Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Металл Века - Григорий Ильич Николаев на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Принято считать, что первым технически чистый титан получил американский химик Хантер в 1910 году, через 120 лет после открытия элемента. Хантер с сотрудниками трудился в известной фирме ”Дженерал электрик компани”, занимаясь поиском новых тугоплавких материалов для волосков электрических ламп. В то время предполагали, что титан, если его удастся получить в чистом виде, должен плавиться при очень высокой температуре.

Вначале Хантер пытался выделить элемент из фторотитаната натрия при помощи калия в стальном цилиндре. Но лучшие образцы получаемого продукта содержали в себе только две трети титана. Остальную треть составляли примеси. Тогда ученый решил пойти по другому пути. Он попробовал восстановить металл из фторотитаната бария, но и это не дало сколько-нибудь ощущаемых результатов. После этого Хантер стал экспериментировать с оксидами титана.

По методу Муассана был получен титан, загрязненный небольшим количеством углерода, — карбид титана. Из этого соединения путем хлорирования получили четыреххлористый титан. Его очень тщательно очистили, в результате чего образовалась бесцветная, как бы кипящая от взаимодействия с воздухом жидкость. Дальше Хантер с сотрудниками использовал метод Нильсона — Петерсона, проявив максимум осторожности, чтобы не допустить воздух в реакционный сосуд.

В этот стальной реактор — так называемую ”бомбу” емкостью 1 литр — были помещены полкилограмма четыреххлористого титана и вдвое меньшее количество металлического натрия. ”Бомбу” нагрели так, что стенки ее раскалились докрасна. И тогда раздался оглушительный взрыв: между находящимися в сосуде веществами произошла мгновенная химическая реакция.

Полученный продукт представлял собой небольшое количество спекшихся металлических бусинок и порошка.

После охлаждения и промывки бусинки подвергли химическому анализу и оказалось, что удалось получить металлический титан практически без примесей. Но металл разочаровал исследователей.

Предположение о его необычной высокой тугоплавкости не подтвердилось. Основываясь, вероятно, на тугоплавкости титана, загрязненного углеродом, думали, что

чистый металл будет плавиться при температуре еще более высокой — чуть ли не при 6000 °С,

превзойдя тем самым вольфрам и другие тугоплавкие материалы.

Надежды не оправдались. Выяснилось, что чистый титан плавится уже при температуре около 1800 °С и о его применении для нитей накаливания не могло быть и речи.

Но поскольку чистый металл получен, надо исследовать его свойства. Исследовали. И убедились, что титан — очень хрупкий материал, не пригодный для механической обработки. Ковать его можно было только в нагретом состоянии, а при обычной температуре металл рассыпался на куски от незначительного удара. И титан, подобно калию, натрию, кальцию, был отнесен к разряду "бесполезных” металлов — так называемых "элементов для химиков", с которыми можно экспериментировать, но которые не годятся для практического использования.

Но вряд ли и Хантеру удалось получить действительно чистый титан. Данные анализа свидетельствовали, что примесей в титановых бусинках содержалось не более 0,1 процента. Если бы это в самом деле было так, свойства полученного металла оказались бы совершенно иными. Металл, загрязненный даже впятеро большим количеством примесей, в наши дни находит широкое практическое применение. Именно такой титан производят промышленные предприятия. Кроме того, когда начали получать действительно чистый металл, обнаружили, что его точка плавления гораздо ниже того вещества, которое исследовал Хантер.

Трудно сейчас сказать, какой же все-таки частоты был получен тогда металл, но неверное представление о титане как о металле, не пригодном для применения в технике, существовало еще долгие годы. Соединения титана стали использовать значительно раньше чистого металла, но следует подчеркнуть, что и это произошло только спустя столетие после открытия элемента.

САМАЯ ЛУЧШАЯ КРАСКА

Чистый диоксид титана — это белый порошок, который при нагревании желтеет. Когда же он остывает, к нему вновь возвращается чистый белый цвет. Диоксид титана не имеет ни запаха, ни вкуса, не растворяется в воде. Он устойчив к воздействию слабых минеральных и концентрированных органических кислот, сравнительно устойчив в щелочах. Это вещество — самое стабильное среди химических соединений, обладающих красящими свойствами.

Диоксид титана применяют в различных отраслях промышленности, но главнейший его потребитель — лакокрасочное производство. Впервые титановая белая краска была изготовлена из минерала рутила в 1870 году, однако промышленное ее производство началось только в первые десятилетия XX века. Титановые белила превосходят все другие белые краски по целому ряду свойств.

В картинных галереях особенно заметно, как тускнеют со временем полотна живописцев прошлого. Свинцовые белила, которые в старину часто добавляли к краскам, на воздухе теряют первоначальную яркость. Титановые белила помогли бы сохранить картины, но, к сожалению, художники эпохи Возрождения и других минувших времен еще не располагали такими красками.

Кроме стойкости в атмосфере, титановые белила, как и чистый диоксид титана отличаются химической стойкостью против кислот и щелочей. Мало того, они безвредны для человека, чего нельзя сказать о свинцовых белилах.

Важное свойство любого красителя — укрывистость, способность перекрывать цвет поверхности, которую окрашивают. Вполне понятно, что чем выше кроющая способность (укрывистость), тем меньше требуется краски.

По своей кроющей способности диоксид титана в несколько раз превосходит другие белила, что позволяет существенно снизить расход материалов и затраты труда. Титановые белила применяются для окраски дерева и металла, мостов, надводной и подводной частей кораблей, так как белила стойки и водонепроницаемы.

Этот краситель подчеркивает яркость насыщенных цветов и ярче оттеняет пастельные тона, а также позволяет добиться самого интенсивного белого цвета. Благодаря свойственной им нетоксичности титановые белила можно применять для окраски игрушек, на предприятиях пищевой индустрии, в больницах, ресторанах, столовых, при получении бумаги для упаковки пищевых продуктов.

При помощи диоксида титана можно добиться также высокой степени глянца. Поэтому его используют в промышленных лаках для отделки автомобилей и электроприборов. Он делает бумагу белой и непрозрачной, его употребляют при изготовлении типографских красок, отделочных красок для кож, матовых и глянцевых паст для печатания по ткани. При помощи диоксида титана придают матовый оттенок синтетическому шелку, окрашивают в белый цвет резину, линолеум, полихлорвиниловые покрытия и другие виды пластических масс. Его применяют при .производстве тугоплавких стекол, глазурей, эмалей; он входит в состав люминесцентных покрытий, фарфоровых масс, мыла, медицинских и косметических препаратов, придает белизну искусственным зубам. Благодаря тому, что коэффициент преломления световых лучей у диоксида титана гораздо выше, чем у алмаза, из крупных ее кристаллов делают искусственные драгоценные камни. Диоксид титана — очень хороший изолятор. Это его свойство используется в электротехнике и радиопромышленности. Он служит ускорителем.

Выпуск диоксида титана растет с каждым годом, причем уровень его производства гораздо выше уровня производства металлического титана.

Кроме диоксида в качестве красителя применяют и другие соединения титана. Для окраски обоев используют ярко-зеленое вещество — железосинеродистый титан. Желтые и оранжевые красители получают из некоторых титансодержащих минералов. Из отходов титанового минерала сфена приготовляют розовую краску для штукатурных работ. Оксалатотитанаты калия и аммония применяют для окраски тканей, высококачественных кож. При соединении с определенными веществами эти соли придают изделиям золотистую, желто-коричневую и черную окраску, очень прочную и не изменяющуюся под действием света.

СКРОМНЫЙ ПОМОЩНИК

Титан давно нашел применение в черной металлургии из-за своей способности образовывать устойчивые соединения с различными примесями. Благотворное влияние этого металла на чугун и сталь было замечено еще в самом начале нашего века. Для сталеплавильного производства используют не очищенный титан, а так называемый ферротитан — сплав титана с железом, загрязненный большим количеством углерода. Если же в сталь нужно ввести титан и кремний, используют сплавы титана с железом и кремнием.

Когда титан попадает в жидкую сталь, обычно содержащую кислород, азот, углерод, он прежде всего соединяется с кислородом и, поглощая его, образует диоксид титана.

Поглощение кислорода из расплавленной стали называется ее раскислением. Вначале титан применяли только для этой цели, но затем выяснилось, что добавки металла в чугун и сталь приносят много и другой пользы. Ведь титан не только раскисляет сталь, но и существенно повышает ее чистоту, освобождая от силикатов марганца и железа, которые, соединившись с титаном, всплывают на поверхность расплавленного черного металла, откуда их уже нетрудно удалить. Однако польза, которую приносит титан, не ограничивается и этим.

В процессе остывания стали первоначально образующиеся кристаллы всегда бывают гораздо чище остающейся расплавленной массы; последняя же порция затвердевающего металла содержит наибольшее количество углерода, фосфора, серы и других вредных примесей. Эти загрязнения переходят из слитка в изделия, что приводит к их преждевременному разрушению. Было время, когда сталь раскисляли небольшим количеством кремния. Железнодорожные рельсы, сделанные из такой стали, часто выходили из строя, потому что в местах наибольшего скопления примесей появлялись трещины. Когда же металл начали обрабатывать титаном, количество трещин уменьшилось во много раз, так как сера, фосфор и углерод стали равномерно распределяться по всему сечению рельса благодаря большей химической активности титана.

Эта способность титана была широко использована в годы второй мировой войны, когда потребовалось упростить обработку стали при производстве снарядов, мин и других видов вооружения. Сталь обрабатывалась намного легче, если в ней содержалось серы больше обычного. Но серу следовало распределить в стали равномерно, мельчайшими частицами. С такой задачей успешно справился титан.

Справедливости ради следует все же признать, что лучший раскислитель стали — алюминий. Именно его почти всегда используют для выплавки мелкозернистой стали, так как, во-первых, он гораздо дешевле титана, во-вторых, его требуется меньше и, в-третьих, его намного проще использовать. Но для сталей, которые имеют склонность к росту зерна, алюминий применять нельзя. Тогда и применяют титан, который не только хорошо раскисляет металл, но и очищает его, равномерно распределяет примеси в его толще, намного улучшает качество поверхности стального листа.

В сталях с промежуточной зернистостью добавкой титана предупреждается появление и мелких, и крупных зерен, а в мелкозернистых сталях, для которых с успехом используется алюминий, титан способствует образованию правильной микроструктуры.

Соединения различных элементов с азотом называются нитридами. Нитрид титана — одно из самых прочных химических соединений. Способность титана связывать азот намного выше, чем тантала, алюминия, бора, ванадия и кремния. Другие же элементы, обычно используемые в сталеварении, пр^ высоких температурах образуют с азотом неустойчивые соединения, а значит, и не могут его обезвредить. Примеси азота в стали Делают ее чересчур пористой. Но если такую сталь расплавить и добавить в нее титан, дефект устраняется и слиток получается полноценным.

Вступая в реакцию с азотом, титан не только переводит его в нерастворимое состояние, но и уменьшает общее его содержание в стали. Это объясняется тем, что кристаллы нитрида титана, поскольку они значительно легче стали, стремятся всплыть на поверхность и переходят в шлак, который легко удалить. Нитрид титана нашел и самостоятельное, очень эффективное применение.

8 мая 1986 года в газете "Известия” под заголовком ”Золо- той блеск титана” был опубликован следующий текст: ”Внешне инструмент из быстрорежущей стали с новым износостойким покрытием выглядит позолоченным. И хотя в нем нет и грамма драгоценного металла, рабочие называют его золотым. Впрочем, он заслуживает такого определения не за внешний вид...

В нашей стране на 22 специализированных инструментальных заводах Минстанкопрома организовано производство широкой номенклатуры инструмента из быстрорежущей стали с износостойким покрытием на основе нитрида титана. Такой инструмент обеспечивает повышение производительности труда на 50 процентов и более, стойкость его в три- четыре раза превышает надежность обычного инструмента, что особенно важно при эксплуатации на станках с числовым программным управлением и в гибких производственных системах. Экономический эффект от внедрения новшества в народном хозяйстве уже превысил 41 миллион рублей. Разработанная технология защищена 20 патентами, 17 авторскими свидетельствами и получила широкое признание на международном рынке — лицензии на нее закуплены США, ЧССР, НРБ и Кубой”.

Отрадный факт. Небольшие добавки титана в литую сталь повышают ее прочность, улучшают все механические свойства и упрощают ее термическую обработку. Нередко титан добавляют в сочетании с бором, что обеспечивает лучшую прокаливаемость стали и обработку на токарных станках.

Добавление титана в чугун улучшает его обрабатываемость. И не только обрабатываемость, но и стойкость против ржавления, высоких температур, повышает сопротивляемость разрушающим воздействиям трения. Когда титан вводят в расплавленный чугун, содержащий большое количество углерода, титан и углерод вступают в реакцию между собой и образуют мелкие кристаллы карбида. При затвердевании чугуна частицы карбида титана выступают в роли центров кристаллизации и благодаря этому чугун получается с мелкозернистой структурой.

Присутствие карбида титана в инструментальных сталях уменьшает их растрескивание при закалке в воде, а поглощение титаном избытка углерода предотвращает межкристаллитное разрушение нержавеющей стали.

Титан повышает также прочность и твердость нержавеющих, долговечность жаропрочных сталей, способствует улучшению их свариваемости. Карбид титана используется не только для улучшения свойств чугуна и стали, но и в качестве самостоятельного материала для так называемых твердых сплавов, абразивов, при производстве материалов для инструментов и других важных узлов и деталей.

Впервые карбид титана был получен в 1887 году при обработке титанистого чугуна соляной кислотой. Вещество оказалось очень твердым и хрупким, обладающим некоторыми металлическими свойствами — блеском, хорошей электропроводностью. По своей жаростойкости карбид титана превосходит все другие тугоплавкие карбиды: он плавится при температуре свыше 3000 °С. В наши дни карбид титана получают прокаливанием диоксида титана с сажей в специальных индукционных печах.

Карбид титана — одно из самых устойчивых веществ, выдерживающих резкие смены температур. Он широко применяется как основа для получения жаростойких сплавов, режущих инструментов для обработки вязких материалов, благодаря высокой твердости используется для шлифования.

Вместе с карбидом вольфрама и кобальтом он входит в состав так называемых метал л о керамических твердых сплавов. Режущие инструменты, изготовленные из таких материалов, позволяют во много раз повысить скорость обработки сталей. Твердосплавные инструменты значительно повышают производительность труда в металлообрабатывающей, горнорудной, угольной и других отраслях промышленности. Они позволяют также обрабатывать вязкие материалы, с которыми не в состоянии справиться обычные резцы.

Благодаря высокой твердости, жаростойкости и жаропрочности карбид титана используется для получения материала, из которого делают лопатки турбин реактивных авиационных двигателей, защитные покрытия для сопел и головных частей ракет. Эти же свойства карбида титана, а также достаточная электропроводность и низкая скорость испарения позволяют использовать его в электродах для подводной электрокислородной резки стали и в электродах термопар, предназначенных для замера температур до 200 °С.

Из сплава карбида титана с вольфрамом делают детали насосов для перекачки расплавленного натрия, стойкие при температурах более 1000 С и давлениях, превышающих 8 атмосфер.

Соединений титана — многие сотни, но практическое применение нашли далеко не все из них. В технике используется еще соединение титана с бором — борид титана. Как и карбид, он обладает очень высокой твердостью и тоже пригоден для обработки материалов. Некоторые соединения титана применяются для проведения лабораторных анализов.

Глава 3. ОСВОБОЖДЕНИЕ ИСПОЛИНА

ИОДИДНЫЙ ТИТАН

Титан, полученный из тетрахлорида с помощью натрия, по мнению голландских исследователей ван Аркеля и де Бура, непременно должен содержать много оксидов и нитридов, загрязняющих материал и тем самым изменяющих его свойства. Эти ученые пришли к выводу, что самый чистый металлический титан может быть выделен не из четыреххлористого, а из четырехиодистого титана. В 1925 году ван Аркель и де Бур разработали метод повышения чистоты металлического титана, сущность которого состоит в следующем.

Черновой металл (титан, который предстоит очистить) при температурах 150—400 °С взаимодействует с иодом. Образуется четырехиодистый титан. При обычной температуре это кристаллическое вещество, цвет у него красно-бурый, оно интенсивно поглощает влагу. При высоких же температурах это соединение переходит в пар. Пары четырехиодистого титана при температуре около 1400 °С разлагаются. Молекула четырехиодистого титана распадается на составные части: на атомы титана и иода. Атомы титана осаждаются на какой-либо раскаленной поверхности, а освобожденный иод тут же соединяется с остающимся черновым металлом и снова участвует в процессе, перенося новую порцию титана на раскаленный предмет. Реакция протекает до тех пор, пока весь черновой металл, очищенный и облагороженный, не перекочует на раскаленную поверхность.

В установке, предложенной голландскими исследователями, титан осаждался на раскаленной вольфрамовой нити, медленно 26 и неуклонно обволакивая ее. Этот процесс осуществляли в стеклянной камере, из которой предварительно выкачивали воздух. Впоследствии метод ван Аркеля и де Бура усовершенствовали другие исследователи. В частности, вольфрамовую нить заменили титановой (чтобы не нарушать однородности получаемого металла), определили наиболее подходящие температурные режимы, улучшили аппаратурное оформление процесса. Но сущность способа осталась прежней.

Очистка чернового титана иодидным методом основана на том, что не все примеси, находящиеся в обычном металле, взаимодействуют с иодом и, следовательно, не все попадают на раскаленную нить. Элементы, которые вступают с иодом в реакцию, образуют неустойчивые соединения, не выдерживающие высоких температур, и тоже почти не попадают в иодидный титан. Полученный таким образом металл считается чистейшим.

Иодидный метод применяется и для очистки циркония, хрома, ниобия, тантала, ванадия, некоторых других элементов. Недостаток способа — малая производительность и высокая стоимость очищенного металла. Да, иодидный титан дороже обычного технического титана почти в двадцать раз! И все же наряду с существующими способами промышленного получения титана используется и иодидный метод.

Этим методом получают сверхчистый титан для нужд электротехники, вакуумной техники и для специальных областей применения. Яркие, внешне похожие на никель кристаллы иодидного титана используют для лабораторных исследований. Именно таким — серебристыми, сверкающими на свету кристаллами — и предстает перед человеком химический элемент титан.

ТИТАН В РЯДУ ЭЛЕМЕНТОВ

серебристо-серого цвета металлы, имеющие одинаковую шестигранную кристаллическую решетку и обладающие очень похожими свойствами.

Цирконий был открыт двумя годами раньше титана тем же Клапротом, а гафний — один из самь*х молодых элементов. Его существование впервые обнаружили в 1923 году.

Название новому элементу было дано от латинского корня старинного названия столицы Скандинавии — Гафн (havn) — теперешнего города Копенгагена.

Цирконий вдвое тяжелее титана, а гафний — почти втрое. Плавятся "родственники” титана при более высокой температуре, чем глава под- группы. Все три металла, поглощая кислород, становятся хрупкими, с азотом они образуют очень тугоплавкие соединения. Титан, цирконий, гафний охотно реагируют с углеродом, серой, галогенами.

Атом титана состоит из положительно заряженного ядра, вокруг которого вращаются 22 электрона, образуя четырехслойную оболочку. Величина заряда ядра соответственно составляет 22 элементарные единицы положительного электричества, то есть 22 протона, а количество нейтронов в ядре атома колеблется от 20 до 32.

Атомную массу титана пытались определить начиная с 1813 года. Первым предпринял такие попытки шведский ученый Берцелиус. Он получил результат, очень далекий от правильной цифры, но уже через десять лет различные исследователи в своих определениях были близки к истине. В конце XIX века для атомной массы титана было официально определено значение 48,1. В 1924 году установили, что атомная масса элемента № 22 — 47,90. Именно эту цифру вы и обнаружите, взглянув на периодическую таблицу элементов, в клетке, отведенной титану. Химический символ титана — Ti

Титан, как уже говорилось, находится в четвертой группе периодической системы. А это значит, что во всех своих важнейших и наиболее распространенных соединениях он четырехвалентен, то есть каждый атом титана, вступая в химическую связь, отдает четыре своих электрона. Однако титан довольно легко образует и такие соединения, в которых он трехвалентен. Встречается и двухвалентный титан, но таких соединений немного и они в своем большинстве неустойчивы.

Элементарный титан — очень активный химический элемент, его химическая активность еще более возрастает при высоких температурах. По своей способности вступать в реакцию с другими элементами титан превосходит многие металлы и его металлические свойства, под которыми в химии понимают способность элемента легко отдавать электроны, ярко выражены.

Но исследователей гораздо больше интересовал элемент титан в качестве материала для технического использования. Можно ли найти ему применение в конструкциях машин, механизмов. Выяснилось, что можно. Больше того, свойства чистого металлического титана оказались настолько уникальными, что встал вопрос о немедленном использовании его для нужд специальной техники. Но способа промышленного получения достаточно чистого титана еще не существовало. Однако очень скоро был найден и он.

СПОСОБ КРОЛЛЯ

В тридцатые годы XX века в Люксембурге усердно трудился над разработкой способа восстановления четыреххлористого титана металлическим магнием немецкий исследователь Вильгельм Кролль. Его не очень смущало то обстоятельство, что такая попытка была сделана еще в 1892 году и закончилась неудачей. Первые опыты по восстановлению титана металлическим магнием проводили в среде углекислого газа, вследствие чего получаемый металл оказывался загрязненным большим количеством углерода. Кролль же оформлял свои опыты несколько по-другому — так, чтобы не допустить попадания в металлический титан примесей водорода, азота, углерода и кислорода — самых вредных для титана, резко ухудшающих его пластичность.

Процесс шел в атмосфере очищенного инертного газа аргона при температуре около 1000 °С. Для предотвращения взаимодействия реакционной массы со стенками внутренняя поверхность реактора была облицована молибденом. Полученный металл обрабатывали слабым раствором соляной кислоты для удаления солей магния, которыми он был пропитан. Зерна титана прессовали в прутки и плавили в специальном электровакуумном устройстве, после чего металл прокатывали в полосы миллиметровой толщины. Полосы можно было сгибать не только в горячем состоянии, но и в холодном,и они не ломались. Свои опыты на крупной лабораторной установке Кролль проводил по заданию немецкого химического концерна "Сименс”. Запатентовал же он свой метод получения титана в США в 1940 году.

После тщательного изучения всех методов получения технически чистого титана специалисты из Горного бюро США остановились на способе Кролля, как самом подходящем для промышленного освоения. Начиная с 1942 года Горное бюро проводило опыты в полупромышленном масштабе на установке в Буолдер-Сити (штат Невада). Вскоре Вильгельм Кролль стал сотрудником бюро и дальнейшие эксперименты проходили при его непосредственном участии.

В установке, предложенной Кроллем, предусматривалась загрузка слитков магния в реактор из мягкой стали. Когда магний расплавлялся, в реактор начинал поступать жидкий четыреххлористый титан. Образующийся в результате реакции хлористый магний удаляли по ходу плавки. Однако некоторое количество хлорида все же оставалось и вместе с неизрасходованным металлическим магнием загрязняло получаемый титан. Кроме того, при выщелачивании крупиц титана слабым раствором соляной кислоты в готовый продукт попадало некоторое количество водорода, что снижало качество металла. Поэтому для очистки реакционной массы получила распространение в дальнейшем отгонка примесей в вакууме при высокой температуре — так называемая вакуумная дистилляция.

Возможные области применения титана по-настоящему выяснились только в 1943 году. Одним из важнейших потребителей нового промышленного металла должна была стать реактивная авиация, и вскоре после окончания второй мировой войны исследования способа восстановления металлического титана проводились особенно интенсивно. В 1946 году Горное Бюро США на основании длительных экспериментов подтвердило возможность промышленного производства титана способом, предложенным Вильгельмом Кроллем.

18 сентября 1948 года американский химический концерн ”Дюпон де Немур” объявил о начале промышленного производства нового конструкционного материала. Выпуск титана- сырца на рынок в те годы составлял всего 45 килограммов в сутки, а каждый килограмм металла стоил более 10 долларов.

Быстрый рост производства титана обусловливался возникновением и развитием новых отраслей промышленности и техники — в первую очередь космической, которая потребовала новых конструкционных материалов, обладающих высокими качествами.

Глава 4. ЗНАКОМЬТЕСЬ - ТИТАН!

ЛЕГКАЯ СТАЛЬ

Брусок металла неяркого серебристо-серого цвета. ”Сталь” — привычно мелькает в сознании. Но стоит взять брусок в руку, как на мгновение возникает ощущение нереальности происходящего: металл оказывается удивительно, неправдоподобно легким. Это не сталь, а титан.

Любопытно наблюдать за реакцией людей, плохо знакомых с цветными металлами, когда к ним в руки попадает какой- нибудь предмет из титана. Первоначальное удивление (темный металл, а такой легкий!) сменяется недоумением, а затем убеждением, что их "разыгрывают”, и они пытаются разобраться, где же скрывается подвох: вертят предмет в руках, говорят, что внутри металла имеются пустоты и тому подобное. Но никакого подвоха нет. Титан действительно почти вдвое легче железа и всего лишь в полтора раза тяжелее алюминия. Один кубический сантиметр железа имеет массу 7,8 грамма, алюминия — 2,7, титана — 4,5 грамма. Надо признать все же, что 4,5 грамма в кубическом сантиметре не так уж и мало, особенно если учесть, что в кубическом сантиметре магния содержится 1,7 грамма, а такой металл, как литий, вдвое легче воды.

Поскольку к легким относят металлы, удельная масса которых не превышает 5 граммов на кубический сантиметр, то титан, следовательно, самый тяжелый среди легких металлов. Но и ”самый тяжелый”, он все-таки по праву принадлежит к числу легких металлов.

Однако легкость сама по себе еще ничего не решает. Легок натрий, но он плавится уже при температуре около 100 °С и как щелочной металл настолько активен, что его нельзя хранить на открытом воздухе. Хранят этот элемент в керосине. Еще легче и активнее металл литий. Он, как и остальные щелочные металлы, так непрочен, что легко режется обыкновенным ножом.

Мы привыкли к тому, что всякий конструкционный материал имеет свои достоинства и недостатки. Если алюминий,

например, почти в три раза легче стали, то он и в несколько раз менее прочен и плавится уже при 660 градусах, тогда как точка плавления стали находится выше 1500 °С. Примерно то же самое можно сказать и о магнии.

Интересно, а насколько титан уступает стали по прочности? Титан не уступает стали: он в полтора раза прочнее! Но, может быть, этот металл плавится при невысоких температурах? Титан плавится только при 1660 °С, то есть при более высокой температуре, чем железо и сталь. Так что не зря титан отливает стальным блеском: этот отлив не обманывает.

Но, кроме хорошей прочности, конструкционный материал обязательно должен иметь и такое важное качество, как пластичность. Пластичность — это способность материала изменять свою форму не разрушаясь, и именно в этой способности титану долго было отказано. Еще в сороковые годы нашего века о титане писали, что он ”хрупок и легко превращается в порошок при дроблении в ступке”. Любопытна и следующая запись: "Попытки вытянуть проволоку из титана безуспешны”.

Меньше всего хотелось бы иронизировать над автором приведенных строк, тем более что он поставил перед собой задачу ”заполнить досадный пробел в литературе, посвященной столь важному и интересному химическому элементу”.

На протяжении полутора столетий подлинных свойств металла не знал никто в мире. Но как только стали получать титан достаточной степени чистоты, сразу выяснилось, что причиной хрупкости металла являются примеси, а чистый титан очень пластичный материал. Его куют, как железо, вытягивают в проволоку, прокатывают в листы, трубы, ленты и даже в фольгу толщиной в сотые доли миллиметра.

Титан — более упругий металл, чем магний и алюминий, но менее упругий, чем сталь. Он гораздо тверже алюминия, магния, меди, железа и почти не уступает особо обработанным легированным сталям. Титан — один из немногих металлов, которые наряду с высокой прочностью и пластичностью обладают хорошей вязкостью, то есть противостоят воздействию ударов. Этот металл характеризуется еще и таким ценным свойством, как отличная выносливость.

Важный показатель любого металла — предел текучести. Чем он выше, тем лучше металл сопротивляется нагрузкам, стремящимся смять его, изменить размеры и форму изготовленной из него детали. У титана предел текучести весьма высок: в два с половиной раза выше, чем у железа, в три с лишним раза выше, чем у меди, и почти в 18 раз превосходит этот же показатель для алюминия.

Итак, титан гораздо прочнее и легче обычной углеродистой стали, получаемой из чугуна. Но в современном машиностроении широко распространены не столько углеродистые, сколько легированные стали, то есть сплавы на основе железа с добавками никеля, хрома, марганца, молибдена, вольфрама, а также других цветных и редких металлов. Легированные стали значительно прочнее углеродистых и в несколько раз прочнее технического титана. Выходит, что титан все-таки уступает стали? Нет не уступает! Титан тоже можно легировать и тогда получают сплавы, прочность которых в два- три раза больше прочности чистого титана.

Титановые сплавы — это, быть может, самые совершенные материалы, которыми располагает современная техника. Они превосходят все другие распространенные металлы по такому важному показателю, как удельная прочность. Что это такое? Не что иное, как прочность, приходящаяся на единицу массы.

Чтобы нагляднее постичь это, представим себе такую картину. На помост выходят тяжелоатлеты. Вряд ли нас удивит то, что грузный человек поднимает большую тяжесть. Ведь так оно и должно быть: те, кто полегче, обладают, как правило, меньшей силой, а от массивного, с мощными бицепсами атлета мы ждем и высокого результата. Не зря же в тяжелоатлетическом спорте введены различные весовые категории. А теперь вообразим, что после этого тяжелоатлета на помост вышел скромный, на первый взгляд ничем не примечательный спортсмен, худощавый, среднего роста и с первой попытки покорил тот же самый вес. Кто же из них сильнее? Конечно же, худощавый!

Такую же аналогию можно провести относительно титановых сплавов и специальных сталей. Титановые сплавы почти вдвое легче, а нагрузки выдерживают почти такие же.

Если бы все достоинства титана заключались только в его легкости и прочности, то и этого было бы уже достаточно для развития титановой промышленности, так как и в этом случае игра стоила свеч и нашлось бы немало отраслей, заинтересованных в таком материале. Но, помимо прочности и легкости, титан отличается еще и замечательной стойкостью против коррозии.

КОГДА ОТСТУПАЕТ ЗОЛОТО

Среди семи с лишним десятков металлов в периодической системе есть небольшая группа элементов, стоящих особняком. Это "химическая аристократия", так называемые благородные металлы. Как патриции среди плебеев, возвышаются они над остальными, неблагородными металлами. Ценность их подчеркивается еще и высокой стоимостью. "Аристократов" всего восемь. Золото, серебро, платину знают все. Остальные пять — металлы платиновой группы: иридий, рутений, родий, осмий, палладий.

Все эти металлы очень тяжелые и одновременно мягкие, хорошо проводят электричество и тепло, легко обрабатываются. Они плавятся при сравнительно высокой температуре, имеют красивый внешний вид. Но не это самое главное, не поэтому они благородные. Всем им свойственна стойкость против воздействия кислот, щелочей, солей и газов. Разнообразно применение благородных металлов. Их используют в химической и ювелирной промышленности, в электротехнике и зубоврачебном деле. Золото является валютным металлом.

Невозмутимость, инертность, спокойствие — вот что такое благородство металла. Золото почти ни с чем не вступает в реакцию и именно поэтому в земной коре оно находится в самородном состоянии. Сколько бы ни пролежало золото под открытым небом, оно не окислится, не заржавеет. Благодаря такой стойкости сохраняются почти в первозданном виде произведения искусства древности, утварь, украшения, которые находят в раскопках спустя тысячелетия.

Черные металлы — основные материалы для современной техники и им поручена самая черная и неблагодарная работа. Миллионы тонн чугуна и стали быстро уничтожает коррозия, и на смену им выплавляют новые миллионы.

С олимпийским спокойствием взирает на события в стане плебеев золото — царь металлов. И так же спокойно ведет оно себя при встрече с агрессивными реагентами — сильнейшими кислотами и щелочами. Золото не вступает в реакцию ни с одним из них, подобно тому как надменный аристократ не снисходит до разговора с первым встречным.

Да, золото не реагирует с сильнейшими разрушителями многих других металлов. Это — правило. Но из некоторых правил бывают и исключения. Так и здесь. Смесь трех частей соляной и одной части азотной кислоты легко растворяет ”царя”. Оттого смесь эта образно названа "царской водкой”. Точно такой результат будет и в том случае, если золото поместить в смесь азотной и серной кислот, в хлорную воду и еще в некоторые реагенты.

Если даже золото не стойко против этих веществ, то что же тогда говорить о неблагородных металлах! Как, наверное, беззащитно будут выглядеть они по сравнению с золотом!.. Но так думать нельзя, потому что предположение это ошибочно.

Как знатность по рождению не гарантирует талантов и высоких моральных качеств, точно так же и химическое "неблагородство” не умаляет имеющихся достоинств. И в хлорной воде, и в смеси азотной и серной кислот, и в разрушительной ”царской водке” при обычной температуре стоек титан!



Поделиться книгой:

На главную
Назад