкую тень на все, казалось бы, положительные их качества:
– необходимость в автономном питании;
– необходимость в «ручном» выключении света.
Оба эти недостатка легко исправить, собрав простую электронную схему узла задержки выключения и отрегулировав ее на заданный интервал времени. Такое усовершенствование автоматизирует использование рассматриваемых светильников, привнесет в быт радиолюбителя комфорт и удовлетворение. Усовершенствование под силу произвести практически любому человеку, знакомому с законом Ома, цифровыми микросхемами и паяльником.
Необходимость в автономном питании от батарей отпадает, если в качестве источника питания применить промышленно изготовленные сетевые адаптеры с возможностью регулировки выходного постоянного напряжения 3…12 В (например, TY-1002, ХМ-308 и аналогичные).
Как правило, на таких простейших адаптерах установлены переключатели режима выходного напряжения, а само выходное напряжение не стабилизировано. Мощность данных адаптером невысока – полезный ток в нагрузку реально не превышает 70… 100 мА. На практике эффект от таких «китайских игрушек» – адаптеров питания невелик – они даже не способны к нормальному питанию аудиоплеера (не смотря на то, какие сказки рассказывают покупателям «эрудированные» продавцы). Китай и есть Китай.
Однако, для рассматриваемого случая такие источники питания вполне подходят и работают успешно.
Вместо «китайских» можно применить отечественные адаптеры (качественнее и дороже) если такие завалялись в запасах радиолюбителя. Подойдет источник питания (ИП) от калькуляторов (например, «Электроника БП-20-0,5»), блок питания для радиоприемников (ПУ-1М) – в последнем случае необходима доработка с тем, чтобы выходное напряжение соответствовало 3 В или 6 В в зависимости от применяемого светильника.
Можно изготовить источник питания самостоятельно, но это усложненный и неоправданный путь для описываемого усовершенствования. Проще применить любой промышленный адаптер с выходным напряжением 3.. 6 В.
Бестрансформаторный узел питания в данном случае нежелателен, так как сложный импульсный источник для подобных самоделок изготавливать неэффективно и неоправданно, а простой бестрансформаторный источник, как правило, содержит во входном каскаде схемы балластные конденсаторы, вследствие чего в моменты включения и выключения нагрузки происходят скачки напряжения – для электронного узла они не страшны, а вот лампы накаливания с таким источником питания чаще выходят из строя.
Рассмотрим практический вариант электронной начинки для усовершенствования светильников. Смысл доработки в том, чтобы после «ручного» включения света он автоматически выключался по прошествии определенного времени.
Например, для узла локального освещения антресоли (как и для большинства вариантов с использованием миниатюрных светильников в быту) достаточно задержки выключения света 3…10 мин.
Для обеспечения кратковременного характера работы электронного узла после подачи на него питания с автоматическим отключением по прошествии заданного временного интервала удобно использовать микросхемы К561 серии.
Кроме простоты схемы, она имеет отличие в виде управляющего нагрузкой мощного полевого транзистора. Когда требуется управлять устройствами с током нагрузки 10.. 50 мА, поможет простая схема задержки выключения, представленная на рис. 3.3.
Подключение светильника производят так, чтобы электронный узел (микросхема K561TЛ1) была подключена к источнику питания постоянно.
При первом включении питания оксидный конденсатор С1 (представляющий в первый момент времени малое сопротивление электрическому току) начинает заряжаться через резистор R2 от источника питания. На входе элемента DD1.1 микросхемы K561TЛ1 высокий логический уровень.
Поскольку элементы микросхемы включены как инверторы, то на выходе элемента DD1.2 также высокий уровень напряжения. Полевой транзистор VT1 открыт, и напряжение поступает на лампу накаливания ELI– штатную лампу светильника.
Рис. 3.3. Простая схема задержки выключения нагрузки
По мере зарядки оксидного конденсатора С1 на выводах
1 и 2 элемента DD1.1 напряжение постепенно уменьшается (относительно общего провода). Достигнув порога переключения логического элемента с передаточной характеристикой триггера Шмита (таковы все однотипные элементы микросхемы K561TЛ1), на выходе DD1.1 напряжение изменяется на противоположное – то есть на высокий логический уровень. После инвертирования элементом DD1.2 на выводе 4 последнего присутствует низкий уровень. Транзистор закрыт, лампа ELI обесточена.
Таким образом, при первом включении (при разомкнутых контактах штатной кнопки SA1) произойдет самопроизвольное включение освещения и прекратиться автоматически по мере заряда оксидного конденсатора С1.
При изначально замкнутых контактах SA1 устройство готово к включению света и началу отсчета времени задержки включения, которые произойдут, если разомкнуть SA1, ручным нажатием на кнопку.
Для того, чтобы снова активировать узел (после того как лампа погасла), замыкают контакты штатной кнопки SA1 до включения света (как правило, два нажатия), специально разряжая конденсатор и запуская цикл его зарядки сначала. Устройство начинает свой цикл отсчета времени каждый раз сначала (после каждой новой разрядки оксидного конденсатора С1).
О деталях
При указанных на схеме значениях элементов С1 и R2 время задержки выключения составит 8 мин (при указанном на схеме сопротивлении резистора R2) и около 90 мин при сопротивлении R2– 4,7 Мом, а емкости С1 3300 мкФ.
Оксидный конденсатор С1 применяют с насколько возможно малым током утечки, например К53-18.
Если необходима регулировка выдержки времени – постоянный резистор R2 заменяют переменным с сопротивлением 4,7… 10 МОм. Если требуется выдержка времени, рассчитанная на единицы и десятки минут, применять оксидный конденсатор большой емкости нецелесообразно, достаточно емкости в 47.. 200 мкФ.
При большой выдержке времени применяют высокоемкостные оксидные конденсаторы с малым током утечки, например, К53-1, К53-18, К50-35 и аналогичные с емкостью до 5000 мкФ.
Постоянные резисторы типа MЛT-0,25 или другие подходящие. Транзистор VT1 выполняет роль коммутатора тока. Оксидный конденсатор С2 сглаживает пульсации напряжения от нестабилизированного источника питания– адаптера.
В этой схеме он необходим.
Электронная схема узла, представленная на рис. 3.3 может использоваться в других соответствующих случаях в зависимости от характера нагрузки.
Выходной ток одного элемента микросхемы K561TЛ1 (в зависимости от напряжения источника питания 5… 15 В) пропорционально изменяется от 1,5 до 7 мА.
Это не достаточно для обеспечения нормального питания даже обычного светодиода, тем более значительной для такого случая нагрузки в виде маломощной лампы накаливания. Как один из вариантов усиления тока в нагрузке еще два свободных элемента микросхемы K561TЛ1 соединяют параллельно элементу DD1.2 – теперь ток нагрузки может достигать 12 мА.
Однако и такой ток для большинства узлов нагрузки недопустимо мал.
Например, слаботочные электромеханические реле не смогут работать с таким узлом. Для этого в качестве усилительного элемента применяют транзисторы соответствующей мощности. Причем, если нужен большой коэффициент усиления по току (более 1000) применяют пару транзисторов одной проводимости включенных по схеме Дарлингтона (составной транзистор).
Как правило, коэффициент усиления по току пары транзисторов в схеме Дарлингтона равен произведению коэффициента усиления h21e их обоих. Вместо КП540А применяют КП922А1 – КП922Б1, КП743А – КП743В. Из зарубежных: IRF540, BUZ 11, IRF511, IRF640, IRF720. Для питания нагрузки малой и средней мощности (с током до 1 А) применяют КП501, КП7138, КП707, КП7131, КП504 с любым буквенным индексом. Если требуется очень большой ток в нагрузке, в качестве VT1 без изменения схемы применяют IRG4PC50F с мощностью до 200 Вт.
Устройство не требует налаживания, кроме установки временного интервала задержки, изменяемого (как описано выше) параметрами RC-цепи.
Эта схема имеет и универсальный характер. Предположим, необходимо отсрочить включение какого-либо электронного узла не несколько минут после подачи на устройство питания.
Часто такой вопрос приходится решать при конструировании устройств охранной сигнализации. Чтобы выйти из помещения человеку, и закрыть за собой двери, требуется некоторое время, когда сигнализация еще не должна реагировать на разорванный шлейф охраны, а по прошествии автоматически заданного времени самостоятельно включаться в режим сканирования своих шлейфов (соответствующих датчиков).
Для этого достаточно поменять местами (с соблюдением полярности С1) элементы R2 и С1. Кнопка SA1 и резистор R1 включаются также параллельно времязадающему конденсатору С1. При ненадобности эту цепь из схемы исключают. Теперь, при включении питания, нагрузка будет обесточена до тех пор, пока не зарядится С1. Для достижения обратного эффекта (задержки включения в базовой схеме рис. 3.3) также допустимо включить в разрыв DD1.1 и DD1.2 еще один инвертор или, при использовании в схеме слаботочного электромеханического реле, подключать устройство нагрузки к контактам реле на размыкание.
Напряжение питания электрической схемы в диапазоне 4.5… 15 В, однако в нашем случае оно завязано с типом применяемой лампы накаливания и находится в пределах 4.5…6 В. Как показала практика, при повышенном относительно номинального для лампы накаливания напряжении 5 В (при штатном питании от батарей, например 3 В) светильник работает надежно– как правило, применяемые лампы рассчитаны на напряжение 5…6 В. Ток потребления узла при выключенной лампе накаливания не превышает 2 мА.
Узел можно расширить, дополнив его звуковым эффектом – при включении света будет активирован звуковой капсюль со встроенным генератором (показан на схеме пунктиром). Звуковой капсюль НА1 со встроенным генератором– любой подходящий, например, FMQ-2015B, 1212FXP.
Элементы узла закрепляются на монтажной плате и помещаются внутри корпуса светильника.
3.2. Увеличение зоны действия пульта дистанционного управления
Пульты дистанционного управления (ПДУ) встречаются в комплекте практически с любой современной бытовой и электронной техникой. Кондиционеры, видеокамеры, музыкальные центры и домашние кинотеатры, СВЧ-печи – таков далеко не полный набор примеров.
Не акцентируя внимание на принципе действия и электронной начинке ПДУ (как правило, все они построены по единому принципу) остановимся подробнее на дальности их действия. Невидимые человеческим глазом ПК-лучи, излучаемые передатчиком характеризуются мощностью и направленностью (рассеянием) излучения.
Луч в типовом ПДУ не сфокусирован, а излучаемый ИК-диодом имеет характер широкого пучка. В условиях ограниченного пространства с множеством препятствий (например, стены квартиры, перегородки, рельеф интерьера) ИК-луч отражается от большинства из них, ослабевает, и все равно приходит к приемнику ИК-сигналов. Наибольшее поглощение ПК-лучи имеют на открытой местности в ясную погоду.
Заметно, что с ухудшением (со временем службы) электрических характеристик элементов питания (потери емкости аккумуляторов и снижение тока и напряжения батареек) для эффективной работы требуется пропорционально все большее приближение ПДУ к приемнику ИК-сигналов. Это первый признак необходимости замены элементов питания. Но этот диагноз успели узнать все.
Новация состоит в том, что дальность действия обычного ПДУ с одним излучающим ПК-диодом, которая обычно не превышает на открытой местности 5…6 м. (нефокусирован-ный поток), а в условиях препятствий интерьера 10… 12 м можно повысить в 1,5.. 2 раза установив последовательно со штатным, аналогичный ИК-диод. При этом включать дополнительный ПК– излучающий диод надо в прямом направлении и устанавливать рядом с первым.
Для этого потребуется аккуратно разобрать корпус ПДУ, и в зависимости от конструктивных особенностей установки базового ИК-диода (за защитным экраном-стеклом или в открытом состоянии с выдающейся рабочей поверхностью диода вне корпуса ПДУ), просверлить отверстие под место еще одного ИК-диода.
Если аналогичного ИК-излучающего диода нет в наличии, или, как часто бывает, невозможно определить в точности тип примененного в ПДУ штатного ИК-диода для пультов с напряжением питания схемы до 6В допускается включение AЛ156A, AЛ147A, AЛ164A9, AЛ164А91) зарубежные аналоги (L-315eir,L-514cir).
У перечисленных приборов прозрачный цвет колбы, прямой ток Imax. достигает значения 100 мА, длина волны 920–940 нм, мощность излучения 8… 10 мВт.
Повышать напряжение питания электронной схемы формирователя импульсов ПДУ не нужно, равно как нет необходимости и в другом вмешательстве в штатную схему. Увеличение дальности действия ПДУ проверены с моделями Setro STV-2080MH, ПДУ минисистемы МАХ-930 производства Samsung, ПДУ видеоплеера W131W.
3.3. Фонарик на элементах солнечной батареи и методы его усовершенствования
Встречаются светильники в виде камня с элементом EL44, светильники, работающие от солнечного элемента с встроенным аккумулятором. Такой «экзотический» фонарь хорошо использовать на практике для подсветки в ночное время пальмы, стоящей рядом с окном. Получается красиво.
Встречаются и другие конструкции, отличающиеся по внешнему виду, например, предназначенные для «втыкания» (вертикального крепления) непосредственно в землю на дачном участке.
Предназначение у разного вида светильников может быть различным, емкость аккумуляторов и их тип (а также мощность солнечной батареи) отличается в зависимости от конструкции, но принцип действия у всех один. При ясной погоде с большой солнечной активностью (днем) устройство, с помощью фотоэлементов солнечной батареи преобразует солнечную энергию в электрический ток, который заряжает маломощные аккумуляторы. При наступлении темноты естественная солнечная активность снижается, зарядка аккумуляторов прекращается.
Внутренняя схема «чувствует» наступление сумерек и разрешает мерцание светового элемента, которым является светодиод оранжевого свечения. Конструктивно светодиод выполнен в трубке из матовой пластмассы так, что кажется, как будто внутри корпуса фонаря мерцает свеча.
Благодаря конструктивным особенностям корпуса, удачным эстетическим решениям, а также электронной схеме устройства, управляющей светодиодом хаотичными пачками импульсов, удалось получить эффект мерцания свечи.
Прогресс в области новых световых элементов необратим.
Лет 10 назад повсеместно в продаже имелись специальные лампы (рассчитанные под патрон Е27 и напряжение осветительной сети 220 В), которые производили аналогичный эффект мерцающей свечи благодаря инертному (неоновому) газу в колбе лампы. Сегодня такой же эффект можно получить от светодиода.
Стоимость таких фонарей-светильников невелика и колеблется от 3 до 10 Евро. В России и ближнем зарубежье подобные светильники продаются в отделах электротоваров, сувениров и гипермаркетах.
Рассмотрим электрическую схему устройства и ее основные элементы.
3.3.1. Принцип работы устройства
Электрическая схема устройства представлена на рис. 3.8.
Микросхема DA1 является конструктивно «залитой» и на печатной плате представляет собой каплю твердой композиции с тремя выводами. Функция этой микросхемы– выработка импульсов с хаотичной частотой следования и скважностью.
Рис. 3.8. Электрическая схема фонаря с мерцающим светом и автоматической подзарядкой от солнечных батарей
Как только на нее поступает питания с помощью замыкания электрической цепи включателем SB1, на выводе 3 DA1 «OUT» присутствуют хаотичные импульсы положительной полярностью амплитудой 1,5–1,6 В (при нормально заряженных аккумуляторах).
Ограничительный резистор R3 ограничивает ток через светодиод HL1, чем осуществляет энергосберегающую функцию устройства в вечернее время.
Импульсы хаотичного порядка с выхода микросхемы поступают в базу транзистора VT3, на котором реализован усилитель тока.
В свою очередь, на транзисторах VT1, VT2 собран фото-чувствительный узел (фотореле), управляющее работой усилителя тока VT2 и светодиода HL1. При ясной погоде или заметной солнечной активности пасмурный день (короче, говоря, в дневное время) солнечная батарея на элементах FBI– FB4 является генератором постоянного тока. Максимальное суммарное напряжение на ее элементах (замеренное у катода диода VD1 и общего провода) не менее 3,4 В.
Это напряжение поступает в базу транзистора VT1 (включенного вместе с VT2 по схеме Дарлингтона– с максимальным коэффициентом умножения напряжения) через делитель напряжения на резисторах RI, R4. То есть, пока светло, напряжение на солнечной батарее достаточно для открывания транзистора VT1, и, соответственно, запирания VT2. Через транзистор VT3 ток не течет, светодиод не мерцает.
Аккумуляторы GBl, GB2 соединенные последовательно, когда SB1 замкнут, заряжаются небольшим током через диод VD1, вторая функция которого– не допустить разряд аккумуляторов в темное время суток через элементы солнечной батареи.
В вечернее (темное) время суток, когда естественного освещения недостаточно для зарядки аккумуляторов, фотореле на транзисторах VT1, VT2 разрешает ток через транзистор VT3 светодиод HL1 мерцает, напоминая горение свечи. В этом случае через светодиод течет ток порядка 8 мА.
При погашенном светодиоде устройство практически не потребляет ток. Соответственно, хорошо заряженных аккумуляторов при условии свечения светодиода только в вечернее время и ночью (то есть
Однако, в дневное время аккумуляторы заряжаются, поэтому на практике время работы нового фонаря увеличивается намного и зависит (в основном) от солнечной активности в дневное время, то есть тока заряда аккумуляторов.
Как правило, фонарь устанавливают в комнате на окне, с тем, чтобы он лучше заряжался днем.
На практике, устанавливать фонарь в глубину комнаты, а тем более в темные интерьеры нельзя, так как не удастся получить желаемый уровень зарядки аккумуляторов и заявленные в руководстве (инструкции по эксплуатации) возможности «бесконечной работы, так как ресурс светодиода составляет не менее 100000 часов» не соответствуют действительности.