Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Защита от хакеров корпоративных сетей - Коллектив Авторов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

· Незашифрованные данные называются открытым (незашифрованным) текстом ( plaintext), а зашифрованные – зашифрованным текстом (ciphertext).

· Криптографические системы могут быть симметричными и асимметричными. В симметричных криптосистемах используется один секретный ключ, в то время как у асимметричных – два: открытый и секретный (личный).

· Криптография с открытым ключом была изобретена Уитфилдом Диффи (Whitfield Diffie) и Мартином Хеллманом (Martin Hellman) как безопасный метод обмена секретными ключами.

Стандарты алгоритмов шифрования

· Причина использования в наши дни большого количества криптографических алгоритмов заключается в том, что каждый алгоритм хорош по-своему. Каждый из них можно охарактеризовать скоростью обработки данных, удобством использования и безопасностью. Для обоснованного выбора наиболее подходящего в конкретной ситуации алгоритма следует досконально знать их возможности.

· Стандарт шифрования данных DES (Data Encryption Standard) – наиболее известный алгоритм шифрования, используемый до сих пор на практике. Но в силу его древности следует избегать применения DES в новых разработках или для защиты особо важных данных.

· Для замены DES был разработан продвинутый стандарт шифрования AES (Advanced Encryption Standard), в котором предусмотрено использование ключей различной длины.

· Принципы работы асимметричных криптосистем отличаются от принципов работы симметричных. Если в симметричных криптосистемах применяется единственный ключ в циклах обработки сообщения, то асимметричный алгоритм основан на факторизации двух больших целых чисел (разложении двух больших целых чисел на сомножители).

· Алгоритмы RSA и Диффи-Хеллмана (Diffie-Hellman) – два наиболее широко используемых асимметричных алгоритма в настоящее время.

«Грубая сила»

· При наличии времени единственная обреченная на успех атака на симметричную криптографическую систему – это атака «грубой силы». Следует позаботиться о том, чтобы необходимое для успешной атаки время составляло годы, десятки лет или еще более длинный период времени.

· Зачастую возможностей одного компьютера для организации атаки «грубой силы» недостаточно. Но если в атаку будут волечены несколько параллельно работающих компьютеров, то шансы на ее успех резко возрастают.

· Наиболее часто атака «грубой силы» используется для вскрытия паролей.

Неверное использование алгоритмов шифрования

· Алгоритм Диффи-Хеллмана обмена ключами уязвим к атакам типа «злоумышленник посередине» (man-in-the-middle attacks).

· По возможности следует избегать использования паролей в формате кэш-величин LANMAN, потому что реализация этого протокола способствует относительно легкому вскрытию паролей.

· Следует особенно внимательно подходить к хранению ключей, поскольку в случае компрометации секретного или личного ключа компрометируются защищаемые ими данные.

Любительская криптография

· Любой недостаточно криптостойкий алгоритм шифрования (подобно алгоритму, основанному на операции XOR) может быть взломан с минимальными усилиями.

· Частотный анализ (frequency analysis) – мощное средство расшифровки сообщений разумного размера, не защищенных современными криптографическими алгоритмами.

· Иногда производители пытаются сохранить информацию в тайне при помощи простых небезопасных криптоалгоритмов (как, например, Base64) или алгоритмов сжатия.

Часто задаваемые вопросы

Вопрос: Существуют ли криптографические алгоритмы, гарантирующие 100 %-ую безопасность?

Ответ: Да, существуют. OTP (One Time Pad) – единственный алгоритм, гарантирующий абсолютную безопасность при безупречной реализации. Алгоритм OTP – это фактически шифр Вернама (Vernam), который был изобретен в компании AT&T в далеком 1917 году. Шифр Вернама (Vernam) представляет класс так называемых потоковых шифров, которые непрерывно, побитно шифруют поток данных вместо шифрования одного блока данных за другим в блочных шифрах. У алгоритма OTP два существенных недостатка. Во-первых, для его использования необходимо сгенерировать последовательность действительно случайных чисел. Во-вторых, количество случайных чисел в последовательности должно совпадать с числом бит в шифруемом сообщении. Для работы алгоритма нужно обеспечить раздельную передачу сообщения и ключа, гарантирующую сохранность ключа в тайне. Никогда один ключ не используется дважды для шифрования другого сообщения. Если будут перехвачены два сообщения, зашифрованные одним и тем же ключом, то восстановить ключ и расшифровать сообщение очень просто. Причина, по которой алгоритм OTP не получил широкого распространения, заключается в сложности построения датчика действительно случайных чисел (как уже об этом упоминалось) и сложности обеспечения безопасности распределенного ключа.

Вопрос: Как долго еще будет использоваться DES? Ответ: Скорее всего, из-за широкого распространения систем на основе DES алгоритм будет активно использоваться еще лет 5-10. Особенно в тех приложениях, где обеспечение безопасности зашифрованных данных не стоит на первом месте. Считается, что для некоторых приложений DES вполне достаточно, потому что средний хакер пока не обладает достаточными ресурсами для эффективного взлома алгоритма. Предполагается, что DES может использоваться как средство, затрудняющее прослушивание трафика, по крайней мере до широкого распространения протокола IPv6. DES гораздо быстрее алгоритма 3-DES и лучше приспособлен к условиям работы в виртуальных частных сетях (VPN) первых поколений, которые могут быть несовместимы снизу вверх с новым стандартом AES. В редких случаях, для обеспечения совместимости, в правительственных учреждениях будут устанавливаться новые криптосистемы, основанные на DES.

Вопрос: После нападений террористов 11 сентября на США особое значение приобрел вопрос использования террористами средств криптографии. Появились высказывания о предоставлении правительственным органам возможности расшифровки зашифрованных сообщений при помощи «потайной калитки», встроенной во все криптосистемы. Почему так нельзя сделать? Ответ: Наличие «потайной калитки» в криптографических алгоритмах, при помощи которой любой может расшифровать сообщение, – головная боль для всех пользователей криптографии. Вероятнее всего, ключи от «потайной калитки» будут храниться в одном месте, на которое тут же нацелятся хакеры. Как только хранилище ключей будет скомпрометировано, а рано или поздно это произойдет, все данные можно считать скомпрометированными. Кроме того, необходимо будет создать новую бюрократическую машину, управляющую доступом через «потайную калитку». Возможно, она будет создана по образу и подобию нынешней организации подключения подслушивающих устройств. Потребуется также создание групп надзора, следящих за соблюдением законности. Дополнительно потребовалось бы дооснастить все эксплуатируемые криптосистемы «потайной калиткой», возможно, в виде комбинации открытого ключа и ключа доверия. Реализация новых программ шифрования потребовала бы месяцы на разработку и годы на внедрение. В этих условиях усилия хакеров сосредоточатся на взломе криптографических алгоритмов при помощи ключа доверия, в лучшем случае поставив под вопрос безопасность криптосистем.

Вопрос: Почему оказалось легко взломать CSS, технологию шифрования, используемую для защиты DVD-дисков от неавторизованного корирования? Ответ: Защита от копирования DVD-дисков была легко взломана в основном из-за того, что Xing Technologies хранило свой ключ в открытом виде. Ранее уже говорилось о недопустимости этого. Данные, записываемые на DVD-Video-диск, шифровались алгоритмом CSS (Content Scrambling System – система скремблирования содержания) с использованием 40-битного ключа. Зная 40-битный ключ Xing Technologies, одни хакеры смогли атакой «грубой силы» быстро взломать ключи еще на 170 лицензий. Таким способом джинн был выпущен из бутылки, если можно так выразиться, потому что шифр внутреннего формата многих производителей оказался раскрытым. Располагая таким большим количеством ключей, другие хакеры смогли написать программу DeCSS, которая позволяла копировать с DVD-диска зашифрованные данные на другой носитель в расшифрованном виде. В конечном счете схема CSS была обречена на провал. Нельзя полагать, что никто не сможет прочитать ключ, если он размещен в миллионах DVD-проигрывателей.

Глава 7 Непредвиденные входные данные

В этой главе обсуждаются следующие темы:

Опасность непредвиденных входных данных

Поиск обусловненных непредвиденными входными данными уязвимостей

Методы поиска и устранения уязвимостей, обусловленных непредвиденными входными данными

Использование средств безопасности языков программирования для обработки непредвиденных данных

Инструментарий обработки непредвиденных данных

· Резюме

· Конспект

· Часто задаваемые вопросы

Введение

Интернет состоит из приложений, каждое из которых является операционной системой или программой ввода, обработки и передачи информации. Каждый день появляются новые приложения. Полезное пользователю приложение должно взаимодействовать с ним, реагируя на введенные пользователем данные. Работа всех приложений, будь это клиент интерактивной переписки в сети, Web-сайт электронной коммерции, системная утилита с интерфейсом командной строки или компьютерная игра, выполняющаяся в оперативном режиме, зависит от входных данных приложения. Программа расчета бесполезна, если она не воспринимает входные данные. Не принимающая заказы система электронной коммерции противоречит своему назначению.

Все Интернет-приложения должны быть доступны удаленным пользователям сети. Недостатки в программировании приложения из-за отсутствия опыта, ошибок или какой-либо неучтенной аномалии могут сделать его небезопасным. Сложные приложения часто разрабатываются поэтапно, небольшими модулями. При объединении модулей в единый проект возможные несогласованности в алгоритмах их работы влияют на уязвимость приложения в целом.

...

Служба компьютерной безопасности предупреждает!

Противостояние между разработчиками прикладных программ и администраторами сети всегда было, есть и будет. Очень трудно заставить разработчиков, не отвечающих за вопросы безопасности, внести изменения в их программы без документально оформленной политики безопасности, имеющей статус первоочередного требования. Большинство разработчиков не осознают, что их программы – такая же составная часть системы безопасности компании, как и средства межсетевой защиты.

Уязвимость приложения сильно увеличивается, если в нем не предусмотрена защита от неверных входных данных. Список уязвимостей можно найти в описании любого сканера CGI (cgichk, whisker и т. д.). (CGI (Common Gateway Interface) – общий шлюзовой интерфейс. Разработанный NCSA сетевой стандарт, предназначенный для создания серверных приложений HTTP.) Большинство известных сканеров CGI уязвимы к атакам, основанным на вводе входных данных в непредусмотренном формате.

Опасность непредвиденных входных данных

Для взаимодействия с пользователем приложение должно обрабатывать входные данные. Входные данные могут быть представлены в простой форме, например щелчком мышки в заданной позиции монитора, или одним введенным символом, или в форме сложно отформатированного потока данных большого размера. В любом случае пользователь, осознанно или нет, может ввести данные в непредвиденном для приложения формате. Иногда это никак не скажется на работе приложения, а иногда может изменить результаты его работы. Например, может привести к предоставлению пользователю информации, к которой он не был бы допущен в обычной ситуации, или повлиять на работу других приложений.

Три класса атак основаны на непредвиденных входных данных.

1. Переполнение буфера. Когда злоумышленник вводит больше данных, чем предусмотрено разработчиком, то приложение может неправильно обработать избыточные данные. Языки С и С++ являются примером языков программирования, написанные на которых программы никак не отреагируют на избыточные данные, если программист не предусмотрел их обработку. Языки программирования Perl и PHP автоматически справляются с избыточностью данных, увеличивая размер области для хранения переменных. (Дополнительные сведения по переполнению буфера приведены в главе 8.)

2. Вызов системных функций. Введенные в приложение данные могут использоваться для вызова системных функций взаимодействия с ресурсом, который явным образом в приложении не описан, или изменить логику их работы. Системные функции позволяют запустить другое приложение, получить доступ к файлу и т. п.

3. Изменение логики работы приложения. Иногда входные данные представляются в формате, способно изменить логику работы приложения. Например, в результате представления данных в особом формате может быть нарушена работа алгоритмов аутентификации, изменены запросы языка структурированных запросов SQL (Structured Query Language – международный стандартный язык для определения реляционных баз данных и доступа к ним), а также получен доступ туда, куда обычно злоумышленник получить доступ не может.

Следует отметить, что четкой границы между этими классами атак нет. Поэтому некоторые атаки могут одновременно принадлежать нескольким классам одновременно.

На практике встречается большое количество случаев вариантов представления входных данных, обработка которых в программе разработчиком не предусмотрена. Основанная на непредвиденных входных данных атака может быть очень простой. Например, она может заключаться во вводе в программу неприметного значения, изменяющего логику ее выполнения, например ввод имени дополнительного входного файла. Для организации подобной атаки особых знаний не требуется.

Известны более изощренные атаки, которые основаны на включении во входные данные специальных метасимволов, имеющих особый смысл для приложения или операционной системы. В ядре базы данных Microsoft Jet была выявлена уязвимость: включение в SQL-запрос вертикальных линий (I) позволяло злоумышленнику выполнить в коде VBA (Visual BasicforApplications) системные команды. Этот же механизм лежит в основе популярной службы удаленных данных RDS (Remote Data Services), которая, как доказано практикой, является широко распространенной проблемой информационного сервера Интернет IIS (Internet Information Server) Windows NT.

Поиск обусловленных непредвиденными входными данными уязвимостей

Обычно приложения обрабатывают данные все время – как никак, именно для этого компьютеры и предназначены. Когда же непредвиденные входные данные приводят к уязвимости? Вообще, это может произойти в любой момент при взаимодействии приложения с пользователем или другим (непроверенным) приложением. Но известны наиболее общие ситуации, которые рассмотрим подробнее.

Локальные приложения и утилиты

Под управлением операционной системы на компьютере выполняются различные приложения, по мере необходимости запущенные пользователем или самой системой. Многие из этих приложений взаимодействуют с пользователем, предоставляя злоумышленнику шанс ввести в программу непредусмотренные разработчиком данные. Например, злоумышленник может нажать необычную последовательность клавиш, введя тем самым большой массив данных или определив неверные величины.

Обычно такие шалости не доставляют больших хлопот. Если пользователь сделал что-то не так, то приложение аварийно завершается, и всё. Но в мире систем UNIX, включая очень похожую на UNIX BSD операционную систему Macintosh OS X, у некоторых из приложений установлены специальные разрешения suid (set user ID – установленный идентификатор пользователя) и sgid (set group ID – установленный идентификатор группы), позволяющие им выполняться с повышенными привилегиями относительно привилегий обычного пользователя. Если манипуляции с обычным приложением не принесут злоумышленнику выгоды, то взятие под свой контроль приложения с установленными suid или sgid может предоставить злоумышленнику привилегии администратора. Далее будут рассмотрены некоторые типичные способы похищения прав приложений.

Протокол HTTP и язык разметки HTML

В приложениях Интернет много ошибок, основанных на неверных предположениях о работе сети. Часть из них обусловлена дезинформацией, но большинство – ошибками программирования из-за недостаточного знания программистами принципов работы протокола передачи гипертекстовых файлов HTTP (Hypertext Transfer Protocol). (HTTP – протокол уровня приложений для распределенных информационных систем гипермедиа, позволяющий общаться системам с различной архитектурой. Используется при передаче HTML-файлов по сети страниц WWW и языка гипертекстовой разметки HTML (HyperText Markup Language). Язык HTML – стандартный язык, используемый для создания страниц WWW).

Самая большая ошибка, которую допускают программисты, – необоснованное доверие заголовкам запроса в HTTP-запросе и вера в них как в средство обеспечения безопасности. Заголовок запроса ссылки Referer в HTTP-запросе содержит адрес страницы, на которой находилась ссылка на запрашиваемый документ. Заголовок запроса Referer поддерживается клиентом в клиентских настройках. Так как он создается клиентом, то его можно легко фальсифицировать. Например, при Telnet-обращении к 80 порту (HTTP-порт) Web-сервера можно набрать следующее:

GET / HTTP/1.0

User-Agent: Spoofed-Agent/1.0

Referer: http://www.wiretrip.net/spoofed/referer/

Видно, что в заголовке указана фальсифицированная ссылка и подложный агент пользователя. (В сетях агент пользователя (user agent) – прикладной процесс OSI, представляющий пользователя или организацию, который создает, передает и обеспечивает доставку сообщений для пользователя.) Единственно, чему можно доверять из переданной пользователем информации, – это IP-адресу клиента. (Хотя и он может быть фальсифицирован. Подробнее об этом сказано в главе 12.)

Другой недостаток HTTP – зависимость от ограничений представления информации средствами HTML. Зная это, многие разработчики предлагают пользователям выбирать данные из списка (например, из трех элементов). Конечно, совсем не обязательно ограничивать пользователя списком данных, заданным разработчиком. Однажды автор наблюдал достаточно ироничную ситуацию, когда сотрудник Microsoft предлагал использовать списки как эффективный метод борьбы с непредвиденными данными пользователя. Это предлагал человек из группы разработчиков SQL Server, не входивший в группу обеспечения безопасности или разработки Web-решений. От него нельзя требовать больше, чем знание внутренней логики работы SQL-сервера.

Рассмотрим пример HTML-формы, подготовленной приложением:

<FORM ACTION=”process.cgi” METHOD=”GET”>

<SELECT NAME=”author”>

<OPTION VALUE=” Ryan Russell”>Ryan Russell

<OPTION VALUE=” Hal Flynn”> Hal Flynn

<OPTION VALUE=” Ryan Permeah”> Ryan Permeah

<OPTION VALUE=” Dan Kaminsky”> Dan Kaminsky

</SELECT>

<INPUT TYPE=”Submit”>

</FORM>

В HTML-форме описан список, составленный из имен некоторых авторов. Получив HTML-форму, клиентское приложение разрывает соединение, анализирует полученную HTML-форму и предъявляет ее пользователю. После выбора из списка автора клиентское приложение посылает отдельный запрос на Web-сервер с приведенным ниже URL (Uniform Resource Locator – унифицированный указатель информационного ресурса. Стандартизованная строка символов, указывающая местонахождение документа в сети Интернет):

process.cgi?author=Ryan Russell

Все очень просто. Но нет никаких причин, препятствующих посылке другого URL:

process.cgi?author=Rain Forest Puppy

Так обходится предполагаемое «ограничение» HTML-формы. Более того, можно ввести URL, не запрашивая HTML-форму. Для этого следует обратиться к 80 порту Web-сервера по Telnet и сделать запрос вручную. При этом совсем не обязательно обращаться к основной форме. Не следует считать, что полученные на запрос данные – это обязательно результат обработки предыдущей HTML-формы.

Одно из заблуждений, которое автор любит опровергать, – это использование фильтра данных в клиентской части. Многие включают в HTML-формы небольшие сценарии на JavaScript или VBScript, которые контролируют заполнение всех элементов формы. Некоторые предусматривают в сценариях контроль введенных данных: введенные числовые значения действительно числовые и т. д. После такого контроля приложение работает, исходя из предположения об отсутствии ошибок в данных, введенных пользователем, и, следовательно, может сразу передать их системной функции.

На самом деле клиентская часть должна сообщать о проведенных проверках введенных данных. Если читатель не знает, как можно обойти контролирующие ввод пользователя сценарии, то задумайтесь над имеющейся даже у технически непросвещенных людей возможности отключения поддержки сценариев. Например, некоторые корпоративные межсетевые экраны отфильтровывают сценарии HTML-формы. Или злоумышленник может использовать браузеры, не поддерживающие сценарии (например, Lynx).

Следует особенно отметить, что использования параметра size HTML-формы, который описывает размер входного поля, недостаточно для предотвращения переполнения буфера. Значение параметра size клиент может установить сам, если в этом есть необходимость (или если он понимает значение этого параметра).

Если бы в протоколе HTTP придумали что-нибудь в интересах безопасности, это обязательно затронуло бы файлы cookies (небольшой фрагмент данных о предыстории обращений пользователя к WWW-серверу, автоматически создаваемый сервером на машине пользователя). Похоже, что никто еще до конца не понял, что это такое и как им правильно пользоваться. Пресса объявила их самой большой угрозой персональной безопасности в Интернет. Некоторые используют их для хранения важных данных аутентификации. Плохо, что никто из них не прав.

Механизм cookies является эффективным методом передачи данных клиентам с возвратом. Является ли это нарушением безопасности? Единственные данные, возвращаемые клиентами на сервер, – это ранее переданные им данные. Существует возможность ограничить cookies так, что клиент будет только отсылать их обратно на сервер. Предназначен cookies для обеспечения сохранения информации состояния во время многочисленных запросов, поскольку HTTP – протокол без сохранения состояния, то есть каждый запрос, выполненный индивидуальным клиентом, независимый и анонимный.

Поскольку cookies – составляющая часть HTTP, любая передаваемая c их помощью информация – это текст. Обмануть cookies не так уж и сложно. Рассмотрим обращение Telnet к 80 порту Web-сервера:

GET / HTTP/1.0

User-Agent: HaveACookie/1.0

Cookie: MyCookie=SecretCookieData

Только что был отправлен файл cookie «MyCookie» вместе с хранящимися в нем данными «SecretCookieData». Другой интересный факт о cookies: они обычно хранятся в текстовом файле клиента. Поэтому при сохранении важной информации в cookie всегда есть вероятность неавторизованного доступа к ним.

Непредвиденные данные в запросах SQL

Многие приложения и системы электронной коммерции взаимодействуют с базами данных. Небольшие базы данных могут быть встроены в приложения для настройки и структурированного хранения данных, например системный реестр Windows. Короче говоря, базы данных присутствуют везде.

Язык структурированных запросов SQL (Structured Query Language) – стандартный международный язык доступа к реляционным базам данных, используемый для передачи команд системе управления базами данных и получения от нее ответов. Можно смело сказать, что большинство коммерческих реляционных серверов баз данных совместимы с языком SQL, поскольку SQL является стандартом ANSI.

А теперь самое ужасное в SQL. Считается, что для нормальной работы приложение должно иметь доступ к базе данных. Поэтому приложение должно иметь права, необходимые для получения доступа к серверу базы данных и соответствующим ресурсам. При попытках злоумышленника изменить команды, посылаемые приложением к серверу базы данных, он воспользуется установленными правами приложения. Никакой дополнительной проверки подлинности злоумышленнику не потребуется. Он даже напрямую не взаимодействует с сервером базы данных. Можно расставить столько межсетевых экранов между сервером базы данных и сервером приложений, сколько вы можете себе позволить. Но если приложение может использовать базу данных, то у злоумышленника есть возможность получить доступ к базе данных.

Естественно, что получение доступа к базе данных не означает возможности злоумышленника сделать с сервером базы данных все, что угодно, потому что приложение может иметь ограниченный доступ к ресурсам. В результате фактический доступ атакующего к серверу базы данных и его ресурсам также будет ограничен.

Одна из самых больших угроз, вызванная включением данных пользователя в запрос SQL, заключается в передаче злоумышленником дополнительных команд, выполняемых сервером. Представьте, что простенькое приложение захочет просмотреть таблицу данных пользователя. Запрос может выглядеть примерно так:

SELECT * FROM table WHERE x=$data

В этом запросе вместо переменной $data будут подставлены данные пользователя. Затем запрос будет передан системе управления базами данных. А теперь представим, что злоумышленник подготовил следующую строку данных:

1; SELECT * FROM table WHERE y=5

После подстановки в запрос данных пользователя системе управления базами данных будет передано:

SELECT * FROM table WHERE x=1; SELECT * FROM table WHERE y=5

В большинстве случаев это приведет к обработке системой управления базами данных двух отдельных запросов: ожидаемого запроса и непредвиденного дополнительного:

SELECT * FROM table WHERE y=5.

Написано «в большинстве случаев» потому, что каждая система управления базами данных обрабатывает дополнительные запросы по-разному. Одни не допускают выполнения более одного запроса за одно обращение, другие требуют специальных символов для разделения запросов, а третьим символы разделения запросов не нужны. Например, приведенная ниже часть кода является правильной (на самом деле это два запроса, отправленных одновременно) для серверов баз данных Microsoft SQL Server и Sybase SQL:

SELECT * FROM table WHERE x=1 SELECT * FROM table WHERE y=5

Обратите внимание на отсутствие символов разделения запросов между выражениями SELECT.

Важно понимать, что возвращенный результат зависит от ядра базы данных. Некоторые возвращают два набора записей, каждый из которых содержит результаты запроса SELECT. На рисунке 7.1 показан этот случай. Другие могут объединять наборы, если возвращаемые наборы записей состоят из одних и тех же колонок. А большинство приложений написаны таким образом, что возвращают результаты только первого запроса. В этом случае результат второго запроса увидеть нельзя, но это не значит, что он не был выполнен. Сервер MySQL позволяет сохранить результат запроса в файле. В состав MS SQL Server включены процедуры рассылки результатов запроса по электронной почте. И конечно, в обоих случаях не отображается результат выполнения команды DROP.

Рис. 7.1. Некоторые сервера баз данных, как, например, Microsoft SQL Server, разрешают указывать несколько команд в одном SQL-запросе

Пытаясь передать в запросе дополнительные команды, злоумышленник может указать серверу базы данных на необходимость игнорирования части запроса. Рассмотрим, например, запрос:

SELECT * FROM table WHERE x=$data AND z=4

При подстановке в запрос ранее упомянутых данных получим следующий запрос:

… WHERE x=1; SELECT * FROM table WHERE y=5 AND z=4

В результате во вложенный дополнительный второй запрос оказалось включено выражение AND z=4, которое по замыслу злоумышленника лишнее. Для его исключения из запроса следует использовать символ комментария, который в каждой системе управления базами данных свой. В сервере MS SQL включение двойного дефиса (-) говорит об игнорировании части запроса за ним, который выполняет роль символа комментария, как это показано на рис. 7.2. В MySQL символом комментария служит знак «решетки» (#). Поэтому в случае сервера MySQL подстановка злоумышленником значения

1; SELECT * FROM table WHERE y=5 #

приводит к выполнению запроса

Рис. 7.2. Использование символа комментария в Microsoft SQL Server для игнорирования части запроса

… WHERE x=1; SELECT * FROM table WHERE y=5 # AND z=4

и заставляет сервер игнорировать выражение AND z=4.

В этих примерах было известно название атакуемой таблицы, что случается нечасто. Для составления правильного SQL-запроса нужно знать имя таблицы и названия столбцов. Обычно главная проблема в том, что эта информация недоступна пользователям. Но для злоумышленника не все так плохо. Разные системы управления базами данных обеспечивают различные способы получения системной информации о таблицах базы данных. Например, обращаясь с запросом к таблице sysobjects Microsoft SQL Server (с помощью запроса Select * from sysobjects запрос), можно получить информацию о всех зарегистрированных в базе данных объектах, включая хранимые процедуры и названия таблиц.

Занимаясь хакингом SQL, хорошо бы знать возможности серверов баз данных. Из-за особенностей хакинга SQL злоумышленник может не увидеть результатов своей работы, поскольку большинство приложений не предназначены для обработки вложенных запросов. Поэтому злоумышленнику может потребоваться много времени, прежде чем он удостоверится, что получил доступ к базе данных. К счастью, здесь нет легких решений, потому что для нормальной работы большинство команд SQL требуют задания имен таблиц. Следует творчески поработать, чтобы узнать их.

Вслепую или нет, но хакинг SQL возможен. Для этого может потребоваться понимание принципов работы серверов баз данных. Следует познакомиться с хранимыми процедурами и расширениями SQL анализируемого сервера. Например, сервер Microsoft SQL поддерживает хранимую процедуру рассылки результатов запроса по электронной почте. Это может пригодиться для просмотра результатов работы вложенных запросов. Сервер MySQL может сохранять результаты запросов в файле, позволяя впоследствии восстанавливать результат. Всегда следует попытаться использовать дополнительные возможности сервера базы данных с выгодой для себя.

Аутентификация приложений

Обсуждение аутентификации всегда интересно. В каких случаях пользователю необходимо получить доступ к приложению, ведающему данными аутентификации? Каким образом осуществляется аутентификация пользователя? Для однопользовательских приложений это не такие уж и трудные вопросы, но для Web-приложений это серьезная проблема.

Для того чтобы успешно противостоять атакам «грубой силы», часто используются случайные ключи сессии и аутентификации, образующие большое ключевое пространство (общее число возможных ключей). Но в этом подходе два серьезных недостатка.

Во-первых, ключ должен быть действительно случайным. Любая предсказуемость ключа повысит шансы злоумышленника вычислить его. Ключ не следует вычислять при помощи линейной возрастающей функции. Системные функции UNIX /dev/random и /dev/urandom могут не обеспечить необходимой случайности ключей, особенно при генерации ключей большого размера. Например, слишком быстрый вызов функций /dev/random или /dev/ urandom может отразиться на «случайности» генерируемых ключей, потому что в этом случае функции обращаются к предсказуемому генератору псевдослучайных чисел.

Во-вторых, ключевое пространство должно быть достаточно большим по отношению к числу ключей, необходимых в любой момент времени. Пусть ключ имеет 1 млрд возможных значений. Страшно даже подумать об атаке «грубой силы» на ключевое пространство в 1 млрд ключей. Но популярный сайт электронной коммерции может обслуживать около 500 000 открытых сессий каждый рабочий день. В этом случае у злоумышленника хорошие шансы найти подходящий ключ в каждой серии из 1000 проверенных ключей (в среднем) и его не отпугнет последовательный перебор 2000 ключей со случайно выбранного значения.

Рассмотрим некоторые современные схемы аутентификации. Какое-то время назад организация PacketStorm (www.packetstormsecurity.org) решила перепрограммировать на языке Perl программное обеспечение своего Web-форума после нахождения уязвимости в пакете wwwthreads.

Выбранный способ аутентификации оказался очень любопытным. После регистрации пользователю передавался URL-адрес с двумя специфичными параметрами:

authkey=rfp.23462382.temp&uname=rfp

Рассматривая систему аутентификации как «черный ящик» без малейшего представления о принципах его работы, была предпринята попытка найти закономерности работы системы при изменении входных данных параметров. Первый шаг состоял в изменении значения параметра authkey: сначала имени пользователя, а затем случайного числа и дополнительной величины «temp». Целью данных манипуляций было проверить возможность аутентификации пользователя с другими случайными недействительными значениями параметра. Не получилось. Затем значение параметра uname было изменено на другое правильное имя пользователя. В результате была получена строка вида

authkey=rfp.23462382.temp&uname=fringe.

После этого удалось зарегистрироваться под именем другого пользователя («fringe»). Исходя из этого, был восстановлен фрагмент программы аутентификации на языке Perl (заметим, что без знания истинного кода форума PacketStorm):

if (-e “authkey_directory/$authkey”) {

print “Welcome $uname!”;

# do stuff as $uname

} else {

print “Error: not authenticated”;

}

Таким образом, authkey – это файл, создаваемый при входе в систему с использованием случайного числа. Приведенный фрагмент программы позволяет любому пользователю, изменившему параметр uname, получить доступ к учетной записи иного пользователя, используя известный и правильный authkey (например, свой собственный).

Основываясь на форматах параметров authkey и uname, естественно было предположить, что значение authkey относится к файловой системе. Прежде всего потому, что значение параметра authkey в формате username.999999. temp не похоже на информацию, которую хранят в базе данных. Вполне возможно, что приложение разделяло параметр authkey на три части, используя для запроса к базе данных имя пользователя и случайное число. При этом отпадала необходимость в передаче через значение параметра uname имени пользователя, а постоянное окончание «.temp» становилось бесполезным и бессмысленным. Следуя интуиции и зная, что формат представления параметра authkey похож на задание имени файла, было высказано предположение, что значение параметра authkey определяет имя файла, как в итоге и оказалось.

Конечно, PacketStorm была поставлена в известность, и ошибка была исправлена. Выбранное ими решение лаконично, но давайте рассмотрим другой вариант исправления ошибки. Пусть программа была бы исправлена следующим образом:



Поделиться книгой:

На главную
Назад