Для решения проблем аутентификации, связанных с неявными запросами, Лесли Лампорт [85] предложил использовать одноразовые пароли, генерируемые при помощи односторонней хэш-функции (см. лекцию 3). Эта идея нашла воплощение в системе одноразовых паролей S/Key One-Time Password System [136]. Система S/Key, применяя одностороннюю хэш-функцию, генерирует последовательность одноразовых паролей. Начальное значение хэш-кода вычисляется путем хэширования секретного пароля пользователя, который сцеплен с несекретным случайным числом, выработанным генератором случайных чисел. Секретный пароль должен иметь длину не менее 8 символов. Последовательность одноразовых паролей формируется в результате многократного применения секретной хэш-функции (от 500 до 1000 ). То есть первый одноразовый пароль генерируется путем применения хэш-функции к секретному паролю пользователя определенное количество раз ( N ), следующий одноразовый пароль - путем применения хэш-функции к секретному паролю пользователя только (N - 1) раз и т.д.
Субъект, получивший одноразовый пароль путем прослушивания сети, не в состоянии сгенерировать следующий пароль, так как для этого требуется просчитать хэш-функцию в обратном направлении. Это не может быть сделано без знания секретного пароля, с которого начинались итерации. Поскольку в системе S/Key секретный пароль пользователя никогда не передается по сети и не хранится ни сервером, ни клиентом, риск хищения отсутствует.
S/Key - это система "клиент-сервер". Сервер генерирует отклик после получения от клиента login-запроса. Отклик сервера содержит номер итерации и случайное число. В ответ пользователь генерирует соответствующий одноразовый пароль, используя комбинацию своего секретного пароля, номера итерации и случайного числа, и отправляет его серверу. Первый одноразовый пароль из списка итераций сохраняется на шаге инициализации.
Сервер может и сам формировать S/Key -запрос, состоящий из номера итерации и случайного числа. Тогда, используя номер итерации и случайное число вместе со своим секретным паролем, пользователь вычисляет (или преобразует) одноразовый пароль. Сервер может не формировать запрос, если пользователь сохраняет номер итерации и случайное число после каждой своей успешной попытки аутентификации. Для хранения этих значений могут использоваться портативные устройства типа смарт-карт или карманных персональных компьютеров.
Итак, пользователь передает для проверки на сервер одноразовый пароль. Сервер сначала сохраняет копию этого одноразового пароля, а затем применяет к нему хэш-функцию. Если результат не совпадает с копией одноразового пароля, полученного во время последней удачной попытки аутентификации пользователя, то запрос отвергается. Если совпадает, тогда клиентская запись в файле паролей обновляется копией полученного от пользователя одноразового пароля, которая была сохранена перед вычислением хэш-функции. Обновление пароля обеспечивает возможность проверки следующего одноразового пароля. Так как следующий одноразовый пароль получается путем вычисления хэш-функции на один раз меньше, чем для предыдущего пароля, то получить предыдущий пароль можно, применив хэш-функцию к следующему паролю на один раз больше.
После успешной аутентификации пользователь получает доступ к серверу, но при следующей попытке аутентификации он должен генерировать новый одноразовый пароль. Использование случайных чисел, создаваемых генератором случайных чисел, позволяет клиенту выполнять аутентификацию на многих серверах при помощи одного секретного пароля, при этом каждому серверу соответствует свое случайное число. Кроме того, выбирая каждый раз новое случайное число, пользователь имеет возможность безопасно использовать секретный пароль много раз.
Обратная процедура, то есть получение из предыдущего пароля следующего пароля невозможна без знания начального одноразового пароля пользователя. Таким образом, ни серверу, ни клиенту нет необходимости хранить секретный пароль пользователя. На сервере в файле паролей сохраняется только копия последнего одноразового пароля, которого достаточно для аутентификации пользователя при следующей попытке. Секретный пароль известен только самому пользователю.
Так как количество итераций вычисления хэш-функции, выполняемого пользователем, уменьшается каждый раз на единицу, при обнулении счетчика итераций пользователь для доступа к серверу должен повторно инициализировать систему. Повторная инициализация сопровождается изменением номера итерации и случайного числа. Это операция идентична нормальной аутентификации, за исключением того, что одноразовый пароль, полученный по сети, не сверяется с существующей записью в файле паролей, а просто заменяет ее. Это позволяет безопасно выбирать новый пароль даже при прослушивании сети.
Чтобы выполнять аутентификацию на многих удаленных серверах, пользователю необходимо для каждого сервера поддерживать соответствующую информацию о случайном числе и номере итерации и своевременно выполнять повторную инициализацию, что может быть достаточно трудоемким. К недостаткам системы S/Key можно отнести и то, что она не обеспечивает взаимной аутентификации.
Никакие из описанных выше механизмов аутентификации не поддерживают конфиденциальность, то есть не позволяют выполнять шифрование сообщений во время сеанса связи между пользователем и сервером, и без серьезной доработки мало пригодны для взаимной аутентификации.
Аутентификация Kerberos
Роджер Нидхэм и Михаэль Шредер в 1978 году впервые предложили механизм аутентификации, который базировался на шифровании, но он, к сожалению, не обеспечивал одинаковых гарантий для участвующих в коммуникации сторон [93]. Для решения этой проблемы в Массачусетском технологическом институте в 1985 году была разработана система защиты информационных систем от вторжений, дополняющая механизм Нидхэма-Шредера специальным сервисом выдачи билетов. Она была названа Kerberos по имени трехглавого пса Цербера, охранявшего ворота в ад в греческой мифологии. Такое название было выбрано, потому что в аутентификации участвовали три стороны: пользователь, сервер, к которому желает получить доступ пользователь, и сервер аутентификации, или центр распределения ключей (ЦРК). Специальный сервер аутентификации предлагался в качестве доверенной третьей стороны, услугами которой могут пользоваться другие серверы и клиенты информационной системы [4].
Рис. 2.4. Аутентификация Kerberos
Система Kerberos владеет секретными ключами обслуживаемых субъектов и помогает им выполнять взаимную аутентификацию. Сеанс начинается с получения пользователем А билета для получения билета - Ticket-Granting Ticket (TGT) от ЦРК. Когда пользователь желает получить доступ к некоторому серверу В, то сначала отправляет запрос на билет для доступа к этому серверу вместе со своим билетом TGT в ЦРК. TGT содержит информацию о сеансе регистрации пользователя А и позволяет ЦРК оперировать, не поддерживая постоянно информацию о сеансе регистрации каждого пользователя. В ответ на свой запрос пользователь А получает зашифрованный сеансовый ключ SA и билет на доступ к серверу В. Сеансовый ключ зашифрован секретным ключом, известным только пользователю А и ЦРК. Билет на доступ к серверу В содержит тот же самый сеансовый ключ, однако он шифруется секретным ключом, известным только серверу В и ЦРК.
Аутентификация происходит тогда, когда пользователь А и сервер доказывают знание своего секретного ключа. Пользователь шифрует метку времени и отправляет ее на сервер В. Сервер расшифровывает метку, увеличивает ее значение на единицу, вновь зашифровывает и отправляет шифртекст пользователю А. Пользователь А расшифровывает ответ, и если в нем содержится значение метки времени с приращением, то аутентификация завершается успешно, в противном случае - неудачно. После взаимной аутентификации сеансовый ключ может использоваться для шифрования сообщений, которыми обмениваются пользователь А и сервер В. Очевидно, что стороны должны доверять ЦРК, поскольку он хранит копии всех секретных ключей.
Рассмотрим более подробно аутентификацию в системе Kerberos (рис. 2.4), которая выполняется за четыре шага:
1 получение пользователем билета TGT на билеты;
2 получение пользователем билета на доступ к серверу ;
3 аутентификация пользователя сервером;
4 аутентификация сервера пользователем.
Получение пользователем билета TGT на билеты
В начале сеанса регистрации пользователь обращается к сервису аутентификации (Authentication Service - AS) Kerberos за получением билета TGT для ЦРК. Обмен сообщениями с сервисом AS не требует от пользователя А подтверждения своей идентичности. Обмен состоит из двух сообщений: запроса от А и ответа сервиса AS. Запрос содержит просто имя пользователя А, а ответ сервиса AS - сеансовый ключ регистрации SA и билет TGT, зашифрованные секретным ключом КA пользователя А. Обычно ключ КA извлекается из пароля пользователя А, что позволяет пользователю не запоминать двоичный симметричный ключ и обращаться к Kerberos с любой рабочей станции. Билет TGT содержит сеансовый ключ SA, имя пользователя А и срок действия билета, зашифрованные вместе секретным ключом ЦРК - КК. В дальнейшем при шифровании сообщений для пользователя А вместо секретного ключа КA ЦРК использует сеансовый ключ SA.
Получение пользователем билета на доступ к серверу
Когда пользователь А желает получить доступ к серверу, в своем сообщении он отправляет в ЦРК билет TGT, запрос на билет для доступа к серверу и аутентификатор. Это сообщение имеет следующий формат: "имя А", "имя B", TGT: КК ["имя А", SA, срок действия], SA [время] и называется запросом пользователя на доступ к серверу. Аутентификатор доказывает ЦРК, что пользователь А знает сеансовый ключ SA. Аутентификатор состоит из текущего значения даты и времени, зашифрованного сеансовым ключом. Шифрование защищает от возможного перехвата сторонним пользователем С билета TGT из ответа ЦРК пользователю А. Указание текущих значений даты и времени в аутентификаторе требует синхронизации компьютерных часов пользователя А и ЦРК. ЦРК может допускать некоторый разброс времени (обычно 5 мин.). На практике для поддержки синхронизации часов используется протокол синхронизации времени типа Simple Network Time Protocol (SNTP).
ЦРК получает запрос пользователя А на доступ к серверу В и готовит ответ. При помощи ключа КК ЦРК расшифровывает билет TGT из запроса, восстанавливает сеансовый ключ SA и проверяет срок действия билета TGT. Если билет TGT - действующий, то ЦРК генерирует ключ для пользователя А и сервера В - KAB и формирует билет. Билет шифруется секретным ключом сервера В - KB и содержит ключ KAB, имя пользователя А и срок действия. В ответе ЦРК указываются имя сервера В и ключ KAB, зашифрованные сеансовым ключом SA, ответ имеет следующий формат: SA ["имя В", KAB, TICKET: KB ["имя А", KAB, срок действия]]. Получив ответ от ЦРК, пользователь А расшифровывает его при помощи сеансового ключа SA.
Аутентификация пользователя сервером
Пользователь А отправляет на сервер В запрос, состоящий из билета, который был прислан в ответе ЦРК, и аутентификатора, который содержит текущее значение даты и времени, зашифрованное ключом KAB ( KAB - сеансовый ключ для пользователя А и сервера В, здесь опять необходима синхронизация компьютерных часов пользователя А и сервера В ).
Сервер В получает запрос пользователя А - TICKET: KB ["имя А", KAB, срок действия], KAB [время] - и готовит ответ. Сервер расшифровывает билет своим секретным ключом KB, обнаруживая ключ KAB, имя пользователя А и срок действия билета; при этом предполагается, что ЦРК разделил ключ KAB только со стороной, названной в билете пользователем А. Если после расшифрования аутентификатора при помощи ключа KAB получено значение даты и времени, близкое к значению текущего времени (в интервале 5 мин.), то это означает, что шифрование мог выполнить только пользователь А. Таким образом, сервер аутентифицирует пользователя.
Для того чтобы гарантировать, что сторонний пользователь С не сможет воспроизвести легитимный запрос пользователя А, сервер должен проверить аутентификаторы, которые он обрабатывал в течение ограниченного промежутка времени, когда происходил сеанс связи с А. В этот интервал времени имя пользователя не должно быть связано с одним и тем же аутентификатором более одного раза.
Аутентификация сервера пользователем
Для того чтобы пользователь А, в свою очередь, мог аутентифицировать сервер, сервер В увеличивает на единицу значение времени из запроса пользователя А и вновь шифрует его при помощи ключа KAB. Этот шифртекст и является ответом сервера: KAB [время+1]. Пользователь А получает ответ сервера и расшифровывает его ключом KAB. Пользователь А полагается на то, что ЦРК разделил ключ только с тем сервером, для доступа к которому пользователь А запрашивал билет. Если в результате расшифрования ответа сервера В при помощи ключа KAB получается исходное значение даты и времени, увеличенное на единицу, то это означает, что только сервер В мог выполнить это шифрование. Когда взаимная аутентификация завершена, сеансовый ключ может использоваться для обеспечения конфиденциальности или целостности сообщений, которыми обмениваются пользователь А и сервер В.
Система Kerberos - это мощный механизм, поддерживающий взаимную аутентификацию и аутентификацию пользователя на многих удаленных серверах. Пользователь может аутентифицировать себя в открытой сети или проверить идентичность удаленного сервера при помощи того же самого механизма, который используется для подтверждения его собственной идентичности [81].
К сожалению, ЦРК системы Kerberos представляет собой очень привлекательную цель для нападения. Успешная атака на ЦРК создает катастрофические проблемы. Если злоумышленник получает секретный ключ ЦРК, то одновременно получает возможность выдавать себя за любого пользователя. При обнаружении компрометации ЦРК должна быть проделана колоссальная работа по смене всех секретных ключей. И если системные администраторы могут легко изменить секретные ключи серверов, местонахождение которых им известно, то поиск каждого пользователя, чтобы он сформировал новый пароль (на основе которого затем будет сформирован секретный ключ), может потребовать значительных усилий. Для этого случая предлагает решение криптография с открытыми ключами.
Инициализация открытых ключей Kerberos
Инициализация открытых ключей Kerberos (Kerberos Public Key Initialization - PKIINIT) вносит изменения в процедуру начального обмена с ЦРК, а все остальное оставляет без изменений [70]. В своем запросе пользователь А отправляет сертификат ключа подписи и подписанный открытый ключ. Сертификат ключа подписи пользователя А содержит имя А и открытый ключ, используемый для проверки подлинности цифровых подписей, сгенерированных пользователем А. Открытый ключ будет использоваться для управления ключами; он может быть либо ключом транспортировки ключей ( открытый ключ RSA ) либо ключом согласования ключей ( открытый ключ Диффи-Хэллмана). ЦРК проверяет цифровую подпись, чтобы гарантировать, что открытый ключ принадлежит пользователю А. Проверив его один раз, ЦРК использует этот открытый ключ для подписания сеансового ключа.
Формат ответа ЦРК зависит от типа ключа пользователя А. Если пользователь А использует открытый ключ Диффи-Хэллмана, то ЦРК возвращает его подписанным при помощи открытого ключа Диффи-Хэллмана. Пользователь проверяет цифровую подпись, чтобы убедиться, что ответ принадлежит ЦРК. И пользователь А, и ЦРК вычисляют один и тот же симметричный ключ при помощи алгоритма Диффи-Хеллмана и используют его как сеансовый ключ SA. Пользователь А может использовать и открытый ключ RSA. В этом случае ЦРК генерирует временный симметричный ключ и шифрует его при помощи открытого ключа ( RSA ) пользователя А. Кроме того, ЦРК генерирует и заверяет цифровой подписью второй симметричный ключ, который будет использоваться как сеансовый ключ SA. Затем подписанный ключ SA шифруется при помощи временного ключа и отправляется пользователю А вместе с временным ключом, зашифрованным открытым ключом ( RSA ) пользователя А. Пользователь А может извлечь ключ SA, расшифровав сначала временный ключ при помощи своего секретного ключа ( RSA ), а потом использовав этот временный ключ для окончательного расшифрования подписанного ключа SA. Проверка подписи гарантирует, что сеансовый ключ SA получен от ЦРК.
Без сертификата ЦРК был бы необходим другой механизм аутентификации открытого ключа пользователя А. Связывание имени пользователя А с его открытым ключом подписи позволяет ЦРК аутентифицировать запрос. ЦРК полагается на удостоверяющий центр (УЦ) для подтверждения того, что пользователь А владеет секретным ключом, соответствующим открытому ключу, указанному в сертификате.
Использование в системе Kerberos технологии открытых ключей позволяет ЦРК не хранить секретные ключи пользователей, что значительно снижает риск компрометации. В случае успешной атаки на ЦРК последствия оказываются менее серьезными, так как новые секретные ключи требуются только серверам.
Аутентификация при помощи сертификатов
В том случае, когда пользователи имеют сертификаты открытых ключей, необходимость в ЦРК отпадает. Это не означает, что отпадает необходимость в доверии и третьих сторонах; просто доверенной третьей стороной становится УЦ. Однако УЦ не участвует в обмене протоколами, и в отличие от ситуации с ЦРК, если УЦ недоступен, аутентификация по-прежнему может быть выполнена.
Аутентификацию при помощи сертификатов обеспечивают несколько распространенных протоколов, в частности, наиболее известный и широко распространенный протокол Secure Socket Layer (SSL), который применяется практически в каждом web-браузере. Помимо него применяются протоколы Transport Layer Security (TLS) [142], Internet Key Exchange (IKE) [147], S/MIME [169], PGP и Open PGP [149]. Каждый из них немного по-своему использует сертификаты, но основные принципы - одни и те же.
Рис. 2.5. Взаимная аутентификация на базе сертификатов
Рис. 2.5 иллюстрирует типичный обмен сообщениями при аутентификации на базе сертификатов, использующий цифровые подписи [70]. Обмен соответствует стандарту аутентификации субъектов на основе криптографии с открытыми ключами [117]. Во многих протоколах предусматривается, что клиент направляет запрос серверу для того, чтобы инициировать аутентификацию. Такой подход, характерный, например, для дополнений аутентификации и шифрования к протоколу Internet File Transfer Protocol, гарантирует, что и пользователь, и сервер поддерживают один и тот же механизм аутентификации. Некоторые протоколы не требуют этого подготовительного шага.
Если сервер В поддерживает метод аутентификации, запрашиваемый пользователем А, то начинается обмен сообщениями. Сообщение Token ID уведомляет о том, что будет выполняться взаимная аутентификация, а также содержит номер версии протокола и идентификатор протокола. Хотя этот идентификатор не обязателен, он намного упрощает процедуру и поэтому обычно используется. Пользователь А ожидает сообщение Token ВА1 от сервера В. Идентификатор протокола в Token ID позволяет пользователю А удостовериться, что сервер В отправляет ожидаемое сообщение. Token ВА1 состоит только из случайного числа ran B, это - своего рода запрос, корректным ответом должна быть цифровая подпись числа ran B. Пользователь А подписывает ответ и отправляет свой сертификат ключа подписи, для того чтобы сервер В при помощи открытого ключа мог выполнить валидацию подписи.
Пользователь А подписывает последовательность из трех элементов: свой запрос ran A, запрос сервера ran B и имя сервера name B. Ran A - это запрос А к серверу В, гарантирующий, что пользователь А подписывает не произвольное сообщение сервера В или другого субъекта, выдающего себя за сервер В. Получив ответ Token АВ от пользователя А, сервер В проверяет, совпадает ли значение ran B с соответствующим значением в сообщении Token ВА1, а по значению name В устанавливает, действительно ли пользователь А желает пройти аутентификацию сервера В. Если какая-либо из проверок дает отрицательный результат, то и аутентификация завершается неудачно. В противном случае сервер В проверяет подлинность сертификата пользователя А и его цифровую подпись, если сертификат и подпись валидны, то аутентификация пользователя А сервером В прошла успешно. Ответ сервера В пользователю А завершает взаимную аутентификацию.
Ответ сервера Token ВА2 состоит из заверенной цифровой подписью последовательности трех элементов: ran A, ran B и name A, где ran A - запрос, сгенерированный А, ran B - исходный запрос сервера В, а name A - имя пользователя А. Получив ответ сервера, пользователь А убеждается, что ran A имеет то же самое значение, что и в сообщении Token АВ, а проверяя значение name A - что сервер В намерен аутентифицировать именно его (пользователя А ). Если какая-либо из проверок дает отрицательный результат, то и аутентификация завершается неудачно. В противном случае пользователь А проверяет подлинность сертификата сервера В и его цифровой подписи. Если они валидны, то пользователь А аутентифицировал сервер В, и взаимная аутентификация выполнена.
Итак, механизмы аутентификации при помощи сертификатов поддерживают аутентификацию в открытой сети, на многих удаленных серверах, и обеспечивают взаимную аутентификацию. В отличие от системы Kerberos. протоколы аутентификации на базе сертификатов не требуют активного участия третьих сторон. Для успешной аутентификации должны быть доступны только пользователь и сервер.
Возможности PKI
Для удовлетворения требований аутентификации в распределенной среде механизмы на базе сертификатов используют криптографию с открытыми ключами. Они созданы на основе многих свойств своих предшественников и добавляют новые возможности. Инфраструктура открытых ключей (PKI) - это современная технология аутентификации, использующая для идентификации субъектов криптографию с открытыми ключами вместе со следующими механизмами:
* механизмом установления доверия на базе определенной модели доверия;
* механизмом присваивания субъектам имен, уникальных в данной среде;
* механизмом распространения информации, характеризующей правильность связывания определенной пары ключей ( открытого и секретного) с определенным именем субъекта в данной среде (такая информация фиксируется и предоставляется центром, которому доверяет верификатор информации) [44].
Строго говоря, PKI обеспечивает аутентификацию - не больше и не меньше; вопреки широко распространенному мнению о возможностях PKI, она не реализует:
* авторизацию (хотя может применяться с целью защиты информации, используемой для авторизации);
* доверие (хотя и способствует установлению отношений доверия, подтверждая принадлежность данного открытого ключа определенному субъекту);
* именование субъектов (а только связывает известные имена субъектов с их открытыми ключами );
* защиту компьютерных систем и сетей (служит базисом сервисов безопасности, но не заменяет собой другие средства и методы защиты).
Конечно, аутентификация - это только один из необходимых сервисов безопасности. Многие приложения также требуют конфиденциальности, целостности и невозможности отказаться от участия в обмене информацией. Технология PKI обеспечивает поддержку всех этих сервисов.
Лекция 3. Основные компоненты и сервисы PKI
Рассматриваются основные компоненты PKI, описываются функции удостоверяющего и регистрационного центров, репозитория, архива сертификатов, серверных компонентов PKI, приводится краткая характеристика сервисов PKI и сервисов, базирующихся на PKI, обсуждаются криптографические и вспомогательные сервисы, сервисы управления сертификатами.
Основные компоненты PKI
Нельзя утверждать, что PKI сама по себе является инфраструктурой безопасности, но она может быть основой всеобъемлющей инфраструктуры безопасности. Инфраструктура открытых ключей представляет собой комплексную систему, сервисы которой реализуются и предоставляются с использованием технологии открытых ключей. Цель PKI состоит в управлении ключами и сертификатами, посредством которого корпорация может поддерживать надежную сетевую среду. PKI позволяет использовать сервисы шифрования и выработки цифровой подписи согласованно с широким кругом приложений, функционирующих в среде открытых ключей.
Основными компонентами эффективной PKI являются:
* удостоверяющий центр ;
* регистрационный центр ;
* репозиторий сертификатов;
* архив сертификатов ;
* конечные субъекты (пользователи).
Взаимодействие компонентов PKI иллюстрирует рис. 3.1. В составе PKI должны функционировать подсистемы выпуска и аннулирования сертификатов, создания резервных копий и восстановления ключей, выполнения криптографических операций, управления жизненным циклом сертификатов и ключей. Клиентское программное обеспечение пользователей должно взаимодействовать со всеми этими подсистемами безопасным, согласованным и надежным способом [9].
Удостоверяющий центр
Фундаментальная предпосылка криптографии с открытыми ключами заключалась в том, что два незнакомых субъекта должны иметь возможность безопасно связываться друг с другом. Например, если пользователь А желает отправить конфиденциальное сообщение пользователю В, с которым он ранее не встречался, то для шифрования сообщения он должен иметь возможность связать каким-либо образом пользователя В и его открытый ключ. Для сообщества потенциальных пользователей, объединяющего сотни тысяч или миллионов субъектов, наиболее практичным способом связывания открытых ключей и их владельцев является организация доверенных центров. Этим центрам большая часть сообщества или, возможно, все сообщество доверяет выполнение функций связывания ключей и идентификационных данных (идентичности) пользователей.
Такие доверенные центры в терминологии PKI называются удостоверяющими (УЦ) ; они сертифицируют связывание пары ключей с идентичностью, заверяя цифровой подписью структуру данных, которая содержит некоторое представление идентичности и соответствующего открытого ключа. Эта структура данных называется сертификатом открытого ключа (или просто сертификатом) и более детально обсуждается в лекции 6. По сути сертификат представляет собой некое зарегистрированное удостоверение, которое хранится в цифровом формате и признается сообществом пользователей PKI законным и надежным. Для заверения электронного сертификата используется электронная цифровая подпись УЦ - в этом смысле удостоверяющий центр уподобляется нотариальной конторе, так как подтверждает подлинность сторон, участвующих в обмене электронными сообщениями или документами.
Хотя УЦ не всегда входит в состав PKI (особенно небольших инфраструктур или тех, которые оперируют в закрытых средах, где пользователи могут сами эффективно выполнять функции управления сертификатами), он является критически важным компонентом многих крупномасштабных PKI. Непосредственное использование открытых ключей требует дополнительной их защиты и идентификации для установления связи с секретным ключом. Без такой дополнительной защиты злоумышленник может выдавать себя как за отправителя подписанных данных, так и за получателя зашифрованных данных, заменив значение открытого ключа или нарушив его идентификацию. Все это приводит к необходимости проверки подлинности, то есть верификации открытого ключа [213].
Удостоверяющий центр объединяет людей, процессы, программные и аппаратные средства, вовлеченные в безопасное связывание имен пользователей и их открытых ключей. Удостоверяющий центр известен субъектам PKI по двум атрибутам: названию и открытому ключу. УЦ включает свое имя в каждый выпущенный им сертификат и в список аннулированных сертификатов (САС) и подписывает их при помощи собственного секретного ключа. Пользователи могут легко идентифицировать сертификаты по имени УЦ и убедиться в их подлинности, используя его открытый ключ.
Рис. 3.1. Основные компоненты PKI
Удостоверяющий центр - главный управляющий компонент PKI - выполняет следующие основные функции:
* формирует собственный секретный ключ; если является головным УЦ, то издает и подписывает свой сертификат, называемый самоизданным или самоподписанным ;
* выпускает (то есть создает и подписывает) сертификаты открытых ключей подчиненных удостоверяющих центров и конечных субъектов PKI; может выпускать кросс-сертификаты, если связан отношениями доверия с другими PKI;
* поддерживает реестр сертификатов (базу всех изданных сертификатов) и формирует списки САС с регулярностью, определенной регламентом УЦ ;
* публикует информацию о статусе сертификатов и списков САС.
При необходимости УЦ может делегировать некоторые функции другим компонентам PKI. Выпуская сертификат открытого ключа, УЦ тем самым подтверждает, что лицо, указанное в сертификате, владеет секретным ключом, который соответствует этому открытому ключу. Включая в сертификат дополнительную информацию, УЦ подтверждает ее принадлежность этому субъекту. Дополнительная информация может быть контактной (например, адрес электронной почты) или содержать сведения о типах приложений, которые могут работать с данным сертификатом. Когда субъектом сертификата является другой УЦ, издатель подтверждает надежность выпущенных этим центром сертификатов.
Действия УЦ ограничены политикой применения сертификатов (ППС), которая определяет назначение и содержание сертификатов. УЦ выполняет адекватную защиту своего секретного ключа и открыто публикует свою политику, чтобы пользователи могли ознакомиться с назначением и правилами использования сертификатов. Ознакомившись с политикой применения сертификатов и решив, что доверяют УЦ и его деловым операциям, пользователи могут полагаться на сертификаты, выпущенные этим центром. Таким образом, в PKI удостоверяющие центры выступают как доверенная третья сторона.
Регистрационный центр
Регистрационный центр (РЦ) является необязательным компонентом PKI. Обычно РЦ получает от удостоверяющего центра полномочия регистрировать пользователей, обеспечивать их взаимодействие с УЦ и проверять информацию, которая заносится в сертификат. Сертификат может содержать информацию, которая предоставлена субъектом, подающим заявку на сертификат и предъявляющим документ (паспорт, водительские права, чековую книжку и т.п.) или третьей стороной (например, кредитным агентством - о кредитном лимите пластиковой карты). Иногда в сертификат включается информация из отдела кадров или данные, характеризующие полномочия субъекта в компании (например, право подписи документов определенной категории). РЦ агрегирует эту информацию и предоставляет ее УЦ.
УЦ может работать с несколькими регистрационными центрами, в этом случае он поддерживает список аккредитованных регистрационных центров, то есть тех, которые признаны надежными. УЦ выдает сертификат РЦ и отличает его по имени и открытому ключу. РЦ выступает как объект, подчиненный УЦ, и должен адекватно защищать свой секретный ключ. Проверяя подпись РЦ на сообщении или документе, УЦ полагается на надежность предоставленной РЦ информации.
РЦ объединяет комплекс программного и аппаратного обеспечения и людей, работающих на нем. В функции РЦ может входить генерация и архивирование ключей, уведомление об аннулировании сертификатов, публикация сертификатов и САС в каталоге LDAP и др. Но РЦ не имеет полномочий выпускать сертификаты и списки аннулированных сертификатов. Иногда УЦ сам выполняет функции РЦ.
Репозиторий сертификатов
Репозиторий - специальный объект инфраструктуры открытых ключей, база данных, в которой хранится реестр сертификатов (термин " реестр сертификатов ключей подписей" введен в практику Законом РФ "Об электронной цифровой подписи") [10]. Репозиторий значительно упрощает управление системой и доступ к ресурсам. Он предоставляет информацию о статусе сертификатов, обеспечивает хранение и распространение сертификатов и САС, управляет внесениями изменений в сертификаты. К репозиторию предъявляются следующие требования:
* простота и стандартность доступа;
* регулярность обновления информации;
* встроенная защищенность;
* простота управления;
* совместимость с другими хранилищами (необязательное требование).
Репозиторий обычно размещается на сервере каталогов, организованных в соответствии с международным стандартом X.500 и его подмножеством. Большинство серверов каталогов и прикладное программное обеспечение пользователей поддерживают упрощенный протокол доступа к каталогам LDAP (Lightweight Directory Access Protocol) [154]. Такой унифицированный подход позволяет обеспечивать функциональную совместимость приложений PKI и дает возможность доверяющим сторонам получать информацию о статусе сертификатов для верификации цифровых подписей.
Архив сертификатов
На архив сертификатов возлагается функция долговременного хранения (от имени УЦ ) и защиты информации обо всех изданных сертификатах. Архив поддерживает базу данных, используемую при возникновении споров по поводу надежности электронных цифровых подписей, которыми в прошлом заверялись документы. Архив подтверждает качество информации в момент ее получения и обеспечивает целостность данных во время хранения. Информация, предоставляемая УЦ архиву, должна быть достаточной для определения статуса сертификатов и их издателя. Архив должен быть защищен соответствующими техническими средствами и процедурами.
Конечные субъекты
Конечные субъекты, или пользователи, PKI делятся на две категории: владельцы сертификатов и доверяющие стороны. Они используют некоторые сервисы и функции PKI, чтобы получить сертификаты или проверить сертификаты других субъектов. Владельцем сертификата может быть физическое или юридическое лицо, приложение, сервер и т.д. Доверяющие стороны запрашивают и полагаются на информацию о статусе сертификатов и открытых ключах подписи своих партнеров по деловому общению.
Физическая топология
Система PKI, помимо выполнения целого ряда функций - выпуска сертификатов, генерации ключей, управления безопасностью, аутентификации, восстановления данных, - должна обеспечивать интеграцию с внешними системами. PKI необходимо взаимодействовать с множеством самых разных систем и приложений - это и программное обеспечение групповой работы, и электронная почта, и системы управления доступом, и каталоги пользователей, и виртуальные частные сети, и разнообразные операционные системы, и службы безопасности, и web-приложения, и широкий спектр корпоративных систем [10]. Рис. 3.2 иллюстрирует взаимодействие пользователей с серверами PKI.