Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Защита от хакеров корпоративных сетей - Коллектив Авторов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

В исходном тексте программы можно найти функцию gets. В результате выполнения функции gets данные входного потока пересылаются в восьмибайтовый массив символов c. Но поскольку эта функция не выполняет никаких проверок на размер обрабатываемых данных, то в результате легко получить ошибку переполнения буфера.

Подробнее с проблемой переполнения буфера можно познакомиться в главе 8.

Ошибки проверки входных данных

Причина других типичных ошибок программирования кроется в недостаточной проверке входных данных программы. В результате уязвимость программы может проявиться при передаче ей различных типов данных, как, например, это происходит с программами Web CGI.

Ошибки проверки входных данных программы могут привести к уязвимостям форматирующей строки. Уязвимость форматирующей строки проявляется при использовании в программе таких спецификаций преобразования, как, например, %i%i%i%i или %n%n%n%, что может привести к неожиданному результату. Подробно форматирующие строки рассмотрены в главе 9.

Но перед этим приведем пример программы с уязвимой форматирующей строкой. Проанализируйте следующую программу:

/* fmtstr.c */

/* Hal Flynn <mrhal@mrhal.com> */

/* December 31, 2001 */

/* fmtstr.c demonstrates a format */

/* string vulnerability. By supplying */

/* format specifiers as arguments, */

/* attackers may read or write to */

/* memory. */

#include <stdio.h>

int main(int argc, char *argv[])

{

printf(*++argv);

return (0);

}

В результате запуска программы и передачи ей на вход форматирующей строки со спецификацией преобразования %n пользователь сможет распечатать содержимое произвольных областей памяти. При распечатке соответствующей области памяти можно запустить программу с привилегиями привилегированного пользователя root.

Проверка программами Web-интерфейса, например CGI-программами, входных данных программы часто приводит к неожиданным результатам. Нередко недостаточно квалифицированно написанные CGI-программы (особенно это касается программ, написанных на языке Perl) позволяют выполнять команды, заключенные в специальные символы, что дает возможность выполнять произвольные команды системы с привилегиями Web-пользователя. В некоторых случаях это может привести к серьезным последствиям. Например, к удалению файла index.html, если HTTP-процесс является владельцем этого файла и имеет право писать в него данные. Или к предоставлению пользователю локального доступа к системе с разрешениями HTTP-процесса, если пользователь свяжет оболочку shell c произвольным портом системы.

К сходным проблемам может привести предоставленная пользователю возможность выполнять произвольные SQL-команды. Обычно CGI-программы используются для облегчения взаимодействия между внешним Web-интерфейсом и серверной частью системы управления базами данных, поддерживающих SQL, например Oracle, MySQL или Microsoft SQL Server. Пользователь, который может выполнять произвольные SQL-команды, сможет просматривать произвольные таблицы, обрабатывать данные таблиц и даже удалять их.

Посмотрите на вариант вызова функции open:

#!/usr/bin/perl open(“ls $ARGV[0] |”);

Эта функция не проверяет входные данные, переданные программе в $argv [0]. Добавив к входным данным символы точек (..), становится возможным сменить директорию и просмотреть родительский каталог, в котором может храниться важная информация. Более подробное обсуждение ошибок проверки входных данных приведено в главе 7. Соперничество программ за ресурсы

При соперничестве программ за ресурсы часто встречается программная ошибка, получившая название «состояние гонок» (Race Conditions). Проявляется состояние гонок различным образом, например в виде блокирования одним процессом разделяемой области памяти, не позволяя тем самым другому процессу изменить в ней данные, или в виде ошибок одновременной работы нескольких процессов с одним и тем же файлом.

Изучим пример использования функции mktemp, которая часто является источником подобных ошибок:

/* mtmprace.c */

/* Hal Flynn <mrhal@mrhal.com> */

/* mtmprace.c creates a file in the */

/* temporary directory that can be */

/* easily guessed, and exploited */

/* through a symbolic link attack. */

#include <stdio.h>

#include <stdlib.h>

int main()

{

char *example;

char *outfile;

char ex[] = “/tmp/exampleXXXXXX”;

example = ex;

mktemp(example);

outfile = fopen(example, “w”);

return (0);

}

В некоторых операционных системах эта программа создает файл во временной директории с предопределенным именем, состоящим из строки символов, в которую входят слово example, пять символов идентификатора процесса и одна буква латинского алфавита. Первый недостаток рассматриваемой программы заключается в том, что между проверкой существования файла и его созданием может возникнуть ошибка «состояние гонок» (Race Conditions), обусловленная соперничеством программ за ресурсы. Второй – в том, что имя файла можно сравнительно легко предсказать, поскольку идентификатор процесса можно определить, а последний символ – это одна из 26 букв английского алфавита. В результате возможна успешная для злоумышленника атака символических связей. Для того чтобы определить, позволяет ли операционная система воспользоваться указанными уязвимостями, достаточно исследовать файлы, созданные программой в директории /tmp. При помощи такой утилиты, как grep, можно исследовать большие программные файлы на наличие в них известных ошибок. Означает ли это, что будут выявлены все уязвимости? К сожалению, нет, но это позволит найти и устранить большинство часто встречающихся ошибок. Единственно надежный способ обеспечения безопасности программного обеспечения – построчный аудит многочисленными независимыми экспертами. И даже после этого уровень безопасности программного обеспечения может быть оценен только как достаточно высокий, без гарантий полной безопасности.

Технологии реинжиниринга

Технологии реинжиниринга в большинстве случаев позволяют с большой точностью определить уязвимости в программе с недоступными исходными текстами. Для реинжиниринга программ существует различный инструментарий, выбор которого определяется используемой операционной системой и предпочтениями исследователя. Но независимо от этого чаще всего применяются одни и те же способы реинжиниринга.

Обычно наиболее целесообразна методика работы «сверху вниз», предполагающая сначала рассмотрение общих случаев, а затем, по мере необходимости, их детализацию. В большинстве случаев это означает первоначальное применение средств мониторинга операционной системы для определения файлов и ресурсов, к которым обращается исследуемая программа. (Исключение из этого правила составляют сетевые программы. При исследовании сетевых программ чаще всего требуется перейти к анализу передаваемых по сети пакетов.)

В составе операционных систем Windows подобный инструментарий не поставляется, поэтому используют программные средства других производителей. До настоящего времени главным их источником для Windows был сайт SysInternals по адресу www.sysinternals.com в Интернете. Особенно интересны программы FileMon, RegMon, а в случае NT – HandleEx. Подробнее о них будет рассказано в главе 5. Все, что вам необходимо знать об этих средствах сейчас, – это то, что они позволяют контролировать выполняющуюся программу (или программы), узнать, к каким файлам обращается контролируемая исследователем программа, читает ли она их или пишет в них информацию и куда именно, какие другие файлы она ищет. Перечисленные функции реализованы в программе FileMon. Программа RegMon позволяет исследовать то же самое применительно к реестру Windows NT: к каким ключам реестра программа обращается, какие ключи читает, обновляет, ищет и т. д. HandleEx реализует те же самые функции, но несколько другим способом. Результаты ее работы упорядочены по процессам, дескрипторам файлов и тем объектам, на которые указывают дескрипторы файлов.

В качестве дополнительной услуги доступны свободно распространяемые версии почти всех инструментальных средств SysInternals, причем большинство из них с исходными текстами программ. (Помимо сайта SysInternals, на родственном сайте Winternals.com продаются аналогичные коммерческие инструментальные средства с несколько большими возможностями.) Для пользователя UNIX в этом нет ничего необычного, но для пользователя Windows это приятная неожиданность.

В состав большинства дистрибутивов UNIX включены программные средства, которые могут облегчить анализ VB-программ. В списке Rosetta Stone перечислено много программ трассировки. Список можно найти по адресу http://bhami.com/rosetta.html в Интернете. Любая программа трассировки реализует низкоуровневые функции, поэтому она может работать только под управлением ограниченного количества операционных систем. Примерами программ трассировки могут служить программы trace, strace, ktrace и truss, а также утилита strace, выполняемая в операционной системе Red Hat Linux, версия 6.2. Утилита (как и большинство ранее упомянутых программ трассировки) позволяет исследовать системные обращения (обращения к ядру операционной системы) и их параметры, что позволяет многое узнать о работе программы.

...

Приоткрывая завесу

Декомпиляторы VB

Изрядное количество программ во всем мире написано на Visual Basic (VB). Сюда относятся как зловредные программы, так и программы законопослушных программистов. VB бросает вызов всякому, кто отважится декомпилировать программу, написанную на этом языке. Последний свободно доступный декомпилятор мог работать только с программами VB3. Начиная с VB5, результат компиляции программы может быть представлен как во внутреннем коде исполняемого модуля («native code»), реализующем стандартное обращение к Windows, так и в p-code. P-код – это псевдокод, который похож на байт-код (или машинно-независимый код), генерируемый Java-компилятором. P-код распознает интерпретатор реального времени Visual Basic VBRUN300.DLL, VBRUN500.DLL или VBRUN600.DLL. Сложность заключается в том, что очень мало доступной документации, в которой описано соответствие конструкций исходного текста программы функциям VB в откомпилированной программе. Конечно, всегда можно декомпилировать интерпретатор VB DLL и восстановить соответствие, но это очень трудоемкое занятие.

Вместо этого опытные хакеры воспользовались бы средствами отладки. Конечно, они мысленно преследуют совсем другие цели. В основном их интересует, как взломать защиту от копирования. Поэтому напрямую их навыки не всегда могут пригодиться для декомпиляции программ, написанных на VB. В большинстве известных работ в этой области используется пошаговое выполнение программы для обнаружения места, где проверяется, например, серийный номер. Затем ищутся пути отключения проверки. Тем самым хакеры стремятся заблокировать выполнение нужного им участка программы. Несмотря на это, изучение способов работы хакеров позволяет начать квалифицированную работу по анализу программ, написанных на VB.

Для удобства восприятия протокол трассировки дополнен комментариями:

[elliptic@ellipse]$ echo hello > test

[elliptic@ellipse]$ strace cat test

execve(“/bin/cat”, [“cat”, “test”], [/* 21 vars */]) = 0

Утилита strace не начинает вывод до тех пор, пока не будет вызвана команда cat. Поэтому нельзя отследить процесс ее поиска командным процессором shell. К моменту начала работы утилиты strace команда cat находилась в директории /bin. Из примера трассировки видно, что входными параметрами программы execve являются местонахождение cat, ее имя, аргумент (test) и список из 21 переменной окружения.

brk(0) = 0x804b160

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, – 1, 0) = 0x40014000

open(“/etc/ld.so.preload”, O_RDONLY) = -1 ENOENT (No

such file or directory)

После вызова execve начинается обычный процесс загрузки: распределение памяти и т. д. Отметим свидетельствующий об ошибке код возврата, равный —1, при попытке открыть /etc/ld.so.preload. Ошибка поясняется диагностическим сообщением об отсутствии файла или директории. Действительно, такого файла нет. Из примера ясно, что если вместо файла указать параметры так, как это указано в примере open, execve самостоятельно найдет файл. Это было бы полезно для последующих действий привилегированного пользователя. Но для этого нужно поместить новый файл в директорию /etc, в которой запрещено что-либо делать до тех пор, пока кто-нибудь не откорректирует файл системных разрешений. В большинстве Unix-систем право записи в директорию /etc имеет только пользователь, получивший привилегированные права «root» тем или иным способом. Это еще одна причина, по которой обычные пользователи не могут писать в /etc. Если задаться целью спрятать Троянского коня, то лучшего места не найти (после того как будут получены права привилегированного пользователя root).

open(“/etc/ld.so.cache”, O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0644, st_size=12431, ...}) = 0

old_mmap(NULL, 12431, PROT_READ, MAP_PRIVATE, 4, 0) =

0x40015000

close(4) = 0

open(“/lib/libc.so.6”, O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0755, st_size=4101324, ...}) = 0

read(4,

“\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\210\212”...,

4096) = 4096

Прочитаны первые 4 Кб библиотеки libc. Libc – это стандартная библиотека коллективного доступа, в которой расположены функции, вызываемые из программ на языке C (такие как printf, scanf и т. д.).

old_mmap(NULL, 1001564, PROT_READ|PROT_EXEC, MAP_PRIVATE, 4,

0) = 0x40019000

mprotect(0x40106000, 30812, PROT_NONE) = 0

old_mmap(0x40106000, 16384, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED, 4, 0xec000) = 0x40106000

old_mmap(0x4010a000, 14428, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED| MAP_ANONYMOUS, -1, 0)

= 0x4010a000

close(4) = 0

mprotect(0x40019000, 970752, PROT_READ|PROT_WRITE) = 0

mprotect(0x40019000, 970752, PROT_READ|PROT_EXEC) = 0

munmap(0x40015000, 12431) = 0

personality(PER_LINUX) = 0

getpid() = 9271

brk(0) = 0x804b160

brk(0x804b198) = 0x804b198

brk(0x804c000) = 0x804c000

open(“/usr/share/locale/locale.alias”, O_RDONLY) = 4

fstat64(0x4, 0xbfffb79c) = -1 ENOSYS (Function not

implemented)

fstat(4, {st_mode=S_IFREG|0644, st_size=2265, ...}) = 0

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, – 1, 0) = 0x40015000

read(4, “# Locale name alias data base.\n#”..., 4096) = 2265

read(4, “”, 4096) = 0

close(4) = 0

munmap(0x40015000, 4096) = 0

Если в программе встречается вызов функции setlocale, то libc читает локализованную информацию (информацию о местной специфике) для определения формата отображения чисел, даты, времени и т. д. Напомним, что хотя стандартные разрешения не позволяют модифицировать файлы локализации непривилегированным пользователям, но их достаточно для чтения этих файлов. Добавим, что разрешения файлов обычно печатаются при выводе информации о каждом вызове fstat (например, в приведенном примере 0644). Это позволяет легко визуально отследить неверные разрешения. Если ищется файл локализации, в который предполагается записать информацию, будьте осторожны, чтобы при записи не получить ошибки переполнения буфера. Третий (косвенный) параметр в списке входных параметров – файлы локализации.

open(“/usr/share/i18n/locale.alias”, O_RDONLY) = -1 ENOENT

(No such file or directory)

open(“/usr/share/locale/en_US/LC_MESSAGES”, O_RDONLY) = 4

fstat(4, {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0

close(4) = 0

open(“/usr/share/locale/en_US/LC_MESSAGES/SYS_LC_MESSAGES”,

O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0644, st_size=44, ...}) = 0

old_mmap(NULL, 44, PROT_READ, MAP_PRIVATE, 4, 0)

= 0x40015000

close(4) = 0

open(“/usr/share/locale/en_US/LC_MONETARY”, O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0644, st_size=93, ...}) = 0

old_mmap(NULL, 93, PROT_READ, MAP_PRIVATE, 4, 0)

= 0x40016000

close(4) = 0

open(“/usr/share/locale/en_US/LC_COLLATE”, O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0644, st_size=29970, ...}) = 0

old_mmap(NULL, 29970, PROT_READ, MAP_PRIVATE, 4, 0)

= 0x4010e000

close(4) = 0

brk(0x804d000) = 0x804d000

open(“/usr/share/locale/en_US/LC_TIME”, O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0644, st_size=508, ...}) = 0

old_mmap(NULL, 508, PROT_READ, MAP_PRIVATE, 4, 0)

= 0x40017000

close(4) = 0

open(“/usr/share/locale/en_US/LC_NUMERIC”, O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0644, st_size=27, ...}) = 0

old_mmap(NULL, 27, PROT_READ, MAP_PRIVATE, 4, 0)

= 0x40018000

close(4) = 0

open(“/usr/share/locale/en_US/LC_CTYPE”, O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0644, st_size=87756, ...}) = 0

old_mmap(NULL, 87756, PROT_READ, MAP_PRIVATE, 4, 0)

= 0x40116000

close(4) = 0

fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 4),

...}) = 0

open(“test”, O_RDONLY|O_LARGEFILE) = 4

fstat(4, {st_mode=S_IFREG|0664, st_size=6, ...}) = 0

Наконец, команда cat открывает наш файл «test». Конечно, имя файла – это входные данные команды, но они безопасны для работоспособности команды из-за ее логики работы. В других случаях может потребоваться учет содержимого входного файла.

read(4, “hello\n”, 512) = 6

write(1, “hello\n”, 6) = 6

read(4, “”, 512) = 0

close(4) = 0

close(1) = 0

_exit(0) = ?

В заключение cat пытается прочитать 512 байтов из файла (читает 6) и выводит их на экран (который описан STDOUT с дескриптором файла 1). При повторной попытке прочитать очередные 512 байтов файла читается 0 байт, что свидетельствует о достижении конца файла. В результате файл закрывается, дескриптор файла освобождается и выполняется нормальный выход (признаком нормального выхода является нулевой код завершения). Для демонстрации читателю представляем очень простой пример. Логика работы команды cat очень проста и легко восстанавливается. На псевдокоде команду cat можно записать следующим образом:

int count, handle

string contents

handle = open (argv[1])

while (count = read (handle, contents, 512))

write (STDOUT, contents, count)

exit (0)

Для сравнения приведем результат выполнения утилиты truss для той же самой команды, выполненной в системе Solaris 7 на машине (x86):

execve(“/usr/bin/cat”, 0x08047E50, 0x08047E5C) argc = 2

open(“/dev/zero”, O_RDONLY) = 3

mmap(0x00000000, 4096, PROT_READ|PROT_WRITE|PROT_EXEC,

MAP_PRIVATE, 3, 0) = 0xDFBE1000

xstat(2, “/usr/bin/cat”, 0x08047BCC) = 0

sysconfig(_CONFIG_PAGESIZE) = 4096

open(“/usr/lib/libc.so.1”, O_RDONLY) = 4

fxstat(2, 4, 0x08047A0C) = 0

mmap(0x00000000, 4096, PROT_READ|PROT_EXEC, MAP_PRIVATE, 4,

0) = 0xDFBDF000

mmap(0x00000000, 598016, PROT_READ|PROT_EXEC, MAP_PRIVATE,

4, 0) = 0xDFB4C000

mmap(0xDFBD6000, 24392, PROT_READ|PROT_WRITE|PROT_EXEC,

MAP_PRIVATE|MAP_FIXED, 4, 561152) = 0xDFBD6000

mmap(0xDFBDC000, 6356, PROT_READ|PROT_WRITE|PROT_EXEC,

MAP_PRIVATE|MAP_FIXED, 3, 0) = 0xDFBDC000

close(4) = 0

open(“/usr/lib/libdl.so.1”, O_RDONLY) = 4

fxstat(2, 4, 0x08047A0C) = 0

mmap(0xDFBDF000, 4096, PROT_READ|PROT_EXEC,

MAP_PRIVATE|MAP_FIXED, 4, 0) = 0xDFBDF000

close(4) = 0

close(3) = 0

sysi86(SI86FPHW, 0xDFBDD8C0, 0x08047E0C, 0xDFBFCEA0)

= 0x00000000

fstat64(1, 0x08047D80) = 0

open64(“test”, O_RDONLY) = 3

fstat64(3, 0x08047CF0) = 0

llseek(3, 0, SEEK_CUR) = 0

mmap64(0x00000000, 6, PROT_READ, MAP_SHARED, 3, 0)

= 0xDFB4A000

read(3, “ h”, 1) = 1

memcntl(0xDFB4A000, 6, MC_ADVISE, 0x0002, 0, 0) = 0

write(1, “ h e l l o\n”, 6) = 6

llseek(3, 6, SEEK_SET) = 6

munmap(0xDFB4A000, 6) = 0

llseek(3, 0, SEEK_CUR) = 6

close(3) = 0

close(1) = 0

llseek(0, 0, SEEK_CUR) = 296569

_exit(0)

Проанализировав конец протокола, можно заметить, что в Solaris команда cat выполняется несколько по-другому. Различие проявляется в том, что в Solaris ош использует проецируемый в память файл для передачи диапазона адресов непосредственно вызову функции write. Эксперимент с большим файлом (результаты которого здесь не приведены) выявил цикл запросов между вызовами функций memorymap/write, причем за один раз обрабатывается 256 Кб.

Приведенная трассировка не раскрывает правил использования инструментария трассировки (хотя с этим и стоило бы познакомиться, но для этого потребовалось написать бы несколько глав). Скорее всего, приведенный пример демонстрирует некоторые факты, с помощью которых можно выяснить логику работы операционных систем в этой ситуации.

Для углубления своих представлений об используемом инструментарии следует рассмотреть случаи применения файлов с предсказуемыми именами в директории временной памяти /tmp, чтения информации из файлов, доступных всем для записи, различных вариантов вызова функций и т. д.

Дизассемблеры, декомпиляторы и отладчики

Подготовка к анализу загрузочного файла – тема отдельного разговора. Отладчики – это программные средства, предназначенные для контроля выполнения программ. Отладчики позволяют приостановить выполнение программы в некоторой точке, изменить значение переменных и даже, в некоторых случаях, внести изменения в машинный код программы на лету в процессе ее выполнения. К сожалению, возможность выполнения отладчиком подобных действий зависит от включения в выполнимый код отладочной информации, прежде всего таблицы соответствия символов (для большинства загрузочных программ это не выполняется). Если отладочной информации в выполнимом коде нет, то отладчик может выполнить некоторые функции, хотя большую часть работы по отладке программ приходится выполнять вручную, например при указании точек прерывания вместо имен приходится задавать адреса памяти.

Декомпилятор (или дизассемблер) – программа, которая преобразует двоичный код программ в исходный текст, написанный на одном из языков программирования, чаще всего – ассемблере. Некоторые дизассемблеры могут представить исходный текст на простом языке C. В процессе трансляции большая часть информации об исходном тексте программы теряется, например имена переменных, поэтому декомпилятор пытается восстановить исходный текст программы настолько, насколько это возможно. Если при декомпиляции таблица соответствия имен была не найдена, то зачастую декомпилятор присваивает переменным имена, составленные из плохо воспринимаемой последовательности цифр и букв.

Проблема несколько упрощается, если исследователь в состоянии разобраться с ассемблерным кодом, генерируемым декомпилятором. В этом случае декомпилятор особенно полезен. Рассмотрим пример результатов работы декомпилятора.

Среди коммерческих декомпиляторов для Windows хорошая репутация у IDA Pro компании DataRescue (пример работы декомпилятора показан на рис. 4.1). IDA Pro может декомпилировать программный код многих процессоров, включая виртуальную машину Java.

Рис. 4.1. Пример работы IDA Pro

На рисунке показан пример применения декомпилятора IDA Pro для дизассемблирования программы pbrush.exe (Paintbrush). IDA Pro нашел секцию внешних функций, используемых программой pbrush.exe. Если программа выполняется под управлением операционной системы, которая поддерживает разделяемые библиотеки (например, под управлением операционных систем Windows или UNIX), то она содержит список необходимых ей библиотек. Обычно этот список представлен в удобочитаемом виде, который легко обнаружить при экспертизе выполняемого кода. Для выполнения программ операционной системе также требуется этот список, поэтому она загружает его в память. В большинстве случаев это позволяет декомпилятору вставить список в двоичный код программы, сделав его более понятным.

Чаще всего таблица соответствия имен pbrush.exe недоступна, поэтому в большей части сгенерированного декомпилятором ассемблерного кода отсутствуют имена.

Оценочную версию IDA Pro, пригодную для первоначального знакомства с программой, можно загрузить с www.datarescue.com/idabase/ida.htm. SoftICE компании Numega – другой популярный отладчик. Дополнительные сведения о нем можно найти по адресу www.compuware.com/products/numega/drivercentral/.

Для сравнения была написана небольшая программа на языке C (классическая небольшая программа, выводящая строку «Hello World»). Для отладки использовался отладчик GNU (GDB). Код программы представлен ниже:

#include <stdio.h>

int main ()

{

printf (“Hello World\n”);

return (0);

}

Программа была скомпилирована с включением отладочной информации (был включен переключатель —g):

[elliptic@]$ gcc -g hello.c -o hello

[elliptic@ellipse]$ ./hello

Hello World

Пример протокола отладки под управлением GDB показан ниже:

[elliptic@ellipse]$ gdb hello

GNU gdb 19991004

Copyright 1998 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public

License, and you are welcome to change it and/or

distribute copies of it under certain conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB. Type “show

warranty” for details.

This GDB was configured as “i386-redhat-linux”...

(gdb) break main

Была установлена точка прерывания при входе в функцию main. При ее достижении выполнение программы было приостановлено для выполнения программистом действий по отладке программы. Контрольная точка была установлена до выдачи команды run.

Breakpoint 1 at 0x80483d3: file hello.c, line 5. (gdb) run

Команда run начинает выполнение программы под управлением отладчика.

Starting program: /home/ryan/hello

Breakpoint 1, main () at hello.c:5

5 printf (“Hello World\n”);

(gdb) disassemble

После того достижения программой точки прерывания и начала сессии отладки была выдана команда disassemble, позволяющая вывести дополнительную отладочную информацию о программе.

Dump of assembler code for function main:

0x80483d0 <main>: push %ebp

0x80483d1 <main+1>: mov %esp,%ebp

0x80483d3 <main+3>: push $0x8048440

0x80483d8 <main+8>: call 0x8048308 <printf>

0x80483dd <main+13>: add $0x4,%esp

0x80483e0 <main+16>: xor %eax,%eax

0x80483e2 <main+18>: jmp 0x80483e4 <main+20>

0x80483e4 <main+20>: leave

0x80483e5 <main+21>: ret

End of assembler dump.

Протокол отображает ассемблерный код программы «hello world», соответствующий ассемблеру x86 Linux. Исследование собственных программ в отладчике – хороший способ изучения листингов ассемблерного кода.

(gdb) s

printf (format=0x8048440 “Hello World\n”) at printf.c:30

printf.c: No such file or directory.

После задания командой s («step») режима пошагового выполнения программы в отладчике выполняется переход к вызову функции printf. GDB сообщает о невозможности дальнейшей детализации функции printf из-за отсутствия в распоряжении отладчика исходного кода функции printf.

(gdb) s

31 in printf.c

(gdb) s

Hello World

35 in printf.c

(gdb) c

Continuing.

Далее выполняется несколько шагов реализации программы внутри функции printf и программа завершается. По команде c («continue») программа будет выполнена до следующей точки прерывания или будет завершена.

Program exited normally. (gdb)

В число аналогичных программ входят программы nm и objdump пакета GNU. Программа objdump позволяет управлять объектными файлами. Она применяется для отображения символов объектного файла, его заголовка и даже дизассемблирования. Nm выполняет аналогичные действия, что и objdump, позволяя просматривать символьные ссылки на объектные файлы.

...

Инструментарий и ловушки

Инструментарий никогда не заменит знаний

Некоторые из средств дизассемблирования и отладки предлагают фантастические возможности. Но они, как и любой другой инструментарий, несовершенны. Особенно это проявляется при анализе злонамеренного кода (вирусов, червей, Троянских коней) или специально разработанных программ. Обычно авторы подобных поделок делают все возможное для затруднения их анализа и снижения эффекта от применения отладчиков, дизассемблеров и других подобных инструментальных средств. Например, вирус RST для Linux в случае обнаружения, что он работает под управлением отладчика, завершает свою работу. Этот же вирус при инфицировании исполняемых и компонуемых файлов ELF (Executable and Linkable Format – формат исполняемых и компонуемых модулей) модифицирует их заголовки таким образом, что некоторые дизассемблеры не могут дизассемблировать двоичный код вируса (обычно это достигается путем размещения кода вируса в необъявленном программном сегменте). Часто злоумышленный код шифруется или сжимается, что защищает его от экспертизы. Черви Code Red распространялись половинками своих программ, маскируясь под строки переполнения, и, таким образом, формат их двоичных данных не подходил ни под один из стандартных заголовков файла.

Поэтому при анализе двоичных данных нужно знать не только о том, какие инструментальные средства и как применять, но и как обойтись без них. Анализируя заголовок файла, возможно, потребуется определить, какие данные в файле модифицированы, как и с какой целью. Вероятно, потребуется проанализировать зашифрованные данные и процедуру их расшифровки, восстановить алгоритм работы программы и выяснить результаты ее работы.

Необходимо знать ассемблер не только в объеме, достаточном для чтения ассемблерных программ, но и для написания программ расшифровки или восстановления данных. Писать на ассемблере намного сложнее, чем читать программы, написанные на этом языке.

Из этого не следует, что инструментальные средства бесполезны. Далеко не так. Нужно только выявить часть программы, оказавшуюся не по зубам инструментальным средствам, и проанализировать ее самостоятельно, а остальную часть программы – при помощи инструментальных средств. Кроме того, иногда для лучшего понимания логики работы программы следует воспользоваться инструментарием.

Тестирование методом «черного ящика»

Термин «черный ящик» относится к любым компонентам или частям системы, чьи внутренние функции скрыты от пользователя системы. При тестировании методом «черного ящика» главное внимание уделяется изучению результатов работы системы в зависимости от ее входных данных без рассмотрения настройки и управления работой ее внутренних компонентов.

Тестирование методом «черного ящика» может быть сравнено с бинарным аудитом (binary auditing). Любой аудит так или иначе имеет дело с бинарными данными, предусматривающими одну возможность из двух. Известны различные толкования «черного ящика» в зависимости от знаний исследователя о его внутреннем строении (его прозрачности). В книге рассматриваются два типа ящиков: «черный ящик» и «ящик из обсидиана». Конечно, это мысленные, а не реальные физические объекты. Тип ящика отражает уровень знаний исследователя о происходящих в системе внутренних явлениях.

Как и следовало ожидать, для большинства хакеров сама идея «черного ящика» – проклятие. В их головах не укладывается, как можно знать о наличии привлекательной функции и не пытаться узнать, как она работает. В книге будут обсуждены подходы к изучению абсолютно «черного ящика», хотя большее внимание будет уделено изучению внутреннего устройства систем.

Чипы

Предположим, что в руки исследователя попало электронное устройство, про которое хотелось бы знать, как оно работает. В настоящее время большинство электронных устройств построено на микросхемах. Вскрыв устройство, можно обнаружить, что оно состоит из множества немаркированных микросхем. Вытащив таинственную микросхему из слота, как определить, что это за чип?

Неизвестная микросхема – удачный пример встречающегося на практике «черного ящика». Без маркировки определить предназначение чипа очень сложно.

Что можно вынести из визуального осмотра? Только то, что у чипа 16 контактов или что-то подобное этому. Исследовав монтажную плату и токопроводящие слои, довольно легко можно определить контакты питания. Их можно проверить вольтметром. Но если предположение о контактах питания окажется ошибочным, микросхема будет сожжена.

Кроме того, следует попытаться сделать выводы, основываясь на других компонентах устройства. Можно составить список компонентов, подсоединенных к чипу, и выяснить, к каким контактам они подсоединены. Например, может оказаться, что два контакта в конечном счете подключены к светодиоду LED (LED – Light-Emitting Diode – светоизлучающий диод).

Если окажется, что чип – простое устройство TTL-логики (transistor-transistor logic – транзисторно-транзисторные логические схемы), то можно определить реализуемые этим чипом простые логические функции, подавая на различные контакты напряжение, эквивалентное сигналам «истина/ложь» и одновременно измеряя выходное напряжение на других контактах. Если удастся определить, что чип относится, например, к классу схем И-НЕ (NAND (not-and) gate), то по каталогу микросхем можно определить исследуемый чип или его аналог.

С другой стороны, чип может оказаться по своей сложности сравнимым с небольшим микропроцессором или встроенной вычислительной системой. В последнем случае для определения соответствия между входными и выходными сигналами методом проб и ошибок потребуется рассмотреть слишком много комбинаций. Вполне возможно, что во встроенной системе окажутся аналоговые компоненты (например, динамик), которые сведут на нет все попытки установления закономерностей двоичной логики.

С образцами подобных устройств можно познакомиться по адресу www.parallaxinc.com/html_files/products/Basic_Stamps/module_bs2p.asp. Parallax производит семейство чипов со встроенным интерпретатором BASIC, отличающихся различными комбинациями входных и выходных интерфейсов. Главная сложность подобного устройства заключается в том, что число его состояний заведомо больше, чем можно перечислить. Даже крошечный компьютер с небольшим количеством памяти может сгенерировать бесконечно большое число неповторяющихся результатов. В качестве простого примера представьте себе компьютер на одном чипе, который складывает большие целые числа. Все, что он может сделать, – это выполнить простую программу добавления 1 к введенному числу и вывести результат. Вероятно, исследователь быстро определит, что на компьютере выполняется простая программа сложения чисел, но определить другие возможности компьютера практически невозможно. Иными словами, ничего нельзя сказать о том, является ли это устройство компьютером общего назначения или оно выполняет единственную функцию.

Сложно найти закономерность при исследовании систем методом «черного ящика». Но некоторые извлекают пользу из этого. Закономерности могут быть найдены случайно или в результате активных исследований. Прежде чем попытаться скрыть какую-либо закономерность, следует удостовериться в том, что число вариантов ее проявления достаточно велико. Конкретный пример приведен в статье по адресу www.casinoguru.com/features/0899/f_080399_tocatch.htm. В статье говорится o жуликоватом технике игорных автоматов, который заменил чип в некоторых автоматах. В результате каждый раз при вбрасывании определенной последовательности монет в автомат и дерганья за ручку автомат выплачивал джек-пот. Речь идет об основных приемах «зашивки» в программы «секретных» недокументированных сообщений!

Если из результатов исследования и доступной информации непонятно, что это за чип, то вскройте его! Вскрыть чип? Именно так. Исследователям защитного корпуса таких устройств, как смарт-карты (smart card – кредитная карточка с микропроцессором), известно много способов их изучения, включая выжигание корпуса чипа кислотой и исследование его структуры под микроскопом. Подробнее эти вопросы освещены в главе 14.

Итак, если исследователь с помощью метода «черного ящика» не может разобраться с устройством чипа, то он должен вскрыть его. Опыт посещения автором копий обсидиана (вулканического стекла) в Аризоне наглядно демонстрирует это. Если держать обсидиан на расстоянии вытянутой руки, то он выглядит как черный камень. Но при ярком свете обсидиан становится немного прозрачнее. Таким образом, он не вполне «черный ящик», а скорее в той или иной степени прозрачный «ящик из обсидиана». Другими словами, у исследователя всегда есть возможность получить информацию о решаемой задаче.

Резюме

Методологии поиска уязвимости часто используют принципы аудита безопасности систем. Изучение исходного текста программ начинается с выявления потенциально небезопасных функций, например strcpy и sprintf. Другой способ заключается в тщательной построчной экспертизе исходного текста программы в соответствии с логикой ее работы. Анализ различий – еще один способ поиска уязвимостей, при котором широко применяется утилита diff. Утилита diff, сравнивая две версии программы, позволяет найти внесенные в программу исправления. При исследовании выполнимого кода программы применяются различные средства: программы трассировки, отладчики, анализаторы, а также аудит документации.

Аудит исходного текста программы предполагает поиск потенциально опасных функций и применение методологии построчного аудита. В этой главе были рассмотрены примеры, демонстрирующие переполнение буфера при использовании функций strcpy, sprintf, strcat и gets. Были рассмотрены такие ошибки проверки входных данных, как уязвимость форматирующей строки функции printf и функции open в программе, написанной на языке Perl. Также был рассмотрен пример конкуренции программ за ресурсы и сопутствующая ей ошибка условия гонок на примере функции mktemp.

Реинжиниринг – один из наиболее часто используемых методов поиска уязвимостей в программе, исходный текст которой недоступен. Этот тип исследования проводится по методике «сверху вниз». Средства аудита в Windows можно найти на сайте sysinternals.com, а список Rosetta Stone поможет выбрать средства трассировки на различных платформах. В этой главе был рассмотрен пример трассировки команды cat сначала в среде Red Hat Linux и в Solaris 7.

Дизассемблер и отладчики позволяют исследовать выполнимый код. Дизассемблер (также известный как декомпилятор) – это программа, которая преобразует двоичный код в исходный текст программы на языке высокого уровня, но чаще всего на языке ассемблера. Отладчик – программа, которая может управлять выполнением другой программы. В этой главе был приведен пример дизассемблирования программы на платформе Windows с использованием отладчика IDA Pro, а также пример сессии отладки под управлением отладчика GDB в Linux. Также были обсуждены возможности программ objdump и nm. Программа objdump позволяет управлять объектными файлами программ, а nm — отображает содержащуюся в них символьную информацию.

«Черный ящик» – концептуальный компонент, чьи внутренние функции скрыты от пользователя. Тестирование «черного ящика» похоже на бинарный аудит. На практике к методам тестирования «черного ящика» прибегают при реинжиниринге интегральных схем. Определить предназначение чипа можно, изучив выходные сигналы чипа, а если это не поможет – вскрыв его корпус. «Черные ящики» могут различаться по степени своей прозрачности для исследователя, в зависимости от его знаний об устройстве анализируемой системы.

Конспект

Суть методологии исследования уязвимости

· Анализ и экспертиза исходного текста программы – идеальная методология поиска ее уязвимостей.

· Исследование исходного текста программ предполагает поиск подверженных ошибкам директив, построчную экспертизу исходного текста программы и изучение различий в нем.

· Изучение выполнимого кода программы осуществляется при помощи программ трассировки, отладчиков, модулей проверки текущего состояния программы (анализаторов) и аудита документации проектирования программы.

Значение экспертизы исходного текста программы

· Экспертиза исходного текста программы – необходимая часть обеспечения ее безопасности.

· Поиск подверженных ошибкам конструкций языка программирования в исходном тексте программ позволяет найти ошибки переполнения буфера, проверки входных данных и ошибки, сопутствующие конкуренции программ за ресурсы.

· Утилита grep может использоваться для повышения эффективности поиска подверженным ошибкам директив.

Технологии реинжиниринга

· На сайте www.sysinternals.com можно найти свободно распространяемые инструментальные средства аудита для Windows.

· Список Rosetta Stone (по адресу http://bhami.com/rosetta.html) позволяет найти программы трассировки для заданной платформы.

· Отладчики используются для управления выполнением исследуемой программы и поиска ошибок в ней или исследования логики ее работы.

Тестирование методом «черного ящика»

· Тестирование методом «черного ящика» позволяет обнаружить внутренние компоненты, скрытые от невооруженного взгляда исследователя.

· Вскрытие корпуса «черногоящика» – самый легкий способ для определения его внутреннего строения.

· Абсолютно «черныхящиков» нет. Одни из них – более «черные», а другие – менее.

Часто задаваемые вопросы

Приведенные вопросы и ответы авторов позволяют оценить степень уяснения читателем изложенного в главе материала и получить представление о возможности применения полученных знаний на практике. Если читатель захочет задать автору вопрос, то ему следует посетить сайт www.syngress.com/solutions, заполнить и отослать форму «Вопрос автору» («Ask the author»).

Вопрос: Какой наилучший метод исследования уязвимостей? Ответ: На этот вопрос можно дать только субъективный ответ. Наилучший метод исследования уязвимостей – это тот, который исследователю наиболее знаком, наиболее удобен и позволит быстрее провести исследование. Рекомендуется поэкспериментировать с различными методами и схемами их применения.

Вопрос: Законны ли с юридической точки зрения декомпиляция и другие методы реинжиниринга? Ответ: В Соединенных Штатах реинжиниринг скоро может стать противозаконным. В Акте авторского права цифрового тысячелетия (Dig^l Millennium Copyright Act) содержатся меры по предотвращению обхода обманным путем технологических мер управления доступом к работам, защищенным авторским правом. Исходный текст программы может быть защищен авторским правом, поэтому в этом случае реинжиниринг текста, защищенного авторским правом, противозаконен.

Вопрос: Какие инструментальные средства могут быть полезны при экспертизе сложных исходных текстов программ? Ответ: Такие инструментальные средства, как SCCS и CVS, могут облегчить экспертизу исходного текста программы. Кроме того, применение интегрированных сред разработки (IDEs – Integrated Development Environmen) может облегчить экспертизу исходного текста.

Вопрос: Где можно узнать правила разработки защищенного программного обеспечения? Ответ: Для этой цели подойдут ресурс Интернета «Часто задаваемые вопросы по разработке защищенного программного обеспечения в среде UNIX (Secure UNIX Programming FAQ)» по адресу www.whitefang.com/sup/secure-faq.html или список адресатов secprog, поддерживаемый Оливером Фридричсом (OliverFriedrichs).

Вопрос: Где можно достать утилиту strace для моей платформы? Ответ: Утилита strace – инструментальное средство Linux. Наилучший выбор для платформы Windows, обладающий аналогичными функциональными возможностями, – IDO Pro. Truss реализует ту же самую функцию на платформе Solaris. Дополнительную информацию можно найти в документации производителя.

Вопрос: Откуда можно загрузить исходные тексты приведенных в главе примеров? Ответ: Исходные тексты доступны по адресу www.syngress.com/solutions.

Глава 5 Поиск различий



Поделиться книгой:

На главную
Назад