В заключение этой главы – небольшая цитата из книги «Астрономия: век XXI».
Итак, благодаря космическим исследованиям и введению в строй крупных наземных телескопов нового поколения открыты сотни массивных и чрезвычайно компактных объектов, наблюдаемые свойства которых очень похожи на свойства черных дыр, предсказываемые общей теорией относительности Эйнштейна. Можно надеяться, что <…> в ближайшие десятилетия будет окончательно доказано существование черных дыр во Вселенной. Это приведет к прорыву в понимании природы пространства-времени и сущности гравитации.
Кое-что о здравом смысле
Человек, впервые соприкоснувшийся с картиной мира, которую рисует современная физика, или с космологическими моделями эволюции нашей Вселенной, порой испытывает самый настоящий интеллектуальный шок. Ему начинает казаться, что ученые намеренно громоздят нелепость на нелепость, словно стремятся перещеголять друг друга, – настолько эта картина не вписывается в привычные представления о реальности. Невольно вспоминается известное высказывание Нильса Бора по поводу очередной заковыристой гипотезы: «Эта идея, безусловно, безумна, но весь вопрос в том, достаточно ли она безумна, чтобы быть истинной». Между тем Бор вовсе не валял дурака, а всего лишь хотел подчеркнуть тот бесспорный факт, что современная физика выходит на такие уровни постижения реальности, которые напрочь лишены наглядности и не имеют аналогий в повседневном житейском опыте.
За фасадом обыденности прячутся неуловимые тени, ускользающие от всех и всяческих определений. Когда мы говорим, что вот этот предмет зеленого цвета, этот – красного, а вон тот – синего, каждому интуитивно понятно, о чем идет речь. Однако в действительности никакого синего цвета нет, есть только строго определенная длина волны электромагнитного излучения. Пчела или стрекоза воспринимают синий цвет совершенно иначе, поскольку их фасеточный глаз по-другому устроен и способен видеть в ультрафиолетовом диапазоне. Их синий и наш синий – это земля и небо. Стрекозиный синий цвет наверняка будет куда богаче оттенками и полутонами, хотя длина волны соответствующего участка спектра в обоих случаях останется в точности той же самой. Субъективная картина мира сплошь и рядом не имеет ничего общего с изнаночной сутью вещей, принципиально недоступных обыденному восприятию, которое руководствуется соображениями здравого смысла. Органы чувств – не золотой ключик и не волшебная отмычка, а всего-навсего удобный инструмент, помогающий биологическим видам приспособиться к среде обитания.
Современная физика все дальше уходит от наглядности, оперируя категориями, которые могут быть адекватно описаны только на языке строгой математики. Еще совсем недавно атом рисовали в форме миниатюрной солнечной системы: положительно заряженное ядро в центре в роли крохотного светила и отрицательно заряженные шустрые электроны, крутящиеся наподобие планет вокруг ядра. Сегодня мы знаем, что эта идиллическая картинка не имеет с реальностью ничего общего. Во-первых, электроны не могут располагаться на произвольных орбитах вокруг ядра, а вынуждены занимать жестко фиксированные уровни, которые определяются энергией, имеющейся в распоряжении того или иного электрона. Отчасти это напоминает лестницу: скакать со ступеньки на ступеньку можно сколько угодно, а вот висеть между ними – извините-подвиньтесь! Во-вторых, электроны совсем не похожи на твердые планеты-шарики, хотя мы и говорим, что электрон вращается вокруг ядра. На самом деле ни о каком движении в привычном понимании этого слова здесь не может быть и речи: электрон не крутится как заведенный, но находится в некотором определенном состоянии, которое описывается сложной волновой функцией. Иными словами, мы имеем право говорить только лишь о вероятности пребывания электрона в той или иной точке.
И не спешите восклицать, что этого не может быть. Бывает всякое, и если так называемый здравый смысл откровенно пасует, отказываясь отделять зерна от плевел, это еще не повод, чтобы выбрасывать в мусорную корзину головоломные научные построения.
Можно вспомнить эпизод из повести братьев Стругацких «Улитка на склоне», когда Перец (один из главных героев) безуспешно пытается попасть на прием к директору некоего загадочного Управления по делам не менее загадочного Леса. Ким, начальник Переца, его утешает и говорит, что со временем все образуется, а когда Перец в сердцах кричит, что эта нелепая секретность ему уже поперек горла и он желает знать хотя бы такую малость, как директор выглядит, то получает исчерпывающий ответ.
– Какой? Невысокого роста, рыжеватый <…>
– А Тузик говорит, что он сухопарый и носит длинные волосы, потому что у него нет одного уха.
– Это какой еще Тузик?
– Шофер, я же тебе рассказывал.
Ким желчно засмеялся.
– Откуда шофер Тузик может все это знать? Слушай, Перчик, нельзя же быть таким доверчивым.
– Тузик говорит, что был у него шофером и несколько раз его видел.
– Ну и что? Врет, вероятно. Я был у него секретарем, а не видел его ни разу.
– Кого?
– Директора. Я долго был у него секретарем, пока не защитил диссертации.
– И ни разу его не видел?
– Ну естественно! Ты воображаешь, что это так просто?
– Подожди, откуда же ты знаешь, что он рыжеватый и так далее?
Ким покачал головой.
– Перчик, – сказал он ласково. – Душенька. Никто никогда не видел атома водорода, но все знают, что у него есть одна электронная оболочка определенных характеристик и ядро, состоящее в простейшем случае из одного протона.
Во многом знании много печали, говорили наши мудрые предки. Для чего попусту апеллировать к здравому смыслу? Если некое теоретическое утверждение целиком и полностью согласуется с опытными данными, его следует признать верным, а не заниматься пустой схоластикой. Построена крепкая и надежная модель, и покуда она работает – чего ж вам боле? Перестанет работать – ее место займет другая. Наука не религия, ее не увлекает сакраментальный вопрос «что есть истина». Наука не предлагает окончательных решений, а строит модели. Но при этом не следует забывать, что любая модель расплывчата и несовершенна; она ни в коем случае не реальность, а только ее отпечаток, и боровская модель атома ничуть не похожа на подлинный атом.
И если популяризаторы от физики толкуют о дуализме свойств, изначально присущих всему населению микромира, нужно всегда помнить, что это не более чем фигура речи. Нельзя сказать, чтобы они сильно погрешили против истины, поскольку электрон действительно ведет себя как заправский фокусник, в мгновение ока меняющий обличье: то обернется волной, а то от души продемонстрирует свои корпускулярные свойства. На самом деле всему виной наши удушливые стереотипы, которые имеют к природе вещей самое косвенное отношение. Электрон не является ни волной, ни частицей, поскольку изнанка вещей творилась не под человека; электрон – всего-навсего электрон, двуликий Янус, ведущий себя так, как ему предначертано. В одних случаях он выступает как частица, а в других – как волна, оставаясь при этом непостижимой вещью в себе, с фиксированной массой, отрицательным зарядом и полуцелым спином.
Теория относительности Альберта Эйнштейна (как специальная, так и общая) тоже противоречит нашему повседневному опыту. Если вы, читатель, способны наглядно вообразить искривленное трехмерное пространство, то честь вам и хвала, но большинство людей к таким подвигам решительно не готово. Между тем кривизна пространства вблизи массивных небесных тел – бесспорный факт, что не единожды было продемонстрировано экспериментально. А закон сложения скоростей в специальной теории относительности? Если водитель «копейки» едет со скоростью 60 километров в час, а велосипедист – со скоростью 30, причем оба они движутся в одном направлении, то даже ученик начальной школы без труда вычислит их скорость друг относительно друга.
А теперь представьте космический корабль, летящий вдогонку за световым лучом со скоростью 250 тысяч километров в секунду. Напомню на всякий случай, что скорость света в пустоте равняется 300 тысячам километров в секунду. Вопрос: с какой скоростью световой пучок убегает от корабля? Человек со средним образованием может подумать, что его держат за дурака, ибо ответ, казалось бы, напрашивается сам собой – 50 тысяч километров в секунду. Однако не тут-то было! Измерив скорость луча света, мы получим, как это ни странно, те же самые 300 тысяч километров в секунду. Более того, упомянутый космический корабль может впритык приблизиться к световому барьеру, но скорость света, измеренная на его борту, все равно не изменится ни на йоту и будет по-прежнему составлять 300 тысяч километров в секунду.
Дело в том, что скорость света в пустоте – величина абсолютная, это одна из фундаментальных констант. Еще более поразительно, что эта скорость отличается строгим постоянством. Из житейского опыта нам известно, что любое тело, двигающееся по инерции, раз затормозившись, не сможет набрать первоначальную скорость. Скажем, винтовочная пуля, пробив навылет дюймовую доску, полетит медленнее. А вот свет ведет себя совершенно иначе. Если поставить на пути светового луча стеклянную призму, скорость света уменьшится, потому что в стекле она меньше, чем в пустоте. Однако стоит только световому лучу вырваться на свободу, как его скорость вновь скачкообразно возрастет до 300 тысяч километров в секунду. В пустоте свет всегда распространяется с одной и той же скоростью, и повлиять на нее принципиально невозможно.
С другой стороны, все тела, имеющие ненулевую массу покоя, могут двигаться только со скоростями, меньшими, чем скорость света. И чем быстрее такое тело движется, тем больше возрастает его масса и тем медленнее идут установленные на нем часы. Теоретически можно разогнать элементарную частицу, например протон, до такой скорости, что его масса превысит массу всей нашей Галактики. Принять подобное утверждение нелегко, однако в действительности так оно и есть. Привычные представления о природе вещей оказываются несостоятельными при скоростях, приближающихся к скорости света.
И нельзя спрашивать, почему природа поступила именно так, а не иначе, подобный вопрос далеко не всегда корректен. Ровно с тем же успехом можно спросить, почему скорость света равняется 300 тысячам километров в секунду, а не другой величине – большей или меньшей. Можно поинтересоваться, для чего природе вообще понадобилось ограничивать скорость распространения сигнала некоей предельной величиной. Почему материальные тела не могут перемещаться со сколь угодно большой скоростью? Все это совершенно пустые вопросы, не имеющие права на существование. Почему, почему… Толочь воду в ступе можно до посинения. По кочану да по капусте! Так устроен мир, и переделать его никому еще не удавалось, что бы ни говорили по этому поводу ортодоксальные марксисты.
Закон сохранения энергии был сформулирован без малого 300 лет тому назад, но до сих пор ничего не известно о механизмах работы этого закона. Просто все процессы протекают так, что энергия сохраняется. Столь же нелепы рассуждения о том, что было, когда мира не было. Между прочим, это понимали еще древние. Блаженный Августин в свое время говаривал, что мир был сотворен не во времени, а вместе со временем, поэтому толковать о существовании чего бы то ни было до момента «ноль» не имеет никакого смысла. Что тут скажешь? Головастый был поп, и современные астрофизики подпишутся под каждым его словом.
К сожалению, есть вопросы, не имеющие права на постановку. Пока наука барахталась в пеленках и спрашивала природу о явлениях простых и привычных, ответы звучали вполне осмысленно. Масштаб человеческих притязаний был в ту пору сопоставим с его собственным масштабом.
Однако законы природы меняются до неузнаваемости, когда силы, поля и расстояния выходят за пределы нашего повседневного опыта. Стоило нам спросить, чем является материя – частицей или волной, ответ оказался настолько неожиданным, что рассудок отказывался его принять. Мы настаивали на жесткой альтернативе, но с точки зрения природы вопрос в такой формулировке был лишен смысла. Следует раз и навсегда усвоить, что Вселенная создавалась не ради нас, мы только побочный продукт ее эволюции, а потому ответы, которые нам преподносит природа, не обязаны укладываться в любезные нашему сердцу схемы. Спрашивать тоже надо с умом.
У американского фантаста Роберта Шекли есть замечательный рассказ, называющийся просто и со вкусом – «Верный вопрос». Некая могущественная галактическая раса, давным-давно канувшая в небытие, построила уникальный агрегат, знающий все на свете. Он мог ответить на любой вопрос, если тот поставлен правильно. Слухом, как известно, земля полнится, и легионы энтузиастов бороздят космические просторы, не теряя надежды отыскать легендарный Ответчик. Некоторым это удается, и тогда те, кому улыбнулась удача, спешат задать мудрой машине вопрос о Самом Важном. Кто-то спрашивает о багрянце, кто-то – о законе восемнадцати, а кто-то – о жизни и смерти, как Пастернак у Сталина, потому что у каждого народа свои собственные представления о природе вещей. Однако все ходоки неизбежно терпят фиаско. К сожалению, Ответчик связан корректно поставленными вопросами, а такие вопросы требуют знаний, которыми спрашивающие не располагают. Задать толковый вопрос оказывается почти невыполнимой задачей. Землянам тоже не повезло.
Ответчик представился им белым экраном в стене. На их взгляд, он был крайне прост. <…>
– Очень хорошо. Ответчик, – обратился Лингман высоким слабым голосом, – что такое жизнь?
Голос раздался в их головах.
– Вопрос лишен смысла. Под «жизнью» Спрашивающий подразумевает частный феномен, объяснимый лишь в терминах целого.
– Частью какого целого является жизнь? – спросил Лингман.
– Данный вопрос в настоящей форме не может разрешиться. Спрашивающий все еще рассматривает «жизнь» субъективно, со своей ограниченной точки зрения.
– Ответь же в собственных терминах, – сказал Морран.
– Я лишь отвечаю на вопросы, – грустно произнес Ответчик. Наступило молчание.
– Расширяется ли Вселенная? – спросил Морран.
– Термин «расширение» неприложим к данной ситуации. Спрашивающий оперирует ложной концепцией Вселенной.
– Ты можешь нам сказать хоть что-нибудь?
– Я могу ответить на любой правильно поставленный вопрос, касающийся природы вещей.
Одним словом, незадачливым звездопроходцам не пофартило. Они судили да рядили так и эдак, но толку от их усилий было чуть. Последняя попытка выглядела так:
– Что есть смерть?
– Я не могу определить антропоморфизм.
– Смерть – антропоморфизм! – воскликнул Морран, и Лингман быстро обернулся. – Ну наконец-то мы сдвинулись с места.
– Реален ли антропоморфизм?
– Антропоморфизм можно классифицировать экспериментально как: А – ложные истины или В – частные истины – в терминах частной ситуации.
– Что здесь применимо?
– И то и другое.
Ничего более конкретного они не добились. Долгие часы они мучили Ответчик, мучили себя, но правда ускользала все дальше и дальше.
Несолоно хлебавши герои отчаливают домой. Вот как кончается рассказ:
Один на планете – не большой и не малой, а как раз подходящего размера – ждал Ответчик. Он не может помочь тем, кто приходит к нему, ибо даже Ответчик не всесилен. Вселенная? Жизнь? Смерть? Багрянец? Восемнадцать? Частные истины, полуистины, крохи великого вопроса.
И бормочет Ответчик вопросы сам себе, верные вопросы, которые никто не может понять.
И как их понять?
Чтобы правильно задать вопрос, нужно знать большую часть ответа.
Если с грехом пополам нам удалось нащупать кое-какие закономерности микромира и даже кое-что экспериментально проверить, это еще не означает, что мы получим ответы на все проклятые вопросы. Подлинная природа вещей все равно не дается в руки, и недаром Лев Давидович Ландау рвал и метал, когда готовил к печати популярную брошюру «Что такое теория относительности?». «Это же не лезет ни в какие ворота, – кипятился он, обращаясь к своему соавтору Юрию Борисовичу Румеру, – двое проходимцев пытаются убедить простака, что он за гривенник разберется в проблеме». Разумеется, Ландау был абсолютно прав.
Аналогия и метафора – вещи хорошие, но и они рано или поздно начинают пробуксовывать. При всем желании мы не можем наглядно вообразить пространственно-временную пену в области планковских длин или свернутые в тончайшие трубочки дополнительные измерения, потому что Homo sapiens – это всего-навсего умная обезьяна, сумевшая овладеть речью и понятийным мышлением. Наши органы чувств жестко привязаны к биотопу под названием «планета Земля», где нас растили и пестовали на протяжении 3 миллиардов лет. Выше головы не прыгнешь, и потому реальная подоплека мироустройства, остающаяся тайной за семью печатями, сплошь и рядом может быть показана только математически.
Мир функционирует по универсальным законам, именуемым законами природы, и математика выступает в роли путеводителя по нечеловеческим областям мира. Интеллект, сформировавшийся в земной биологической нише, на каждом шагу пасует перед парадоксами, которые нельзя укусить, понюхать или взять в руку. Для того, кто провалился в черную дыру, пространство приобретает вид времени, поскольку он не сможет вернуться назад, подобно тому как невозможно двигаться вспять по оси времени, то есть в прошлое. Вообразить наглядно такую картину нелегко, однако математика, как нить Ариадны, позволяет проникнуть в такие закоулки мироздания, куда заказан путь простым смертным. Правда, некоторые ученые утверждают, что разбираются в подобных вещах столь же непринужденно, как различают на вкус соленое или кислое. На самом деле они немного лукавят: в действительности они понимают всего лишь соответствие теории и опытных результатов.
Физика с математикой – это узкая тропинка над пропастями, недоступными человеческому воображению. Человек так устроен, что жаждет окончательных истин, но в науке необходима сдержанность. Мир отказывается отвечать на вопросы о своей окончательной сущности, и мы теряемся, когда узнаем, что абсолютный вакуум вовсе не пуст, а энергия может быть отрицательной. Между прочим, именно в этом коренится видовое отличие между верой и знанием. Вера все знает наперед, у нее, как у ловкого шулера, всегда спрятана в рукаве козырная карта. А наука отчетливо сознает свое несовершенство. Математика может многое, но далеко не все.
К сожалению, и математика не всегда выручает, ибо нет никакой уверенности, что мир по своей природе математичен. Конечно, этот хитроумный код позволяет иногда получать ответы на правильно поставленные вопросы, но это еще не означает, что математические символы вскрывают суть вещей. Конечно же, мы не столь наивны, чтобы перечеркнуть математический подход в принципе, мы только подчеркиваем сугубо подсобную роль математики как познавательного орудия, помогающего достичь определенной цели. О тождественности объекта познания и инструмента познания речи здесь нет. Станислав Лем так написал об этом:
Математика скорее становится чем-то вроде лестницы, по которой можно подняться на гору, хотя сама она вовсе не похожа на эту гору. <…> По фотографии горы можно, применяя соответствующий масштаб, определить ее высоту, падение склона и так далее. Лестница тоже может нам многое сказать о горе, к которой ее прислонили. Однако вопрос о том, что на горе соответствует перекладинам лестницы, не имеет смысла. Ведь они служат для того, чтобы добраться до вершины. Точно так же невозможно спрашивать о том, является ли эта лестница «истинной». Она лишь может быть лучшей или худшей как орудие достижения цели.
Золотые слова. По сути дела, речь здесь идет о том, что наши модели, если даже они исправно работают, замечательно согласуются с опытом и дают предсказуемые результаты, могут оказаться всего лишь бледной тенью непостижимой реальности. И это еще в лучшем случае. А вдруг когда-нибудь выяснится, что все наши модели, напичканные головоломной математикой, не имеют ровным счетом никакого отношения к миру вещей? Такую малоприятную перспективу тоже следует иметь в виду на всякий случай. И хотя прагматический аспект научных теорий от этого ничуть не пострадает, будет все же до глубины души обидно сознавать, что человечеству никогда не суждено продраться к первоосновам бытия. Этот глубоко философский вопрос остроумно обыграл уже знакомый нам Роберт Шекли.
В его блистательном романе «Обмен разумов» есть небольшая глава, посвященная так называемому Искаженному Миру – зыбкой и причудливой изнанке скучной реальности. Позволим себе несколько цитат.
…итак, благодаря уравнениям Римана-Хаке была, наконец, математически доказана теоретическая необходимость твистерманновой пространственной зоны логической деформации. Эта зона получила название Искаженного Мира, хотя на самом деле не искажена и миром не является.
И далее:
Некий мудрец однажды спросил: «Что будет, если я войду в Искаженный Мир, не имея предвзятых идей?» Дать точный ответ на такой вопрос невозможно, однако мы полагаем, что к тому времени, как мудрец оттуда выйдет, предвзятые идеи у него появятся. Отсутствие убеждений не самая надежная защита.
Некоторые считают высшим достижением интеллекта открытие, что решительно все можно вывернуть наизнанку и превратить в собственную противоположность. Исходя из такого допущения, можно поиграть во многие занятные игры; но мы не призываем вводить его в Искаженном Мире. Там все догмы одинаково произвольны, включая догму о произвольности догм.
Не надейся перехитрить Искаженный Мир. Он больше, меньше, длиннее и короче, чем мы. Он недоказуем. Он просто есть.
То, что уже есть, не требует доказательств. Все доказательства суть попытки чем-то стать. Доказательство истинно только для самого себя, оно не свидетельствует ни о чем, кроме наличия доказательств, а это ничего не доказывает.
То, что есть, невероятно, ибо все отчуждено, ненужно и грозит рассудку.
Возможно, эти замечания об Искаженном Мире не имеют ничего общего с Искаженным Миром. Но путешественник предупрежден.
Конечно же, дядя шутит, но, как известно, в каждой шутке всегда есть доля шутки. Мир оказался гораздо сложнее, чем наши доморощенные представления о нем, и об этом ни на минуту не следует забывать. Разумеется, мне меньше всего хотелось, чтобы вы, читатель, подумали, будто природа непознаваема. Я просто-напросто пытался подчеркнуть, что нужно трезво оценивать свои возможности, а не заниматься дешевым шапкозакидательством.
Кирпичи мироздания
Античные философы полагали, что фундамент мироздания сложен из четырех основных элементов – земли, воздуха, огня и воды. Великий Аристотель добавил к этой комбинации пятую сущность – так называемую квинтэссенцию, из которой якобы построены эфирные тела. Он считал, что вещество можно дробить бесконечно, так никогда и не добравшись до той мельчайшей крупинки, которая уже не поддается дальнейшему дроблению. Упрямые атомисты не соглашались с корифеем всех наук, настаивая на том, что материя состоит из атомов – крохотных неделимых частиц, пребывающих в постоянном движении (слово «атом» в буквальном переводе с греческого означает «неделимый»). Эту идею поддерживали такие выдающиеся мыслители древности, как Демокрит, Эпикур и Левкипп, но поскольку античная наука была насквозь спекулятивной и боялась эксперимента как черт ладана, толку от этих упражнений в суесловии было чуть. Даже когда английский естествоиспытатель Джон Дальтон в 1803 году показал, что химические вещества всегда соединяются в определенных пропорциях, многовековой спор между двумя школами все еще не был окончательно решен в пользу атомистов.
Впрочем, в позапрошлом веке подавляющее большинство ученых уже не сомневалось в корпускулярном строении вещества. К концу XIX столетия, когда Джозеф Джон Томсон из Тринити-колледжа в Кембридже открыл электрон, стало понятно, что атом имеет сложную внутреннюю структуру и не является элементарным кирпичиком мироздания. Но каким образом электроны и протоны (нейтрон был открыт только в 1932 году Джеймсом Чэдвиком) располагаются в атоме друг относительно друга, было совершенно не ясно. Скажем, лорд Кельвин считал атом сферическим образованием, по всему объему которого равномерно распределен положительный заряд, а внутри сферы в статическом равновесии находятся отрицательно заряженные электроны. Но уже буквально через несколько лет Резерфорд не оставил от этой модели камня на камне.
Опыт английского физика был сравнительно прост. Он обстреливал тончайшую золотую фольгу пучком альфа-частиц, летящих со скоростью 20 тысяч километров в секунду. Альфа-излучение – это массивные положительно заряженные частицы, испускаемые некоторыми нуклидами в процессе радиоактивного распада. Резерфорда занимал вопрос, насколько сильно отклонятся частицы, пройдя через золотую фольгу.
Картинка получилась весьма любопытная. Как и следовало ожидать, большая часть альфа-частиц пробила фольгу навылет, практически не отклонившись или отклонившись на незначительный угол в 2–3 градуса. Но некоторые частицы отклонялись гораздо заметнее – на 90 градусов и больше, а отдельные немногие и вовсе отскакивали назад, как отлетает от стены брошенный мяч. Складывалось впечатление, что атомы тончайшей пленки могут быть серьезным препятствием на пути стремительно летящих массивных альфа-частиц. Это казалось совершенно невероятным: с таким же успехом можно было предположить, что лист ватмана способен остановить винтовочную пулю.
И тут Резерфорда вдруг осенило. Он воспользовался примером, что называется, из другой оперы – представил, как ведет себя комета в окрестностях Солнца.
Попав в мощное гравитационное поле нашего светила, она может сильно изменить траекторию полета, сделать, например, виток и удалиться от Солнца в самом неожиданном направлении. С другой стороны, гравитационное взаимодействие между объектами микромира настолько мало, что его вряд ли имеет смысл принимать во внимание. Тогда, быть может, внутри атома действуют какие-то другие силы, например электромагнитные? Альфа-частица действительно заряжена положительно, но вот беда: сам-то атом электрически нейтрален! А что если внутриатомный заряд распределен неравномерно? Ведь комета тоже взаимодействует не со всей Солнечной системой, а только с ее центральным звеном – Солнцем.
И Резерфорд догадался, что непротиворечиво объяснить результат эксперимента можно только одним-единственным способом. Атом состоит из положительно заряженного ядра и отрицательно заряженных электронов, которые вокруг ядра вращаются, как планеты вокруг Солнца. Причем атомное ядро много меньше атома в целом (как и Солнце значительно меньше Солнечной системы), хотя почти вся масса атома сосредоточена как раз в атомном ядре. Поэтому те альфа-частицы, которые пролетели вдали от ядра, почти не подверглись его влиянию, а вот частицы, захваченные ядром, отклонились очень сильно. А поскольку атом, за исключением ядра, практически пуст, количество ощутимо отклонившихся частиц было весьма незначительным.
Сегодня мы знаем, что размер атома составляет в среднем 10-8 см, а размер атомного ядра – 10-13 см. Разница на пять порядков, то есть в 100 тысяч раз! Заряды протона и электрона противоположны по знаку и равны в абсолютном выражении, а вот масса протона превосходит массу электрона в 1836 раз. В электрически нейтральном атоме число протонов соответствует числу электронов, но протоны собраны в исчезающе малом объеме (а ведь там еще есть нейтроны, превосходящие электроны по массе примерно на ту же самую величину), в то время как электроны распределены по всему атому. Таким образом, положительный заряд и почти вся масса атома предельно сконцентрированы, а отрицательный заряд распылен, «размазан» по всему пространству крохотной «солнечной системы».
Разумеется, планетарная модель атома, предложенная Резерфордом в 1911 году, не осталась неизменной до сегодняшнего дня. Первые серьезные поправки в нее внесли еще Нильс Бор и Вольфганг Паули, и с течением времени атом стал все меньше и меньше напоминать Солнечную систему. Во второй половине прошлого века выяснилось, что нуклоны атомного ядра (современная физика считает, что протон и нейтрон – это два зарядовых состояния одной и той же частицы – нуклона) вовсе не исходные кирпичи мироздания, а построены в свою очередь из особых субъядерных частиц – кварков. Этот термин придумал Мюррей Гелл-Манн, теоретик из Калифорнийского технологического института, позаимствовавший звонкое словечко у Джеймса Джойса, автора заумной вещи «Поминки по Финнегану». В 1969 году за исследование кварков физик был удостоен Нобелевской премии.
Как мы видим, от Солнечной системы почти ничего не осталось. И хотя сегодня нам прекрасно известно, что реальный электрон совсем не похож на планету, а если его и можно с чем-то сравнить, то скорее с неким размытым облаком, обладающим сложными свойствами, это ничуть не умаляет ценности предложенной Резерфордом модели. Не подлежит сомнению, что сам английский ученый в полной мере отдавал себе отчет в приблизительности собственной аналогии, хотя не имел понятия ни о принципе неопределенности Гейзенберга, ни тем более о кварках Гелл-Манна.
Тем не менее модель Резерфорда сразу же столкнулась с серьезными трудностями. Поскольку электрон пребывает в постоянном движении, то он, по сути дела, представляет собой движущийся электрический заряд, который непрерывно растрачивает энергию, ибо движущийся заряд обязан излучать. Следовательно, через очень короткое время обессилевший электрон, бездарно разбазаривший свой золотой запас, должен по суживающейся спирали обрушиться на ядро. Другими словами, атом Резерфорда предельно нестабилен, он обязан погибнуть в считанные доли секунды. Выход из этого неприятного положения нашел великий датчанин Нильс Бор, один из создателей квантовой механики.
Однако сначала как следует разберемся со строением атома. В простейшем случае атомное ядро состоит из одного-единственного протона. Так устроен, например, атом водорода: положительно заряженный протон в центре и несущий отрицательный заряд электрон, расположенный на орбите вокруг протона. В целом атом водорода электрически нейтрален, так как плюс на минус в итоге дает нуль (напоминаем, что хотя электрон и протон различаются по массе в 1836 раз, их заряды по величине равны). Итак, структуру атома простого водорода (протия) можно изобразить графически следующим образом: [Н. Единица внизу слева от химического символа водорода (Н) обозначает атомный номер элемента, который соответствует числу протонов в ядре (а поскольку атом электрически нейтрален, электронов на орбитах ровно столько же, сколько протонов). Единица вверху слева – это массовое число, отражающее количество нуклонов в ядре (то есть протоны плюс нейтроны). В случае обычного водорода, протия, нейтронов в ядре нет, поэтому атомный номер и массовое число равны между собой.
Если добавить в ядро обычного водорода нейтрон, мы получим его изотоп – дейтерий, или тяжелый водород. Тогда его формула будет выглядеть так: Н. Атомный номер по-прежнему равен единице, ибо количество протонов в ядре не изменилось, а вот массовое число выросло вдвое, поскольку к протону добавился не имеющий заряда нейтрон. У водорода есть еще один изотоп – тритий, формула которого запишется следующим образом:,Н. Легко видеть, что в ядре трития содержатся 2 нейтрона и 1 протон (массовое число равно трем), а вот атомный номер опять же не изменился, так как протон все еще пребывает в гордом одиночестве. И протий, и дейтерий, и тритий химически совершенно идентичны и представляют собой один и тот же элемент – водород, потому что химические свойства элементов связаны с валентными электронами, а их количество во всех трех случаях совершенно одинаково (число протонов равно числу электронов).
Итак, химические элементы, имеющие одинаковый атомный номер, но разные массовые числа, называются изотопами. Или еще проще: изотопы – это ядра атомов, различающиеся числом нейтронов, но содержащие одинаковое количество протонов. Все три ипостаси водорода – протий, дейтерий и тритий – будут занимать одну и ту же ячейку в Периодической системе элементов. А теперь попытаемся применить полученные знания на практике. Как известно, природный уран состоит из смеси трех изотопов – уран-238, уран-235 и уран-234, причем на долю урана-238 приходится более 99 %. Вот его формула:
Это явление называется радиоактивным распадом и сопровождается генерацией жесткого излучения (различные варианты радиоактивного распада мы разбирать не станем). Между прочим, ядро трития, в отличие от дейтерия и обычного водорода, тоже нестабильно, потому что имеет избыток нейтронов.
Вернемся к атому Резерфорда, который не имеет права на существование. Как сохранить жизнь электрону, который растрачивает энергию, обращаясь вокруг атомного ядра? Как уже говорилось выше, решение этой проблемы нашел Нильс Бор. Он постулировал, что электрон располагается не на любой произвольной орбите, а только на той, которая лежит на некотором вполне определенном расстоянии от ядра. Двигаясь по таким разрешенным орбитам, электроны не излучают, а следовательно, не теряют энергию. Испускание или поглощение энергии происходит при перескоке электрона с орбиты на орбиту, причем весьма важно то обстоятельство, что эта энергия квантована, то есть разбита на своего рода порции. Электрон стремится занять в атоме наиболее выгодный в энергетическом отношении уровень, где его энергия минимальна. Чем ближе орбита лежит к ядру, тем меньше энергия у находящегося на ней электрона. Если ближайшая к ядру орбита оказывается уже занятой, электрон взлетает на более высокую орбиту, но для этого ему необходимо приобрести дополнительную энергию, то есть поглотить квант света (электромагнитного излучения). Испустив квант электромагнитного излучения, электрон может спуститься этажом ниже.
Важно помнить, что все эти орбиты – как близкие, так и далекие – отнюдь не произвольны, а представляют собой жестко фиксированные энергетические уровни. В известном смысле систему электронных оболочек (или орбит) можно уподобить обыкновенной лестнице. Чтобы подняться вверх по ступенькам, нужно совершить работу, то есть затратить некоторую энергию. Спуск вниз дается несравненно легче, но висеть между ступеньками все равно нельзя: в каждый отдельно взятый момент времени верхолаз обязан занимать вполне конкретную ступеньку. Внутриатомная лестница фиксирована столь же жестко. Электрон, поглотивший квант электромагнитного излучения (напоминаем, что это строго отмеренная порция энергии), получает возможность шагнуть на следующую ступеньку, ибо его энергия возросла. Мерой этой энергии будет расстояние между ступеньками. Чем больше энергии приобретет электрон, тем выше он сможет вскарабкаться. Однако электрон всегда мечтает вернуться на первый этаж, так как это самая выгодная позиция. Он может сразу свалиться на исходный уровень, и тогда энергия испущенного им электромагнитного излучения будет в точности равна той, которая была первоначально поглощена. А вот если он застрянет посередине, то его излучение будет давать иную энергию, а следовательно, и длину волны. Итак, энергия, приобретаемая или теряемая электроном, определяется расстоянием между ступеньками.
Высвободившаяся из атома энергия может быть зарегистрирована. А поскольку каждый химический элемент имеет, так сказать, свой уникальный набор ступенек, спектры излучения различных веществ будут в высокой степени индивидуальны. Другими словами, каждый химический элемент имеет свою визитную карточку, что очень на руку астрофизикам. Изучая спектры далеких звезд, можно идентифицировать содержащиеся в них химические элементы.
Итак, мы пришли к выводу, что боровский атом ничуть не похож на атом Резерфорда. С другой стороны, к реальному атому он тоже имеет весьма косвенное отношение, потому что атом Бора (атом, который построил Бор, как поется в известной песне, пародирующей знаменитое английское стихотворение) – не более чем удобная модель, позволяющая понять суть процессов, совершающихся в мире элементарных частиц. Однако прежде чем перейти к фундаментальным кирпичам мироздания (сиречь вышеупомянутым элементарным частицам), необходимо хотя бы коротко остановиться на принципе неопределенности, который является альфой и омегой квантовой теории. Если выдающийся немецкий физик Макс Планк предположил в 1900 году, что никакое электромагнитное излучение (видимый свет, рентгеновские лучи, а также волны любых длин) не может генерироваться с произвольной интенсивностью, но непременно должно дозироваться порционно (Планк назвал эти порции квантами), то другой знаменитый немец, Вернер Гейзенберг, сформулировал свой основополагающий принцип.
Согласно принципу неопределенности Гейзенберга, невозможно в одно и то же время точно измерить координаты частицы и ее скорость. Суть рассуждений Гейзенберга понять нетрудно. Если вы хотите предсказать, каким образом изменятся положение и скорость частицы, вы должны уметь производить точные измерения здесь и сейчас. Совершенно очевидно, что для этого вы должны направить на частицу пучок света, и чем короче будет длина волны светового пучка, тем точнее вам удастся рассчитать координаты частицы. Однако, исходя из гипотезы Планка, свет нельзя дозировать произвольно малыми порциями, ибо у него имеется некий неделимый фрагмент – один квант. Понятно, что этот квант непременно внесет возмущение в траекторию частицы и непредсказуемо поменяет ее скорость. Чтобы добиться большей точности в измерении координаты частицы, вы станете укорачивать длину волны, и тогда энергия кванта автоматически возрастет. (Длина волны связана с энергией кванта обратно пропорциональной зависимостью: чем короче длина волны, тем выше энергия.) Следовательно, скорость сразу же увеличится. Стивен Хокинг, один из столпов современной теоретической физики, пишет об этом так:
Иными словами, чем точнее вы пытаетесь измерить положение частицы, тем менее точными будут измерения ее скорости, и наоборот. Гейзенберг показал, что неопределенность в положении частицы, умноженная на неопределенность в ее скорости и на ее массу, не может быть меньше некоторого числа, которое называется сейчас постоянной Планка. Это число не зависит ни от способа, которым измеряется положение или скорость частицы, ни от типа этой частицы, т. е. принцип неопределенности Гейзенберга является фундаментальным, обязательным свойством нашего мира.
Принцип неопределенности имеет далекоидущие следствия, в том числе и философского характера. Окончательно накрылась медным тазом дерзкая мечта детерминистов, которые на голубом глазу брались предсказывать будущее Вселенной, если в их распоряжении окажутся точные координаты всех составляющих ее частиц. Стало понятно, что субъект и объект познания не могут существовать друг без друга и навсегда повязаны одной веревочкой.
Прикоснуться к объекту, ничуть его не возмутив, сумел бы разве что Господь Бог, но мы безжалостно выносим его на свалку истории, ибо сказано: не следует умножать число сущностей сверх необходимости (Уильям Оккам, средневековый английский философ). Подход Оккама (или «бритва Оккама») в 20-х годах прошлого века был взят на вооружение Нильсом Бором, Вернером Гейзенбергом, Эрвином Шредингером и Полем Дираком, в результате чего классическая механика уступила место квантовой теории, во главу угла которой был положен принцип неопределенности.
Квантовая механика раз и навсегда перечеркнула детерминизм, на котором покоилась старая физика, и внесла в науку неизбежный элемент непредсказуемости. Бескрылая и плоская однозначность уступила место вероятностному подходу.
Зная исходные параметры системы, мы уже не можем гарантировать вполне определенного результата, а говорим лишь о том, что система будет находиться в том или ином состоянии с некоторой вероятностью. Это было настолько непривычно и удивительно! Даже такой еретик и революционер, как Альберт Эйнштейн, однажды в связи с этим в сердцах заявил, что Бог не играет в кости. Тем не менее большинство ученых сразу же приняли квантовую механику, поскольку она давала прекрасное согласование с экспериментом.
Из принципа неопределенности самым непосредственным образом вытекает так называемый корпускулярно-волновой дуализм. Любая частица может запросто обернуться волной, и наоборот: суть вещей, как ни странно, ускользает от строгих формулировок. Скажем, электромагнитное излучение распространяется в виде фиксированных порций, или квантов, что убедительно продемонстрировал Макс Планк. Однако в соответствии с принципом неопределенности Гейзенберга фотоны (кванты электромагнитного излучения) в то же самое время ведут себя как волны, не имеющие определенного положения в пространстве, но «размазанные» по нему с некоторым распределением вероятности. Свет в данном случае – отнюдь не исключение; точно так же ведут себя все прочие частицы, которые принято называть элементарными.
Физики немного лукавят, когда говорят, что электрон вращается вокруг атомного ядра, потому что в действительности ни о каком движении в привычном понимании этого слова здесь не может быть и речи: электрон не крутится, как заведенный, но находится в некотором определенном состоянии, которое описывается сложной волновой функцией. Иными словами, мы имеем право говорить только лишь о вероятности пребывания электрона в той или иной точке.
Закончим на этом наш короткий экскурс в квантовую механику и перейдем к рассмотрению элементарных частиц как таковых.
Если фотон или электрон, бесспорно, элементарны, то этого никак не скажешь о начинке атомного ядра – протонах и нейтронах, поскольку они имеют сложную внутреннюю структуру. Обе эти частицы представляют собой кварковые триплеты, то есть построены из более фундаментальных кирпичей – кварков, тех самых кварков, за открытие которых Мюррей Гелл-Манн был удостоен Нобелевской премии. Однако обо всем по порядку.
Основными свойствами всех без исключения элементарных частиц являются масса, заряд и спин. Масса частицы составляет часть ее полной энергии, потому что масса – это всего лишь другая ее форма. Масса может быть преобразована в энергию, и наоборот; взаимосвязь между этими двумя сторонами одной медали легко видеть в знаменитой формуле Альберта Эйнштейна E = mc2, где E – энергия, m – масса, а c – скорость света. Одни частицы имеют массу, а другие ее лишены. Например, физики говорят, что масса покоя фотона равняется нулю. Это просто-напросто означает, что покоящихся фотонов в природе не существует. Остается добавить, что распределение частиц по массам не подчиняется никакой внятной закономерности.
Электрический заряд – тоже знакомый зверь. С зарядом дело обстоит в точности так же, как и с массой: одни частицы его несут, а другие – нет. Частицы, не имеющие заряда, считаются электрически нейтральными. В отличие от массы, заряд бывает двух видов – положительный и отрицательный; заряды всех элементарных частиц кратны заряду электрона, за исключением кварков, заряд которых кратен 1/3 заряда электрона.
Спин элементарной частицы представляет собой некий внутренний момент ее вращения и пропорционален постоянной Планка. Если частица не вращается, ее спин равен нулю. Из соображений наглядности можно представить себе частицы в виде маленьких волчков или шариков, вращающихся вокруг своей оси, но всегда следует помнить, что подобная картина сугубо условна и не имеет с реальностью ничего общего. В квантовом мире элементарные частицы не имеют строго определенной оси вращения. Спин частицы дает нам представление о том, как она выглядит, если посмотреть на нее с разных сторон. Стивен Хокинг приводит хороший пример на этот счет.
Частица со спином 0 похожа на точку: она выглядит со всех сторон одинаково. Частицу со спином 1 можно сравнить со стрелой: с разных сторон она выглядит по-разному и принимает тот же вид лишь после полного оборота на 360°. Частицу со спином 2 можно сравнить со стрелой, заточенной с обеих сторон: любое ее положение повторяется после полуоборота (180°). Аналогичным образом частица с более высоким спином возвращается в первоначальное состояние при повороте на еще меньшую часть полного оборота. Это все довольно очевидно, а удивительно другое – существуют частицы, которые после полного оборота не принимают прежний вид: их нужно дважды полностью повернуть! Говорят, что такие частицы обладают спином 1/2.
Все известные элементарные частицы можно разделить на две группы в зависимости от величины спина, который они несут. Если спин выражается целым числом (0, 1, 2 и т. д.), то такие частицы называют бозонами, а если полу-целым (1/2, 3/2, 5/2 и т. д.), – фермионами. Эти названия образованы от фамилий двух известных физиков-теоретиков Сатиендра Бозе и Энрико Ферми. Все вещество во Вселенной построено из фермионов – частиц с полуцелым спином, а силы, действующие между частицами вещества, создаются бозонами, имеющими целочисленный спин. Спин электрона составляет 1/2, поэтому он попадает в группу фермионов.
В зависимости от их отношения к сильному взаимодействию (о четырех типах фундаментальных взаимодействий речь у нас впереди) фермионы, в свою очередь, подразделяются на два семейства. Те фермионы, которые принимают участие в процессах с сильным взаимодействием, называются кварками (протоны и нейтроны состоят из кварков), а все остальные, в сильных взаимодействиях не участвующие, – лептонами. Электрон входит в семейство лептонов; кроме него там помещаются еще пять частиц – электронное нейтрино, мюон, мюонное нейтрино, тау-нейтрино и тау-лептон. Кварков тоже насчитывается шесть разновидностей – и-кварк, d-кварк, с-кварк, s-кварк, t-кварк и b-кварк. Таким образом, кирпичами мироздания, строительными блоками материи, которую мы повсеместно наблюдаем, являются 12 фундаментальных частиц – 6 кварков и 6 лептонов.
Среди бозонов, являющихся переносчиками фундаментальных взаимодействий и создающих силы, действующие между частицами вещества, наиболее известны фотоны, 8 разновидностей глюонов, 3 вида тяжелых векторных бозонов (W+-бозон, W--бозон и Z0 -бозон) и пока еще не открытый гравитон.
Остается добавить, что в современной теории поля частицы выступают как мелкомасштабные волны соответствующих полей. Например, электромагнитное излучение может восприниматься и как волна (скажем, в случае радиоволн), и как частица (жесткие гамма-кванты). Если длина волны электромагнитного излучения значительно превышает размеры прибора, то она регистрируется как непрерывная волна, то есть бегущие колебания электрического и магнитного полей. В противном случае (при малой длине волны) прибор фиксирует свет в виде отдельных квантов – фотонов. Тогда говорят уже не о длине волны, а об энергии фотона. Классический пример корпускулярно-волнового дуализма.
Фермионы, из которых построено вещество Вселенной, – отнюдь не безучастные статисты на этом празднике жизни. Они взаимодействуют между собой, а в роли переносчиков взаимодействия (или сил, действующих между частицами вещества) выступают бозоны. Чтобы создать все многообразие явлений, природе потребовалось круглым счетом четыре типа взаимодействий – электромагнитное, слабое, сильное (или ядерное) и гравитационное. Имеются серьезные основания полагать, что первые три типа взаимодействий при некоторых условиях могут объединяться в одну силу, а раздельно они существуют только при низких уровнях энергии. К настоящему времени построена модель электрослабого взаимодействия (электромагнитное + слабое), а частицы-переносчики этой единой силы обнаружены экспериментально (три вида тяжелых векторных бозонов). Теория, объединяющая три силы в одну (электрослабое взаимодействие + сильное), называется теорией великого объединения, однако потребный для этого уровень энергий недоступен современным ускорителям. При еще более высоких энергиях собираются воедино все четыре силы природы. Такие условия существовали в очень юной Вселенной, когда мир еще только выпархивал из небытия.
Разберем четыре типа фундаментальных взаимодействий по порядку. Электрические и магнитные явления имеют общее происхождение и описываются в рамках электромагнитного взаимодействия, которое так или иначе связано с обменом или излучением фотонов (квантов электромагнитного излучения). Впервые это показал выдающийся английский физик Джеймс Максвелл еще в 1873 году. Электромагнитные силы действуют только между заряженными частицами (одноименные заряды отталкиваются, разноименные – притягиваются). Радио, телевидение, сотовая связь и многие другие удобные и полезные вещи немыслимы без феномена электромагнетизма, поскольку эти силы, основанные на противоборстве двух полярных начал, способны распространяться на значительные расстояния. Более того, атомы и молекулы, из которых построено вещество, тоже обязаны своим существованием электромагнитному взаимодействию. Силы электромагнитного притяжения удерживают электроны внутри атомов, заставляя их вращаться вокруг атомного ядра. В роли переносчика электромагнитных сил выступает безмассовая частица со спином 1 – фотон (физики говорят, что масса покоя фотона равняется нулю).
Взаимодействие между двумя заряженными частицами (притягиваются они или отталкиваются, в данном случае роли не играет) представляет собой результат обмена большим числом так называемых виртуальных фотонов. В отличие от «реальных» частиц, их виртуальные сестры принципиально ненаблюдаемы, их невозможно зарегистрировать при помощи детектора. Поясним сказанное на примере. Вообразим себе некий закрытый контейнер, внутри которого ничего нет, – ни излучения, ни вещества. Другими словами, там содержится только вакуум, абсолютная пустота. Но чтобы удостовериться, что контейнер действительно пуст, мы должны осветить его нутро – послать туда луч света. А поскольку свет распространяется с конечной скоростью, процесс измерения займет некоторое время. Сказать с полной определенностью, что контейнер пуст, мы сможем только в тот момент, когда вернувшийся из контейнера световой пучок достигнет нашего детектора. При этом у нас нет никакой уверенности, что контейнер оставался пустым все время на протяжении процедуры измерения. Не исключено, что энергия вакуума могла колебаться (флуктуировать) около нуля, порождая короткоживущие частицы-призраки, которые гибнут раньше, чем мы успеваем их засечь. Они выныривают из пустоты и вновь прячутся в ней настолько стремительно, что мы не можем обнаружить их в принципе, даже если располагаем самой совершенной измерительной аппаратурой. Такие частицы принято называть виртуальными.
Разумеется, не все фотоны виртуальны. Кванты света, которые высвобождаются в результате перехода электрона с орбиты на орбиту, представляют собой вполне реальные фотоны. Аналогичным образом при соударении реального фотона с атомом электрон может перескочить на более удаленную от ядра орбиту. В этом случае энергия фотона будет поглощена. Итак, подытожим: электромагнитная сила действует между всеми частицами, несущими электрический заряд, а ее переносчиками являются виртуальные фотоны. А поскольку масса покоя фотона равна нулю, электромагнитное взаимодействие может передаваться на большие расстояния.
Слабое взаимодействие отвечает за некоторые превращения в мире элементарных частиц. Хороший пример сил этого типа – так называемый бета-распад нестабильных атомных ядер, в результате которого внутриядерный нейтрон превращается в протон, а из ядра вылетают электрон и антинейтрино. В слабом взаимодействии участвуют все частицы со спином 1/2 (то есть все фермионы), а его переносчиками являются тяжелые векторные бозоны со спином 1 (W+-бозон, W--бозон и Z0-бозон). Поскольку векторные бозоны – чрезвычайно массивные частицы (они тяжелее протона почти в 100 раз), слабое взаимодействие эффективно только на сверхмалых расстояниях порядка 10-16—10-17 см. Как уже говорилось, слабое взаимодействие удалось объединить с электромагнитным. Это было сделано в стандартной модели Вайнберга – Салама, о которой подробно рассказывается в главе «И тьма пришла». Слабое взаимодействие имеет самое непосредственное отношение к термоядерным реакциям, в ходе которых водород в звездных недрах превращается в гелий, а также к некоторым другим процессам, сопровождающим эволюцию звезд разных типов.