Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Золото, пуля, спасительный яд. 250 лет нанотехнологий - Генрих Владимирович Эрлих на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Генрих Эрлих

Золото, пуля, спасительный яд. 250 лет нанотехнологий

Введение

Нанотехнологии, нанотехнологическая революция… Если вы понимаете, что это такое, то вы – счастливое исключение. Большинство людей этого так и не уразумели, несмотря на огромное количество публикаций в СМИ, телевизионных передач и разъяснений с самого высокого уровня. А разобраться все же хочется, даже людям, далеким от науки. Ведь в нанотехнологии государство инвестирует сотни миллиардов рублей, которые можно было бы потратить на более внятные цели – проблем хватает. И хотелось бы знать, во что все это выльется. Речь не идет о том, окупятся ли вложения, в этих категориях у нас мыслят только экономисты, да и те плохо. Но как все это отразится на нашей жизни? Появятся ли новые товары, устройства и технологии? Станет ли от этого наша жизнь лучше и безопаснее или получится, как всегда, – опыт революций у нас богатый и оснований для пессимистических ожиданий предостаточно.

Хотите знать правду? Уточняю потому, что с правдой дело обстоит непросто. Люди, громче всех кричащие о том, что их обманывают и они хотят знать всю правду, верят, как показывает опыт, только тому, что отвечает их умонастроению и ожиданиям, и эту “правду”, как правило ужасную, им с готовностью поставляют СМИ. Люди же здравомыслящие знают, что до правды никогда не докопаться, потому что у каждого она своя, да и кому она нужна, эта правда? “Тьмы низких истин нам дороже нас возвышающий обман”, – как сказал наш великий поэт.

Настаиваете? Отвечаю: никакой нанотехнологической революции не было, нет и не будет. Разговоры о революции потребовались для того, чтобы побудить государства и корпорации раскошелиться на науку, к которой чиновники и бизнесмены стали остывать, а в нашей стране и вовсе махнули на нее рукой. Не будем осуждать ученых за этот маленький блеф, потому что другого способа пробить стену непонимания у них не было.

А нанотехнологии есть? Есть, вот за это – руку на рельсы, голову на плаху. Тут я, поверьте, ничем не рискую. Вы и сами легко убедитесь в этом. Надо всего лишь отогнать навязанный призрак нанотехнологической революции и вглядеться в окружающий нас мир. Он весь наполнен объектами, имеющими наноразмеры, они витают в воздухе и плавают в воде, из них сложено почти все, попадающееся нам на глаза, включая нас самих.

Этот природный наномир ученые изучали на протяжении всей истории науки. Да, они не могли увидеть воочию объекты этого мира, такую возможность им предоставил электронный микроскоп, изобретенный лишь в начале 1930-х годов, разглядеть же тонкую структуру этих объектов ученые смогли только с помощью сканирующих зондовых микроскопов. Именно с изобретения этих уникальных приборов в 1980-х годах многие и ведут отсчет эпохи нанотехнологий. Но это не так. Ученым совсем не обязательно видеть объект, чтобы понять, как он устроен, и тем более для того, чтобы манипулировать им. В конце концов, электроны и электромагнитные волны мы до сих пор разглядеть не можем, но уже более ста лет используем, к нашему всеобщему удовольствию.

То же и с нанообъектами. Исследователи научились управляться с природными нанообъектами и изменять их, получать искусственные нанообъекты и создавать из них разнообразные материалы и устройства. “Разберите” свой компьютер, телевизор, автомобиль, материалы, которыми отделана ваша квартира, одежду, которую вы носите, и продукты из супермаркета, которые вы употребляете в пищу, – везде вы обнаружите множество наноразмерных “деталей”, созданных руками человека, созданных осознанно и целенаправленно. Как можно одним словом назвать все это искусство и производство? Правильно, это нанотехнологии.

Кто их придумал? Однозначно ответить на этот вопрос невозможно. Можно проследить историю отдельно взятой технологии – до отца-основателя, что, кстати, и делают пропагандисты “революционных” нанотехнологий. Но в том-то и дело, что слово это употребляется во множественном числе, существует великое множество принципиально различных технологий, которые объединяет только то, что все они включают манипулирование объектами наноразмеров. Соответственно и отцов у этого детища современности – нанотехнологий – множество.

Нас ведь в первую очередь интересуют люди – не так ли? Поэтому рассказывать я вам буду о людях, проложивших новые пути в науке и технологиях, об их жизни, о том, как они сделали открытия и как их восприняли современники, какой смысл они вкладывали в обнаруженные явления (зачастую это совсем не то, что мы теперь приписываем им) и понимали ли они сами, что открыли (случалось и такое). Тут мне поневоле придется немного углубиться в науку, но обещаю – никаких формул! Я расскажу вам, во что претворились эти идеи, какие технологии, созданные на их основе, используются уже сейчас, а какие могут быть созданы в будущем и как они изменят нашу жизнь.

Чтобы не упустить важных деталей, я воспользовался новейшим достижением нашего времени – сканирующим зондовым микроскопом. Я проводил его иглой над необъятным полем наномира, пока не обнаруживал “точку роста”, и, зацепившись за нее, доводил нить повествования до наших дней. А потом вновь отправлялся в свободное сканирование. Так что рассказ мой получился причудливым, мы будем легко переноситься из века в век, из страны в страну, из одной области науки в другую. Мне остается только надеяться, что все эти фрагменты пестрой мозаики сложатся у вас в голове в образ нанотехнологий.

Глава 1 Первый

Он был первым, первым во множестве разнородных областей человеческой деятельности, которыми ему выпало заниматься. В одних он был первопроходцем, в других – первенствовал по всеобщему мнению. Его называли “первым американцем”, потому что он олицетворял рождение новой, американской нации, был первым американцем, признанным в Старом Свете, одним из отцов-основателей США, по нему лепили свою жизнь многие поколения американцев, ведь именно он придумал “американскую мечту” и концепцию о неограниченных возможностях янки. Это, несомненно, самый узнаваемый американец, потому что его портрет украшает купюру, перед которой благоговеют все, включая ненавидящих доллар и предсказывающих ему скорый крах. Этого лысоватого патлатого старика знают все, даже не слышавшие его имени, – Бенджамин Франклин.

Звание одного из отцов-основателей нанотехнологий немного прибавит к его заслугам, но мне кажется, что Франклин, разобравшись в сути вопроса, не стал бы отказываться от него, как не отказывался от всех остальных. А мне, признаюсь, начинать рассказ с Франклина просто удобнее, потому что от его экспериментов, выполненных 250 лет назад, легко протянуть несколько логических цепочек вплоть до наших дней. Опять же, 250 – хорошее, круглое число, долгая история придает солидности народам, партиям и наукам.

Описание экспериментов и рассуждения об их отношении к нанотехнологиям оставляем на десерт, а начинаем с главного блюда, с рассказа о личности Бенджамина Франклина и истории его жизни, пытаясь понять, что подвигло его разливать масло на воде (ну вот, проговорился), как он ухитрялся видеть необычное в обыденном и делать неожиданные, глобальные выводы из простых наблюдений, доступных всем и каждому.

Бенджамин Франклин родился в 1706 году, он был пятнадцатым в череде из семнадцати детей сурового пуританина Джозайи Франклина, эмигрировавшего в Бостон из Англии в 1685 году, спасаясь от религиозных гонений. В такой семье не забалуешь – школу мальчик покинул в десятилетнем возрасте, отучившись два класса, все его дальнейшее образование проходило, как говорится, без отрыва от производства. Способ образования был классический, неизменный на протяжении столетий, – чтение всего, что попадется на глаза. Производство вначале было незамысловатым – Бенджамин варил мыло и плавил воск для свечей в мастерской своего отца. Через два года он приобщился к более интеллигентной профессии – стал подмастерьем в типографии своего старшего брата Джеймса.

К тому же времени относятся и первые литературные опыты Франклина – он принялся печь как блины стихотворные баллады, которые с пылу с жару печатались и распродавались его оборотистым братом. Конец этому бизнесу положил отец. “Все поэты – нищие”, – сказал он. Бенджамин проникся аргументом родителя и впредь занимался только прозой, достигнув в ней подлинного мастерства, его “Автобиография” – действительно блестящее литературное произведение. Но, возможно, Франклин при этом утратил что-то важное, не случайно Макс Вебер в своей знаменитой книге “Протестантская этика и дух капитализма” называл Франклина стопроцентным буржуа и расчетливым эмпириком, абсолютно чуждым поэзии, в общем, образцовым американцем.

Вскоре Джеймс Франклин стал издавать газету “Нью-Ингленд курант”, вторую, появившуюся в Америке. Многие считали эту затею безнадежной, полагая, что одной газеты для Америки вполне достаточно. Людям вообще свойственно ошибаться в оценке перспектив идей и предприятий. Вот и Билл Гейтс когда-то считал, что 20 килобайт – максимальный объем оперативной памяти, который когда-либо потребуется пользователям персональных компьютеров. Бенджамин играл роль “мальчика за всё”: набирал и печатал очередной номер, а потом разносил газеты подписчикам. И при этом писал статьи, которые тайком подбрасывал в редакцию.

Отношения с Джеймсом постепенно накалялись, ведь тот видел в Бенджамине в первую очередь подмастерье, которого можно гонять в хвост и в гриву, и только потом – младшего брата. В 17 лет Бенджамин сбежал, что считалось по тем временам серьезным правонарушением, – подмастерье был обязан отработать обучение, не получая при этом ни гроша.

Свой бег он остановил в Филадельфии, городе, который стал для него родным и в котором доныне царит культ Франклина. Он устроился на работу в одну из двух типографий города. Вскоре на работящего, инициативного и любознательного молодого человека обратил внимание сам губернатор Пенсильвании, который отправил его в Англию, наобещав златые горы. Обещания оказались пустыми, Франклин вновь очутился в чужом городе без пенса в кармане и вновь не пропал. Он нашел работу в самой современной типографии и друзей, которые познакомили его с английской журналистикой, а также с многочисленными лондонскими театрами, пабами и борделями, которые Бенджамин посещал, отдавая дань своей молодости и отменному здоровью.

Первая “командировка” Франклина в Англию продолжалась полтора года. Вернувшись в Филадельфию, он начал свой долгий путь наверх. В этом он тоже был первым – первым в длинном ряду американцев, которые сделали себя сами. Начав простым рабочим, Франклин стал владельцем крупной типографии и издателем самой популярной американской газеты того времени “Пенсильвания газетт”. Хорошо усвоив английские уроки, Франклин не надоедал читателям морализаторством и назидательностью, которых в пуританской Америке и так было в переизбытке, он давал им информацию и увлекательное чтение: рецепты, календарь, остроумные житейские советы. Многие из них сохранились в форме афоризмов до наших дней, не утеряв актуальности, как, например, одно из самых известных: “Неизбежны только смерть и налоги”.

Да, он не был “поэтом” – когда в сорок лет Франклин отошел от активных занятий бизнесом, его доход превышал жалованье королевского губернатора Пенсильвании.

Отныне Франклин полностью отдался науке и общественной деятельности. О его научных достижениях чуть позже, пока же просто перечислим то, что он сделал для Филадельфии: основал публичную библиотеку (первую в Америке), Философское общество и академию – Университет Пенсильвании, милицию – специальные отряды добровольцев, патрулирующих по ночам Филадельфию, добровольную пожарную бригаду и первую в истории Пожарную страховую компанию, по его призыву филадельфийцы замостили улицы города, перестали выбрасывать на них мусор и выплескивать помои из своих домов и установили газовые фонари. А еще в течение шестнадцати лет Франклин был почтмейстером Пенсильвании и затем в течение двадцати одного года заместителем генерального почтмейстера североамериканских колоний, благодаря его усилиям американская почтовая служба поднялась на недосягаемую (для нас) высоту, на которой пребывает до сих пор.

В 1757 году Франклин отправился в Лондон в качестве представителя североамериканских колоний. Его вторая английская “командировка” продолжалась долгих восемнадцать лет. Задача Франклина, как и всякого настоящего посла, заключалась в сглаживании недоразумений и напряженностей, которые возникали между метрополией и колониями. Да, в своих статьях он развивал идеи американской нации и союза колоний, но ни о какой революции и тем более о независимости даже не заикался. Он считал необходимым верховенство английской короны, ибо в противном случае “все передерутся”. Все, чего он хотел, – это разумной имперской колониальной политики.

Свою близость к английскому двору Франклин использовал, в частности, для того, чтобы выбить для своего тридцатитрехлетнего сына Уильяма место губернатора штата Нью-Джерси {1} .

А потом что-то случилось, и Франклин резко переменил свои взгляды. В результате он был выслан или отозван из Англии и вернулся в Филадельфию в 1775 году, как раз вовремя, чтобы успеть поставить свою подпись под Декларацией о независимости.

Вопреки распространенному мифу он не был ее автором – ее написал Томас Джефферсон. Он также не был автором Конституции США, под которой стоит его подпись, – утвержденный вариант конституции был представлен Джеймсом Мэдисоном. Франклин не был и никак не мог быть автором Декларации прав человека, потому что это плод Великой французской, а не американской революции [1] .

Отношение Франклина к идее равенства было довольно своеобразным. Нет, он, конечно, говорил, что все люди равны, но с существенными оговорками. Он, в частности, считал ложным утверждение о равенстве всех людей по интеллекту, способностям, доброте души. Идея равенства, неоднократно писал Франклин, абсолютно верна в другом смысле: люди равны по причине общего для всех их невежества, тщеславия, глупости и необоснованных претензий на правоту. Признаем, что он был прагматиком, понимал в жизни и в людях и неукоснительно следовал принципу Френсиса Бэкона, одного из своих идейных учителей: надо принимать мир таким, каков он есть, а не таким, каким мы хотели бы его видеть.

Перечень мифов о Франклине заключает курьезное заблуждение, что он был президентом США. Оно проистекает из изображения Франклина на стодолларовой купюре, продолжающей галерею портретов президентов США. Между тем был один принципиально важный политический документ, составленный и подписанный Бенджамином Франклином, единственным из отцов-основателей США. Речь идет о Версальском мирном договоре 1783 года, ознаменовавшем признание независимости североамериканских колоний.

Пребывание Франклина на родине было коротким, уже через полгода после подписания Декларации о независимости он вновь отправился в качестве посла в Европу, на этот раз в Париж. Он умело использовал извечную вражду Англии и Франции, распространившуюся и на территорию Северной Америки, и обеспечил поддержку Францией отколовшихся от Англии колоний. Он также заручился поддержкой еще одной могущественной силы – масонов. Франклин был инициирован в ложу “Девять сестер” и вскоре стал ее гроссмейстером. Среди то ли сестер, то ли братьев числились Вольтер, Кондорсе, Дантон, Гильотен, братья Монгольфье и другие известные персонажи истории. При всем этом Франклин находил время для занятий живописью, игры в шахматы и карты, участия в королевской комиссии по анализу “животного магнетизма” Месмера, ухаживаний за вдовой философа Гельвеция, которой он даже сделал предложение выйти за него замуж, и другими дамами.

Вернулся Франклин в Америку через девять лет и успел насладиться “осенью патриарха” – всеобщим уважением и почетом и должностью президента Пенсильвании. Скончался он в 1790 году в возрасте 84 лет. Долголетие отнюдь не удивительное для того времени. Отец Франклина прожил 89 лет, мать – 85, а сын Уильям – 83.

Что на самом деле достойно удивления, так это как при такой напряженной общественной деятельности Франклин находил время для научных изысканий. Не случайно его считают автором теории “управления временем” – системой правильной организации труда. “Время – деньги” – один из самых известных афоризмов Франклина.

Заметим, однако, что наукой Франклин активно занимался сравнительно недолго, около десяти-пятнадцати лет, и, похоже, не придавал этим занятиям большого значения – в его “Автобиографии” они упоминаются лишь вскользь. Некоторые злопыхатели, без которых не обходится ни один великий человек, считали его посредственным ученым. Они не правы в принципе. Франклин вообще не был ученым в современном понимании этого слова. Он был изобретателем и пытливым наблюдателем природы, естествоиспытателем , или философом природы, натурфилософом . При этом он сделал столько, что подавляющему большинству ученых и не снилось.

Наибольшую известность ему принесли работы по электричеству. Чтобы оценить величие Франклина, достаточно вспомнить, что знало человечество об электричестве в 1747 году, когда начинающий сорокалетний ученый впервые столкнулся с этим явлением. По сути дела, все исчерпывалось проскакиванием искры между двумя палочками, натертыми шерстяной тряпкой, притягиванием или отталкиванием от этих палочек легких предметов типа перышка и сконструированным незадолго до этого незамысловатым устройством под названием “лейденская банка”, представляющим собой стеклянную бутылку, заполненную водой и заткнутую пробкой с вставленным металлическим стержнем. Разряд лейденской банки вызывал в теле человека крайне неприятные ощущения, всем нам хорошо знакомые, которые тем не менее обладали для современников непонятной притягательной силой.

Нечто подобное Франклин и увидел на “лекции” приехавшего из Шотландии доктора Спенса. В сущности, это было балаганное зрелище за деньги, но оно, по собственному признанию Франклина, “изумило его и доставило ему удовольствие”. Поразительно, но всего через два года он уже сформулировал свою основную гипотезу о природе электричества: “Электрическая материя состоит из частиц крайне малых, так как они могут пронизывать обычные вещества, такие плотные, как металл, с такой легкостью и свободой, что не испытывают заметного сопротивления”. Через два с лишним столетия великий физик Петр Леонидович Капица напишет: “Эта картина до сих пор в основном остается правильной… В наши дни мы называем эти “крайне малые частицы” электронами”.

Тогда же Франклин ввел в обращение столь привычные для нас обозначения “+” и “-”. Он полагал, что любое тело является как бы губкой, насыщенной частицами электричества. Тело, получившее при электризации избыток электрических частиц, заряжено положительно, а тело, имеющее недостаток этих частиц, заряжено отрицательно. Сейчас мы придерживаемся диаметрально противоположной точки зрения, но обозначениями Франклина тем не менее пользуемся.

А еще он высказал предположение об электрической природе молнии и предложил способ экспериментальной проверки своей гипотезы с помощью воздушного змея. Сегодня кажется странным, что Франклин опубликовал эту идею, нисколько не озаботившись тем, что кто-либо может воплотить ее в жизнь и приобрести тем самым всемирную славу. Но дело в том, что его абсолютно не волновали вопросы приоритета , столь значимые для ученых последующих поколений и особенно наших дней, если судить по многочисленным, выходящим зачастую за грань приличия дискуссиям в СМИ и научном сообществе.

Теория Франклина вызвала бурные дебаты, многие ученые отвергали ее с порога: что может предложить этот дилетант и к тому же американец?! Поведение в этой ситуации Франклина опять могло бы послужить примером для последующих поколений ученых. Он не бросился доказывать свою правоту, выступать на конференциях и писать письма в редакции. “Я, – рассказывал Франклин в “Автобиографии”, – решил предоставить мои доклады их участи, полагая, что будет лучше использовать время, которое я могу выкроить из занятий общественными делами, для производства новых экспериментов, чем для дискуссии по поводу уже произведенных”. Время подтвердило правоту Франклина, его теория была признана. Истина всегда прокладывает себе дорогу, рано или поздно.

Что же касается “дилетанта”, то лучше всего по этому поводу высказался П.Л. Капица: “Франклин первый правильно понял существо электрических явлений и поэтому открыл правильный путь для дальнейших исследований в этой области… На таких начальных этапах развития науки точность и пунктуальность, присущая профессиональным ученым, может скорее мешать выдвижению такого рода смелых предположений. В начальной стадии изучения электричества требовалось, чтобы был сделан такой смелый шаг. И Франклин его сделал”. Мне кажется, что эти слова применимы к любой новой области науки.

Вполне возможно, что олимпийское спокойствие Франклина во время обсуждения его теории объяснялось практическим складом его ума: зачем ломать копья вокруг теоретических выкладок, если можно предъявить созданное на их основе работающее устройство. С этим уже не поспоришь. Опыты с лейденской банкой привели Франклина к изобретению конденсатора, без которого немыслимы современные электронные устройства. Опыт с воздушным змеем нашел воплощение в громоотводе.

И вновь необычное поведение: Франклин не стал патентовать громоотвод, хотя было очевидно, что это изобретение может принести ему огромное состояние в кратчайший срок. Это даже как-то не по-американски, сказали бы мы с высоты нашего времени. Но точно так же не стал Франклин патентовать и изобретенную им железную печь, которая требовала намного меньше дров и лучше обогревала дома, чем традиционные английские камины. В США это устройство называют “печью Франклина” и используют до сих пор, ее отголоском в России стала знаменитая “буржуйка”.

Франклин считал, что изобретения и научные достижения должны принадлежать всему обществу, а не какому-то конкретному человеку. “Получая удовольствие от чужих изобретений, приятно сознавать, что и ты можешь оказать услугу людям”, – говорил он. Впрочем, некоторые свои изобретения Франклин все же патентовал, например кресло-качалку или бифокальные очки, которые он изобрел в восьмидесятилетнем возрасте: жизнь, видно, заставила.

Кстати, курьезный случай произошел во Франции во времена жизни там самого Франклина. В городе Сент-Омере некий господин де Виссери установил на своем доме громоотвод, так его соседи подали на него в суд: громоотвод-де притягивает молнию, а это угрожает безопасности их жилищ. Процесс длился четыре года и приобрел вселенское значение. На нем сделал себе имя молодой адвокат ответчика Максимилиан Робеспьер, который в конце концов выиграл дело. Со стороны истцов одним из экспертов выступал Жан-Поль Марат, который считал громоотвод опасным и вредным экспериментом. Как тесен мир!

В заключение скажем, что, несмотря на первоначально настороженное отношение, научное сообщество довольно быстро признало Франклина. Почин положили американские Кембриджский и Йельский колледжи, которые присвоили ему степень магистра искусств. “Так, не учившись ни в одном колледже, я стал пользоваться их почестями”, – удовлетворенно заметил в своей “Автобиографии” Франклин. В 1762 году Оксфордский университет присвоил ему степень доктора, позднее он стал почетным членом Королевского общества, а затем первым американцем – иностранным членом Петербургской академии наук.

И вот мы подошли к описанию эксперимента, ради которого, собственно, и была задумана вся эта глава. Дело было так. В 1757 году Франклин отправился послом от колоний в Англию. Тогда в Северной Америке шла война между Англией и Францией, и, как положено в военное время, торговые суда шли караваном с конвоем военных кораблей – так набралась внушительная флотилия из 96 судов. И вот однажды, стоя на палубе в ветреную погоду, Франклин обратил внимание на странный факт: все суда мерно покачивались на волнах, но два стояли ровно, и вокруг них поблескивало зеркало идеально ровной воды. “Как такое может быть?” – спросил Франклин у капитана, привлекая его внимание к непонятному явлению. “Да коки, наверно, выплеснули за борт жирную воду”, – невозмутимо сказал капитан как о чем-то всем хорошо знакомом. Тут в памяти Франклина всплыли строки из прочитанной в юности “Естественной истории” Плиния: действительно, еще древнегреческие и римские мореходы усмиряли волны, выливая масло на поверхность воды. Другой бы на этом и успокоился, но Франклин провел собственное расследование.

Во-первых, он скрупулезно собирал различные свидетельства об этом явлении. Оказалось, что оно хорошо известно морякам всего мира и даже простые рыбаки на Бермудах успокаивают таким образом рябь на воде, чтобы лучше видеть рыбу в глубине. Во-вторых, он постоянно носил с собой бутылочку с маслом и, очутившись у какого-нибудь водоема в ветреную погоду, ставил натурные эксперименты, пытаясь разобраться в сути явления и заодно поразить своих спутников. Эксперимент действительно поразительный, и я рекомендую вам сделать его своими руками для начала в тазу или в ванной. Взбаламучивая воду, капните подсолнечного масла (обязательно свежего!) из пипетки и посмотрите, что получится. Уверяю, что после этого вас, как и Франклина, потянет на природу, к какому-нибудь пруду, чтобы воспроизвести эксперимент в большем масштабе. Получится, не сомневайтесь. Если подойдете к пруду с наветренной стороны, там, где зарождаются волны. Это, кстати, тоже выявил Франклин в ходе своих опытов.

Помимо успокоения волн удивляет еще скорость распространения масляного пятна по воде и его площадь. В статье, опубликованной в журнале Philosophical Transactions в 1774 году, Франклин писал, что ему удалось посредством чайной ложки масла успокоить волнение в пруду на площади в полакра – по-нашему двадцать соток. Естественно, возникает вопрос: а какова же толщина слоя масла, образующегося на поверхности воды? Тут нет нужды апеллировать к Франклину, который был несилен в арифметике за исключением бухгалтерских расчетов. Вы можете это сделать сами, потому что я поклялся себе написать книгу без единой формулы. Итак, мы берем один кубический сантиметр масла, приблизительно половину чайной ложки, и распределяем масло равномерным слоем на поверхности в сто квадратных метров. Вы считаете быстрее меня, и абсолютно правильно: толщина слоя составляет в этом случае десять нанометров . Слои масла на воде – вероятно, первый объект нанометровых размеров, который стал предметом изучения ученых.

Символично, что нано объекты вступили в мир науки в связке с технологиями . Такой уж человек был Бенджамин Франклин, что все свои научные изыскания он старался довести до практического результата, более того, выполнял их именно с ориентацией на практику. Исследования масляных слоев на поверхности воды начались на море и окончились там же. Франклин пытался разработать безопасный способ швартовки судов и особенно высадки на побережье в условиях сильного волнения на море. Сложность и актуальность последней задачи понимает любой, кто хоть раз купался в море при поднятом над пляжем красном флаге. Испытания проводились в Портсмуте в октябре 1773 года при деятельном участии голландского капитана Джона Бентинка. По заключению самого Франклина, желаемого эффекта, то есть комфортной высадки, достичь не удалось, тем не менее полоски спокойной воды наблюдались даже при сильном ветре. Только после этих экспериментов Франклин опубликовал полученные им результаты в вышеупомянутой статье. Исследование заняло 17 лет.

Со слоями масла на воде связан еще один интересный эффект, который наблюдал Франклин, да и мы, но применительно к несколько другим объектам – пленкам бензина на воде и мыльным пузырям. Это цветная, зачастую переливчатая окраска этих объектов, притом что все задействованные вещества бесцветны. Современные школьники на уроках физики бойко объясняют этот эффект: “Распространение света – волновой процесс. Свет, падая на пленку, частично отражается от внешней поверхности, а частично проходит внутрь и отражается от второй поверхности. Волны, отраженные от двух поверхностей пленки, складываются по законам интерференции, волны с одной длиной волны усиливаются, а с другой – ослабляются вплоть до исчезновения. Так появляется цвет”.

Попробовали бы они сказать нечто подобное в середине XVIII века! За одну первую фразу их бы выгнали с волчьим билетом не то что из школы, но из любого университета. В науке тогда царила корпускулярная теория света Ньютона, согласно которой свет представляет собой поток материальных частиц, а волновая теория, созданная Гюйгенсом в конце XVII века, пребывала в загоне. Из крупных ученых того времени ее поддерживали разве что Леонард Эйлер и Бенджамин Франклин. Это тем более удивительно, что теория электричества Франклина может быть с полным основанием названа корпускулярной, а вот в оптике он придерживался диаметрально противоположной концепции. Тут можно говорить о его гениальной научной интуиции, но, возможно, сыграло свою роль и наблюдение за пленками масла на воде, ведь именно объяснение явления интерференции не давалось теории Ньютона, но с ним прекрасно справлялась волновая теория.

Так в научном наследии Бенджамина Франклина впервые сошлись поверхность и тонкие слои, электричество и оптические явления – краеугольные камни нанотехнологий. И потому его номер – первый.

Вернемся к толщине слоя масла. Мы с вами прикинули, что она может составлять десять нанометров. Это много или мало? И можно ли утончить пленку, а если да, то до какого предела? Вы, конечно, знаете ответ на последний вопрос: сплошная пленка никак не может иметь толщину меньше, чем размер молекулы масла. И обратно: зная толщину предельно тонкого слоя масла [2] , можно определить размер молекулы. Неужели Франклин не сделал этот тривиальный эксперимент и не произвел элементарный расчет? Нет, не сделал. Нельзя требовать от одного, пусть и гениального, человека всего, тем более невозможного. Волновая теория во времена Франклина хотя бы была, а вот атомно-молекулярного учения не было. Было слово “молекула”, его ввел в 1636 году французский священник Пьер Гассенди, но оно не имело конкретного физического содержания. Поэтому со временник Франклина Михаил Васильевич Ломоносов (1711–1765) рассуждал, как мы помним со школы, не о молекулах, а о корпускулах, но эти идеи не оказали никакого влияния ни на Франклина, ни на других ученых. И даже отец современной атомистики Джон Дальтон (1766–1844) обходился без этого понятия и говорил о “сложных атомах”.

Так что определить размер молекулы из толщины слоя масла Франклин не мог в принципе. И лишь через сто лет после его кончины, повторив его эксперименты, это сделал Джон Уильям Стретт, лорд Рэлей (1842–1919). Он получил величину около двух нанометров – таков размер довольно крупных молекул масла.

Казалось бы, после этого нанообъекты должны были получить постоянную прописку в мире науки. Не тут-то было! Это в школьном учебнике все просто: атомно-молекулярное учение, основы которого заложили М.В. Ломоносов и Антуан Лавуазье (1743–1794), утвердилось благодаря работам Джона Дальтона (1766–1844) и Амадео Авогадро (1776–1856), окончательную точку поставил в 1860 году Международный конгресс в Карлсруэ, который был посвящен в основном вопросам терминологии, потому что существо дела ни у кого уже не вызывало сомнений. На самом деле вызывало, и у очень многих, считавших атомы и молекулы всего лишь гипотезой, пусть довольно хорошо обоснованной и внешне убедительной, по той простой причине, что никто никогда их не видел.

Помимо сомневающихся были и ярые противники. Например, Марселен Бертло (1827–1907), выдающийся ученый, выполнивший пионерские работы во многих областях химии, профессор Коллеж де Франс, непременный секретарь Французской академии наук и член-корреспондент Петербургской, министр народного просвещения и изящных искусств, а впоследствии министр иностранных дел Франции и прочая и прочая, считал само представление о молекуле бредовой идеей и называл ее не иначе как “мистической концепцией”. Смирился он с ней лишь в конце жизни. Как и другой, возможно, еще более великий ученый – Вильгельм Оствальд (1853–1932), один из первых лауреатов Нобелевской премии по химии (1909) “в признание работ по катализу, а также за исследования основных принципов управления химическим равновесием и скоростями реакций”.

Оствальд – чрезвычайно примечательная личность. Широтой интересов и продуктивностью в самых разных областях человеческой деятельности он напоминал Франклина. Помимо собственно химии, он оставил заметный след в живописи, теории музыки, лингвистике, участвовал в самых разных общественных движениях, от пацифистских до шовинистических, написал 77 книг и воспитал целую плеяду известных ученых.

А еще он был философом, последним великим натурфилософом, создателем “энергетической” теории, согласно которой энергия – единственная реальность в этом мире, а материя есть лишь форма проявления энергии, “то, что мы называем материей, является лишь совокупностью энергий, собранной воедино в данном месте”. В этой теории не было места атомам и молекулам.

В фундаментальном учебнике Оствальда “Основы неорганической химии” слово атом не упоминается ни разу. Вы можете себе такое представить? Вот и я не могу. Высший пилотаж! Причем это не был “альтернативный” учебник, которыми так богато наше время, а канонический труд, выдержавший множество переизданий, на нем выросло целое поколение химиков.

“Мы должны совершенно отказаться от надежды наглядно представить себе физический мир посредством сведения всевозможных явлений к механике атомов”, – писал Оствальд. Лозунг Оствальда “Не сотвори себе кумира в виде образа!” был практически реализован создателями квантовой механики, которые отказались от какой-либо наглядности в физике и свели все к абстрактным математическим построениям. Они, конечно, не отрицали существования атомов, но споры о том, можно ли увидеть эти атомы и тем более манипулировать ими, не стихали несколько десятилетий. Споры эти разрешились уже на нашей памяти, когда физикам удалось осуществить и то и другое. Это произвело на ученых столь сильное впечатление, что затмило прошлые достижения всех смежных наук и позволило им говорить о наступлении новой эпохи в развитии науки – эпохи нанотехнологий.

Вот об этих открытиях я и расскажу в последующих главах. И, прочитав эту книгу, читатель поймет, почему ее автор утверждает: история нанотехнологий началась гораздо раньше, чем полагают многие.

Глава 2 О величии и юбилейных рейтингах

Принято считать, что в XVIII веке в России был только один великий ученый – Михаил Васильевич Ломоносов. Но мало кто помнит (или знает), что в том же столетии в нашей стране жил и работал ученый, имеющий не меньше, а может, и больше оснований считаться великим, и звали его Тобиас Ловиц. И его открытия прямо связаны с нанотехнологиями.

Тобиас Ловиц родился в Германии, в Гёттингене, в 1757 году. В Россию он попал в десятилетнем возрасте, когда его отца, астронома Георга Ловица, пригласили работать в Петербургскую академию наук. Вскоре они отправились в экспедицию в прикаспийские степи и в самом ее конце, уже при возвращении, случилось трагическое происшествие, первое в череде несчастий, с удивительным постоянством преследовавших Тобиаса всю его жизнь. Вот как описал это происшествие А.С. Пушкин в “Истории Пугачёва”: “Пугачёв бежал по берегу Волги. Тут он встретил астронома Ловица и спросил, что за человек. Услышав, что Ловиц наблюдал течение светил небесных, он велел его повесить поближе к звездам”.

Каким образом удалось выжить в этой передряге семнадцатилетнему Тобиасу, история умалчивает, но пережитое нервное потрясение сказывалось многие годы, подрывая и без того некрепкое здоровье. Юношу определили на казенный кошт в петербургскую Академическую гимназию, а вскоре он стал подрабатывать учеником аптекаря в Главной аптеке. Эмигрантский хлеб горек, и в какой-то момент Ловиц решил вернуться на родину, где он два года изучал медицину в Гёттингенском университете. Затем он во второй раз, уже по собственной воле, отправился в Россию, страну богатейших возможностей, в которую в ту пору ехали многие, особенно немцы, а уезжали из России единицы.

Ловиц так и не закончил курса ни гимназии, ни университета, в сущности, он был гениальным ученым-самоучкой, на практике овладевавшим всеми премудростями науки. Работать он устроился все в ту же Главную петербургскую аптеку, где увлекся химией. В ту пору аптеки наряду с университетами были средоточием научной жизни, а лаборатория, в которой выпало работать Ловицу, оснащением превосходила химическую лабораторию Академии наук, которая после смерти ее основателя, М.В. Ломоносова, постепенно приходила в упадок.

Второе пришествие сложилось лучше первого. Ловиц в совершенстве овладел русским языком, звался на русский манер Товием Егоровичем, имел хорошую работу. Вот только семейная жизнь не задалась – четверо детей умерли во младенчестве, а затем сошла в могилу и жена. “Он не знал других радостей кроме тех, что доставляли ему его химические открытия” – так напишут через много лет в его некрологе.

А открытия не заставили долго ждать. Первое, и для целей нашей книги самое важное, случилось всего лишь через год после начала работы, в 1785 году. Дело было так. Ловиц занимался приготовлением чистой винной кислоты перекристаллизацией ее из раствора. Эксперименты раз за разом не удавались – кристаллы были неизменно окрашены в грязный, бурый цвет. Но вот однажды колба разбилась и содержимое вылилось в песчаную баню, в которой помимо песка было много угольной пыли, – для нагревания в тогдашних лабораториях использовали уголь. Будь мы на месте Ловица, непременно вывалили бы всю эту кашу в помойное ведро и, тяжело вздохнув, принялись бы за новый эксперимент. Но чем отличается великий ученый от нас, простых смертных? Ловиц не поленился собрать разлитый раствор, отфильтровать, выпарить и в результате получил изумительно чистые кристаллы. А еще он понял, что все примеси, столь мешавшие ему, осели на частичках угля.

Так Ловиц открыл явление адсорбции – поглощение твердыми телами различных веществ из жидких растворов или из газов. “Это открытие одно сделало бы имя Ловица бессмертным”, – писал его первый биограф А.И. Шерер. И вы, несомненно, согласитесь с этим мнением, узнав, что одним из первых приложений открытого явления стала очистка “хлебного вина”, попросту водки, от сивушных масел. Путь от открытия до практического внедрения был пройден всего лишь за год, новый способ очистки получил широкое распространение как в России, так и за рубежом и применяется, по сути, до сих пор.

Адсорбция – одно из важнейших явлений в науке и один из наиболее универсальных приемов в технологии. Ловиц неустанно расширял сферы приложения своего открытия. С одной стороны, он пополнял список возможных адсорбентов , твердых тел-поглотителей, используя не только древесный, но и животный, костяной и каменный угли. С другой стороны, применял адсорбцию для очистки все новых веществ – лекарственных препаратов, питьевой воды, селитры, составной части использовавшегося тогда черного пороха, и многих других. Практический эффект этих работ был настолько велик, что Ловица уже в 1787 году избрали членом-корреспондентом, а в 1793 году – действительным членом Петербургской академии наук, он занимал руководящие посты в Медицинской коллегии и в Вольном экономическом обществе, аналоге современной Торгово-промышленной палаты.

Вот еще один пример “адсорбционных” изысканий Ловица. В те времена сахар в России был малодоступным и дорогим импортным продуктом. Зато у нас было много меда, вот Ловиц и попытался приготовить отечественный сахар, выделяя его из меда с помощью адсорбции на угле. Сладкий компонент меда он выделил, но это был не сахар. Ловиц назвал его “несовершенным” сахаром, мы знаем его под именем “фруктоза”. Многие почитают ее куда более совершенным продуктом, чем сахар. Как бы то ни было, именно с этой работы Ловица ведут отсчет исследований по химии сахаров в России.

Ловица считают также основоположником еще одной важнейшей области науки – кристаллографии или, более широко, кристаллохимии. Он был первым ученым, систематизировавшим кристаллы. Результатом исследования стали 288 восковых моделей возможных форм кристаллов и богатейшая коллекция природных минералов. К слову сказать, строгий математический анализ всего разнообразия возможных кристаллических структур был осуществлен спустя век российским ученым Евграфом Степановичем Фёдоровым. Общее число открытых им пространственных групп, называемых поныне “группами Федорова”, составило 230. Товий Егорович не сильно промахнулся.

Занимаясь кристаллизацией при низких температурах, Ловиц изобрел одну из самых известных охлаждающих смесей – смесь хлорида кальция со снегом. Электрических холодильников тогда не было, так что изобретение имело важнейший практический смысл. Эта простая смесь позволила получить невиданно низкую по тем временам температуру – около -50° по школе Цельсия. При ней замерзала даже ртуть в ртутном термометре. Это свойство Ловиц умело использовал при демонстрации своего изобретения перед коллегами в Академии наук или перед членами императорской фамилии. Он намораживал килограмм ртути на деревянную палку и этим ртутным молотком забивал гвозди в доски. Публика была в восторге. Блестящий пиаровский ход, как сказали бы в наше время.

Впрочем, в наше время мы знаем обратную сторону этого изобретения и каждую зиму поминаем его недобрыми словами. Ведь именно хлоридом кальция посыпают городские улицы, чтобы растопить снег и лед, в результате даже в трескучий мороз мы хлюпаем по лужам.

Чуть меньше повезло Ловицу с открытием новых химических элементов. То есть открыть-то он их открыл, стронций – в 1792 году в тяжелых шпатах, а хром – в 1798 году в минерале крокоит, который тогда называли “сибирским красным свинцом”. Но приоритет достался другим. Считается, что стронций открыли шотландцы Уильям Крюйкшенк и Адер Кроуфорд в 1787-м, а хром – француз Луи Никола Воклен в 1797-м, что интересно, в том же самом крокоите. Подвела Ловица медленность распространения научной информации – ну не было тогда Интернета! Что не помешало ему выполнить важные исследования по химии стронция и хрома, а также титана и ниобия – еще двух экзотических по тем временам элементов.

Мы прошли только верхнюю часть перечня научных свершений Ловица, но и этого более чем достаточно для одного человека. Тем более что прожил он недолго даже по меркам того времени – 47 лет. Ловиц с детства не отличался крепким здоровьем, а тут еще многочисленные личные несчастья, вредная химия и привычка ученых того времени лично оценивать органолептические свойства получаемых ими веществ – цвета, запаха, вкуса. Даже не столько привычка, сколько непременное требование. Это стоило жизни одному из величайших химиков всех времен Карлу Шееле, тоже, кстати, аптекарю. Он умер в своей лаборатории, по одной из версий, понюхав синильную кислоту.

Ловицу в этом отношении повезло чуть больше, но и его лабораторные журналы содержат такие заметки: “маленькое зернышко прокаленной стронциановой земли величиной с булавочную головку причиняет при прикосновении к языку сильную, продолжающуюся несколько дней жгучую боль” или “кроме длящейся почти восемь дней мучительной боли в горле, случилось также, что, когда по моей неосторожности газ вышел из сосуда, я внезапно потерял сознание и упал на землю” (роль газа исполнял хлор). Но наибольшие неприятности принесло Ловицу обычное стекло – оно выпало из дверцы шкафчика с минералами и перерезало сосуды и сухожилия левой руки. В результате рука высохла и перестала действовать. И хотя превосходный механик П.Д. Кесарев, работавший с И.П. Кулибиным, изготовил Ловицу протез, на сложных химических экспериментах был поставлен крест.

“Самому себе – мало, всем нам – много”. Эти слова, высеченные на латыни на надгробном камне Ловица, удивительно точно отражают не только жизнь ученого, но и посмертную память о нем. Его открытия жили и расцветали, а память о нем самом постепенно истлевала. Это, к сожалению, довольно распространенное явление, в истории науки множество примеров того, как вклад одних ученых был непомерно раздут, а их современники, куда более заслуженные, были попросту вычеркнуты из поминальника.

Слава ученого определяется не столько его научными достижениями, сколько привходящими обстоятельствами. Во-первых, активной саморекламой, которая задвигает на задний план более скромных коллег, особенно успешно эта операция проходит, если удастся пережить соавторов. Во-вторых, националистическими и идеологическими соображениями. Помнится, мы иронизировали над потугами советских учебников найти русский след во всех научных открытиях, но это свойственно всем странам, всем народам, во все времена. Зайдите в Музей науки в Эдинбурге, и вы узнаете, что все на свете на самом деле изобрели шотландцы. В-третьих, посмертная слава ученого в очень большой степени зависит от биографа.

Ловицу и тут не повезло, в который раз и даже дважды. Он был немцем, и ему достался никудышный биограф. А.И. Шерер сам метил в академики, он опубликовал лишь одну статью о Ловице и не сделал прославление своего “клиента” делом жизни. Следующего биографа пришлось ждать 150 лет, срок слишком долгий для человеческой памяти.

Лишь в 1955 году известный химик и историк науки Николай Александрович Фигуровский (1901–1986) добился публикации избранных трудов Ловица по химии и химической технологии и написал о нем несколько статей. Именно из его блестящих работ по истории химии мы узнали о выдающемся российском ученом Ловице.

Но вернемся к главному открытию Ловица – явлению адсорбции.

В широком смысле адсорбция – концентрирование вещества на границе раздела фаз, и с этой точки зрения образование мыльной пленки на поверхности воды тоже, несомненно, адсорбция. Но об этом мы поговорим в следующих главах, здесь же сосредоточимся на более узком понимании адсорбции как поглощении различных веществ твердыми телами или, точнее, поверхностью твердых тел.

“Поверхность” – ключевое слово как для адсорбции, так и в целом для нанотехнологий. “Поверхность создана дьяволом!” – воскликнул раздраженно Вольфганг Паули. Согласимся с мнением выдающегося ученого и добавим: создана на горе физикам-теоретикам и на благо людям.

Дело в том, что объемные свойства твердых тел могут быть с высокой степенью точности рассчитаны, исходя из “первых принципов”, из свойств составляющих тело частиц. Внутри кристалла, например, каждый атом (ион) плотно окружен со всех сторон другими атомами (ионами), и эта структура с потрясающей регулярностью воспроизводится во всем объеме кристалла. На поверхности ситуация меняется, поверхностный атом с одной стороны окружен своими товарищами, а с другой – открыт окружающему миру. Он обладает большей, по сравнению с внутренними атомами, энергией и притягивает к себе разнообразные вещества из окружающей среды – адсорбирует их. В принципе и эта задача, как говорят теоретики, счетная, но только в случае идеальной, плоской поверхности. В реальности же мы имеем на поверхности трещинки, выступы и другие дефекты, кроме того, даже у идеального кристалла есть не только грани, но и ребра, и вершины, сидящие там атомы находятся в разном окружении. Тут сам черт голову сломит.

Но это еще полбеды. Поверхность любого твердого тела не только обладает избыточной энергией по сравнению с его внутренностью, она еще отличается от нее по химическому составу. Возьмем, например, монокристалл кремния, из которого делают любимые нами чипы, и расколем его пополам. При этом мы разорвем химические связи между атомами кремния, а природа, как известно, очень не любит разорванные связи. Если мы не предпримем специальные меры предосторожности и не удалим из окружающей среды кислород и воду, то “ненасыщенные” атомы кремния, находящиеся на поверхности разлома, немедленно вступят с ними во взаимодействие. Это будет даже не адсорбция, а настоящая химическая реакция. Что будет представлять собой при этом поверхность? Все зависит от того, с какой стороны на нее посмотреть. С одной – вроде бы кремний, с другой – диоксид кремния, с третьей – кремниевая кислота, а на самом деле ни то, ни другое, ни третье, но в любом случае нечто отличное от объема кристалла. Ученые с этим разбирались десятилетиями, но – разобрались.

Для нас сейчас важнее всего то, что какой бы ни была химическая структура поверхности, она все равно останется поверхностью, границей раздела фаз “твердое тело – газ” или “твердое тело – жидкость”, и будет исправно адсорбировать различные вещества. Более того, изменчивость свойств поверхности мы можем обратить себе на пользу. Исходя из одного и того же твердого тела и направленно изменяя свойства его поверхности, мы можем получать разные сорбенты, необходимые нам для решения конкретных практических задач.

Понятно, что чем больше поверхность твердого тела, тем большее количество вещества оно может поглотить. Также понятно, что для практических приложений важна не столько общая поверхность, сколько ее удельная величина, отнесенная к единице веса или объема сорбента. Как можно увеличить удельную поверхность твердого тела? Представим себе сплошной кубик с ребром 1 см. Легко подсчитать, что его поверхность составит 6 см2. А теперь возьмем дрель со сверлом диаметром несколько нанометров и начнем просверливать в кубике сквозные отверстия – поры, создавая при каждом проходе новую поверхность. В итоге мы получим все тот же кубик, но с суммарной поверхностью в сотни квадратных метров. Это именно та величина, которая нужна для практического применения.

У природы и ученых есть в арсенале более изощренные методы создания твердых тел с высокой удельной величиной поверхности, чем механическое сверление, но общий принцип сохраняется: все практически важные сорбенты имеют внутреннюю пористую структуру, характеризующуюся наноразмерами .

Таков активированный уголь, таблетки которого мы глотаем при желудочных отравлениях. Получают его до сих пор почти по Ловицу, обжигом без доступа воздуха древесины или костей животных, но лучше всего – скорлупы кокосовых орехов. Активацию полученного таким образом угля осуществляют попросту обработкой перегретым водяным паром, при этом вскрываются и очищаются внутренние поры, диаметр которых составляет несколько нанометров. После такой обработки активированный уголь готов принять на своей поверхности всякую гадость из содержимого нашего желудка, вредные вещества из питьевой воды или смолы из табачного дыма.

Другой сорбент, не менее важный и также встречающийся вам в быту, – силикагель. Пакетики с ним часто кладут в упаковку различных товаров, чтобы не отсыревали, – силикагель прекрасно сорбирует влагу из воздуха. По своему составу силикагель – тот же песок, только пористый. И получить его можно из песка с помощью незамысловатых операций – обработка щелочью, обработка кислотой, нагревание. Хитрость кроется в режимах обработки. Варьируя их, получают огромное количество марок силикагеля с различными диаметрами пор, в единицы и десятки нанометров.

И, говоря о сорбентах, нельзя обойти вниманием цеолиты – одно из самых совершенных и красивых творений мира неорганической природы. Казалось бы, обычная глина (даже и по составу), но заглянем внутрь! Представьте себе полость в форме правильного многогранника – кубооктаэдра, соединенную шестью “окнами” правильной формы с шестью точно такими же полостями и так до бесконечности, с регулярностью идеального кристалла. Собственно, цеолиты и являются кристаллами, но очень своеобразными. У меня же при взгляде на их структуру возникает другая ассоциация – с громадной космической станцией, одинаковые отсеки которой соединены между собой шлюзами.

Внутренний диаметр полости составляет 1,1–1,2 нм, форма же и диаметр “окон” зависит от типа цеолита. Бывают квадратные окна с диаметром менее 0,1 нм, шестичленные – 0,22 нм, восьмичленные – 0,4–0,5 нм, двенадцатичленные – 0,8–0,9 нм.

Как минералы цеолиты известны с незапамятных времен, но на их необычные свойства первым обратил внимание шведский естествоиспытатель Аксель Фредрик Кронштедт. В 1756 году он обнаружил, что при нагревании стильбита, минерала семейства алюмосиликатов, происходит вспучивание – увеличение объема образца, сопровождающееся выделением воды. Поэтому он и ввел термин “цеолит”, что в переводе с греческого означает “кипящий камень”. Впоследствии оказалось, что аналогичным свойством обладают и другие минералы этого семейства – клиноптилолит, морденит, фожазит, шабазит.

Ученые, расшифровав структуру цеолита более полувека назад, задались амбициозной целью воспроизвести и превзойти Природу. Это удалось сделать практически одновременно исследователям из СССР, США и Великобритании. Они разработали технологии производства синтетических цеолитов, позволявшие получать вещества с заданной структурой, не встречавшиеся ранее в природе. К настоящему времени синтезировано и изучено уже более 500 различных цеолитов, различающихся формой и размерами полостей и окон, составом и свойствами. В частности, ученые научились варьировать в относительно широких пределах (до 1,5 нм) размер пор цеолита.

Зачем это нужно? Алюмосиликаты, в частности глины, сами по себе являются хорошими сорбентами и с большей или меньшей эффективностью поглощают все компоненты сложных смесей. Но в цеолитах в дело вмешивается размерный фактор. В коммерческом цеолите А, например, диаметр входных отверстий составляет 0,22 нм, что совпадает с размером молекулы воды. Молекулы больших размеров просто не пролезут в цеолит, поэтому из влажной смеси газов цеолит А сорбирует только воду. Благодаря этому свойству цеолиты называют часто молекулярными ситами. При этом цеолиты поглощают воду до тех пор, пора она полностью не заполнит все свободное пространство внутри сорбента, все полости и поры.

Еще ярче молекулярно-ситовой эффект проявляется в случае углеводородов. Цеолиты с диаметром пор 0,4–0,5 нм пропускают внутрь линейные молекулы и дают от ворот поворот их разветвленным изомерам. Это свойство применяется в процессе депарафинизации керосино-газойлевых и масляных фракций нефти. Проблема состоит в том, что линейные (нормальные) углеводороды обладают высокой температурой застывания и их удаление из фракции снижает температуру застывания моторных топлив и масел, что чрезвычайно важно для России с ее зимними холодами.

С цеолитами вы сталкиваетесь и в быту, ведь современные стиральные порошки содержат от 15 до 30 % цеолитов. Они избирательно поглощают из воды ионы кальция и магния, именно поэтому современные стиральные порошки можно использовать в воде любой жесткости.

Но основная область применения цеолитов все же не адсорбция, а процессы нефтепереработки, где они произвели настоящую революцию. Они не только заменили в ряде процессов платиновые катализаторы, что само по себе поразительно, настолько сильно они различаются по химической природе и цене. При этом они еще позволили увеличить эффективность процессов: если в 1980 году, до внедрения синтетических цеолитных катализаторов, на производство одной тонны моторного топлива расходовали две тонны нефти, то сейчас – менее полутора.

Впрочем, мы заступили на поле катализа, о котором речь пойдет впереди, сразу в нескольких главах, ведь катализ – одна из основных областей нанотехнологий. Поэтому не будем больше углубляться в этот вопрос и подчеркнем лишь одну общую мысль: свойства поверхности зависят не только от ее химического состава и условий обработки, но и от геометрии. В наибольшей степени этот эффект проявляется при радиусе кривизны поверхности порядка нанометров, возможно, за счет роста напряжений и избыточной поверхностной энергии. Именно поэтому свойства поверхности, обрамляющей поры полости цеолитов, столь разительно отличаются от свойств плоских поверхностей алюмосиликатов с близким химическим составом.

Ученые имеют в запасе еще один мощный метод изменения свойств поверхности и тонкого регулирования структуры сорбентов или, в более общем случае, твердых тел. Представляю его с особым удовольствием, потому что с ним связаны пятнадцать лет моей жизни. Речь идет о химическом модифицировании поверхности. Конкретно мы занимались прививкой разнообразных органических соединений к поверхности неорганического вещества – силикагеля. Тогда совмещение воедино столь разных субстанций называлось скрещиванием ужа и ежа, аналогия нашего времени, порожденная рекламой, – пересадка волос на лысину. То, что мы получали, было действительно похоже на ежика – частокол органических молекул, накрепко связанных с поверхностью. Толщина этого слоя равнялась длине молекулы, то есть 1–2 нм.

Зачем мы этим занимались? Во-первых, это была интересная научная задача, находящаяся на переднем крае науки того времени, 70–80-х годов прошлого века. Во-вторых, получаемые материалы имели просто необъятное поле применения, в том числе в качестве сорбентов. Целенаправленно выбирая структуру прививаемого органического соединения, мы синтезировали сорбенты для извлечения из растворов конкретных ионов металлов, определенных органических веществ, аминокислот, белков и других биологически активных соединений. Извлечения и разделения. Разделения и определения. Затем, уже в новые времена, мы организовали производство разработанных нами сорбентов, их ассортимент сейчас измеряется сотнями наименований, они широко используются для мониторинга загрязнений окружающей среды, химического и биохимического анализа, в биотехнологии. Это была славная охота!

Число работ, выполненных в этой области, огромно. Одни группы исследователей покрывали поверхности плотным слоем неорганических веществ толщиной от одного атома до нескольких нанометров, другие использовали для этой цели готовые полимеры или осуществляли реакции полимеризации на поверхности, третьи закрепляли на поверхности белки и ферменты – классические нанообъекты и т. д. Не будет большим преувеличением сказать, что к концу прошлого века ученые могли привить что угодно к любой поверхности.

Достигнутый уровень технологий в этой области таков, что позволяет делать просто феноменальные вещи. Берут, например, стеклянную пластинку 1×1 см, мысленно разделяют ее на десять тысяч участков и на каждый участок прививают, уже реально, а не мысленно, какое-то конкретное соединение. В сущности, получают сборку из десяти тысяч различных сорбентов, каждый из которых настроен на связывание определенного, индивидуального вещества. Если учесть, что размер каждого участка сопоставим с размером подковки для блохи, то все это не что иное, как изготовление десяти тысяч различных подковок и прибивка их в строго определенном порядке.

Затем окунают эту пластинку в раствор, вынимают, промывают и рассматривают в “мелкоскоп”, чтобы определить, на каких участках прошла адсорбция, и так определяют вещества, которые содержались в испытуемом растворе и число которых может измеряться тысячами.

Фантастика, скажете вы. Да нет, обычный биочип, выпускается с начала 1990-х годов. Не придавайте большого значения слову “чип”. Дело в том, что американская компания “Affimetrix”, первой запустившая их производство, использовала при этом некоторые технологические приемы из микроэлектронной промышленности. Это единственная связь биочипов с микроэлектроникой. Их применяют для сложных биохимических анализов. Например, с их помощью можно быстро проанализировать геном пациента и определить его предрасположенность к тому или иному наследственному заболеванию. Есть все основания надеяться, что в недалеком будущем эта процедура станет вполне рутинной и доступной всем нам по цене.

Завершая этот панегирик явлению адсорбции и работающим в этой области исследователям, наследникам Ловица, еще раз подчеркнем универсальность применений адсорбции. Не будь ее, мы бы давно отравились водой, которую пьем, и воздухом, которым дышим. (Здесь нас спасают природные механизмы адсорбции, но и разнообразные очистные сооружения тоже вносят заметный вклад.) Сорбенты используют для опреснения морской воды, для выделения ценных металлов из руд, для производства множества товаров, используемых нами в быту, для анализа загрязнений окружающей среды и контроля качества продукции. В общем, невозможно представить нашу сегодняшнюю жизнь без сорбентов, которые, как неоднократно и специально подчеркивалось, почти все имеют наноструктуру.

И вот на этом фоне в последние несколько лет зазвучали заявления, что нанотехнологии позволят создать высокоэффективные сорбенты нового поколения. Специалистов взяла оторопь: а мы-то чем всю жизнь занимались, как не созданием этих самых сорбентов? Занимались, но на основе устаревших принципов, отвечают им, а нанотехнологии… (далее по тексту). И вот уже в новостных лентах, публикациях СМИ, в лекциях и научно-популярных статьях начинают появляться примеры сорбентов нового поколения, полученных методами нанотехнологий.

Одну из таких разработок охочие до сенсаций и составления всяческих рейтингов журналисты включили даже в “лучшую пятерку нанодостижений” года [3] . Подкупает, конечно, важность поставленной задачи: очистка питьевой воды от соединений мышьяка. Эта проблема очень остро стоит в некоторых развивающихся странах Азии и Африки. По данным Всемирного банка, число людей, страдающих от заболеваний, вызванных мышьяком, составляет около 65 миллионов. А Национальная инженерная академия США установила премию в один миллион долларов для того, кто предложит простой, дешевый и эффективный способ решения проблемы. Неудивительно, что сразу несколько групп исследователей стали работать в этом направлении.

Больше всех преуспели специалисты из Университета Райса в Техасе под руководством Вики Колвин. Они предложили использовать для связывания соединений мышьяка ржавчину, измельченную до частиц наноразмеров. Технология очистки в полной мере отвечает поставленным требованиям: вы всыпаете в загрязненную воду немного порошка из баночки, взбалтываете, вытягиваете частицы из раствора с помощью обычного магнита и в результате получаете воду, пригодную для питья, согласно действующим стандартам.

Несколько лет назад относительно молодой (р. 1965) американский ученый иорданского происхождения Омар Яги (Omar Yaghi) из Университета Калифорнии получил очень интересные кристаллические вещества, внутренняя структура которых чрезвычайно похожа на цеолиты – те же полости и окна с размером менее одного нанометра. Но в отличие от цеолитов, содержащих атомы кремния, алюминия и кислорода, эти материалы собраны из органических молекул [4] и ионов металлов – цинка или кобальта. Структурой и судьбой им предопределено быть хорошими адсорбентами, и действительно – кобальтовый “цеолит” хорошо поглощает маленькие молекулы углекислого газа, целых 89 литров на литр сорбента.

Это послужило основанием для громогласного заявления: “Техническая сторона проблемы избирательного удаления углекислого газа решена. При помощи разработанных нами структур можно создавать ловушки именно для СО2, не задерживая остальные газы. Захваченный газ хранится в специальном резервуаре, и, до тех пор пока этот резервуар не будет вскрыт, СО2 там будет пребывать”. Ключ к успеху – способность сорбента поглощать углекислый газ “на уровне молекул”. Это должно было найти отклик в душах присутствующих: сразу виден прогресс науки, мы теперь можем работать на уровне атомов и молекул, не то что раньше, до эпохи нанотехнологий! Мы-то с вами понимаем, что ни на каком другом “уровне” углекислый газ поглотить невозможно, потому что молекула – это форма его существования. Но государственным чиновникам, которым, собственно, и был адресован этот пассаж, не до этих тонкостей, они мыслят глобальными категориями. Предмет их главных, доходящих до маниакальной одержимости забот – техногенные выбросы углекислого газа, и они готовы щедро финансировать любые работы по его поглощению из атмосферы и последующему захоронению.

Они, конечно, обращаются к экспертам. Сорбент хороший? Очень интересный! Много углекислого газа поглощает? Много, отвечает эксперт, подразумевая: для сорбента. Дело в том, что литр щелочи средней концентрации поглощает еще больше углекислого газа, но это не сорбция и уж тем более не нанотехнологии, это добрая, старая “школьная” химия. Вопроса о том, можно ли с помощью этого сорбента решить проблемы выбросов углекислого газа, уже не следует, все и так понятно.

На самом деле ответ на вопрос получить нетрудно, если знать (или рассчитать по элементарному, школьному уравнению реакции), что при сгорании одного литра бензина образуется ~1500 литров углекислого газа. Для его поглощения необходимо около 17 литров сорбента. Подозреваю, что вы уже прикидываете в уме, сколько килограммов (литров) такого сорбента вам необходимо будет взять с собой в поездку на дачу и сколько лишнего бензина вы при этом сожжете. Подозреваю также, что для поглощения углекислого газа, извергаемого за один лишь день автотранспортом Москвы, потребуется израсходовать весь общемировой запас кобальта.

Как при этом расценивать приведенное выше заявление – как некомпетентность или блеф? Руководствуясь презумпцией невиновности и принципами уважительного отношения к коллегам, склоняюсь к мысли, что это все же блеф.

Да, блефа в нанотехнологиях много. Отчасти это порождается самой системой финансирования науки. Если, например, в нашей стране реально финансируются только работы в области нанотехнологий, то исследователи при подаче заявок на гранты просто вынуждены вставлять куда ни попадя приставку “нано”. С волками жить – по-волчьи выть. В какой-то мере это можно по-человечески понять и извинить.

Но совсем другое дело – сознательный обман, чрезмерные и в принципе невыполнимые обещания или, наоборот, продажа заведомо устаревшей научной разработки, облеченной в упаковку звучных модных терминов. Наибольший ущерб этот “наноблеф” наносит самим нанотехнологиям. Общественность разочаровывается в них, потому что не видит примеров реализации “принципиально новых” технологий. Специалисты укрепляются в скептическом отношении к нанотехнологиям и почитают их самих широкомасштабным блефом, придуманным исключительно для “распила” огромных бюджетных средств. Не понимаем мы, что такое нанотехнологии и зачем они нужны, честно и задушевно говорят мне коллеги, а мы как работали, так и будем работать, по старинке, разрабатывая высокоэффективные сорбенты нового поколения. (Говорят они, конечно, немного по-другому, это я просто перевожу их высказывания на приличный, старорежимный язык.)

Дорогие коллеги, отвечаю я им, нанотехнологии – это очень просто, это то, чем вы занимались всю свою профессиональную жизнь. И прогресс нанотехнологий будет связан, в частности, с распространением опыта, накопленного вами в области синтеза и изучения свойств сорбентов, на другие отрасли науки.

Глава 3 Мисс Марпл коллоидной химии

Она была домохозяйкой. Звали ее Агнесс Луиза Вильгельмина Покелс. Родилась она в 1862 году в Венеции, которая входила в то время в состав Австрийской империи. Отец Агнесс был офицером австрийской армии. В 1871 году Покелсы перебрались в Нижнюю Саксонию, в Брауншвейг, где Агнесс и прожила всю свою долгую жизнь.

Она росла странным ребенком, ее не интересовали куклы и игра в дочки-матери, переходящая в игру жених-невеста, она испытывала противоестественное, по мнению окружающих, влечение к естественным наукам, заниматься которыми девушкам было непристойно и невозможно в силу особенностей их мышления. Ведь недаром женщин не принимали в немецкие университеты! Агнесс оставалось только с завистью смотреть на своего младшего брата Фридриха, который поступил в знаменитый Гёттингенский университет, а затем стал профессором теоретической физики в Гейдельберге и обессмертил фамилию Покелс в названии открытого им физического эффекта.

Но это было много позже. Пока же Агнесс читала учебники по физике своего брата-студента и занималась домашним хозяйством, проводя большую часть времени на кухне. Она мыла посуду и размышляла о поверхностном натяжении воды, о том, что вода, которая плещется в тазике, делает это с каждой минутой по-разному, что, очевидно, связано, с одной стороны, с поверхностным натяжением воды, а с другой – с жиром, которой смывается с тарелок.

Это явление настолько ее заинтересовало, что Агнесс решила заняться изучением влияния различных веществ на поверхностное натяжение воды. И в первую очередь, конечно, мыла, без которого не обходилась ни одна хозяйка, желавшая до блеска отмыть жирную посуду. Для исследований Агнесс сконструировала незамысловатое устройство; его ключевым элементом была пуговица, которую она клала плашмя на поверхность воды, а потом измеряла силу ее отрыва от поверхности. Так кухня стала научной лабораторией Агнесс.

Упорство, настойчивость, аккуратность – эти свойства выгодно отличают женщин от мужчин, и Агнесс Покелс обладала ими в полной мере. А еще немецкая методичность! Все это позволило ей получить огромный массив данных, проливающих свет на практически неизученную в то время область поверхностных явлений. Она не побоялась представить их на суд лорда Рэлея. Рэлей оказался человеком широким и непредвзятым, он не только прочитал письмо молодой женщины, но, оценив важность полученных данных, настоял на их публикации в престижнейшем журнале “Nature” (естественно, пришлось нажать на редакцию журнала). Статья Агнесс Покелс вышла в 1891 году со скромным названием: “Поверхностное натяжение”.

Будет большим преувеличением сказать, что статья произвела эффект разорвавшейся бомбы. Ее прочитали и отложили в сторону. Как это часто бывает, научное сообщество долго переваривало новую информацию, интенсивные исследования в этой области начались лишь четверть века спустя, в основном благодаря усилиям Ирвинга Ленгмюра (1881–1957).

Немного изменила эта статья и в жизни самой Агнесс Покелс. Она постепенно оставила занятия наукой. Через сорок лет пришло запоздалое признание. В 1931 году она получила награду Коллоидного общества, а в следующем году Технический университет Брауншвейга пожаловал ей звание почетного доктора философии. По странному совпадению, в том же году Ленгмюр получил Нобелевскую премию по химии “за открытия и исследования в области химии поверхностных явлений”. Агнесс так и осталась домохозяйкой, не вышла замуж и всю жизнь прожила одна. Скончалась она в 1935 году – мисс Марпл коллоидной химии.

Что же все-таки сделала Покелс? Она впервые изучила то, что лежало на поверхности буквально и метафорически.

В истории человечества довольно много примеров того, как люди десятилетиями и даже столетиями используют какое-нибудь умение, не понимая сути лежащего в его основе явления, – технологии часто опережают науку. В этом нет ничего удивительного, ведь для подавляющего большинства людей практический результат превалирует над пониманием – для того чтобы пользоваться электронными приборами, вовсе не обязательно знать, как в них течет электрический ток. Ученые – люди любознательные, но и им зачастую не удается докопаться до истины в силу объективных причин, например отсутствия необходимых инструментов исследования. Кроме того, ученые тоже люди, и над ними также часто довлеет практический результат, оптимизировать технологию можно и без понимания сути явления, которая остается, по выражению ученых, “черным ящиком”. И наконец, ученые всегда стремятся к открытию новых явлений, это намного интереснее и престижнее объяснения давно известного, старого.

Вот так и получилось, что люди узнали о существовании мыла тысячи лет назад, научились его варить сотни лет назад, не имея ни малейшего понятия, что оно собой представляет и почему, собственно, смывает грязь. Первый вопрос прояснил в 1808 году французский химик Мишель Эжен Шеврёль (1786–1889 {2} ), среди прочего – иностранный член-корреспондент Петербургской академии наук. Он был пионером в исследовании химического строения растительных и животных жиров, ему, в частности, принадлежит патент на изготовление хорошо нам известных стеариновых свеч, он его получил вместе с Жозефом Гей-Люссаком.

Неудивительно, что именно к Шеврёлю обратились владельцы некой текстильной фабрики с просьбой установить состав мыла, ведь его получали из животного жира обработкой содой. Ну и Шеврёль установил, что мыло – это натриевая соль длинной органической кислоты. Такие кислоты с тех пор так и называются – жирными. Внешне молекула мыла похожа на гусеницу: небольшая, хорошо смачивающаяся водой “головка” и длинный гидрофобный (плохо смачивающийся водой) “хвост”. Впрочем, такие детали химики начала XIX века не могли даже вообразить, так что они удовлетворились установлением состава мыла и забыли о нем на многие десятилетия.

Заслуга Агнесс Покелс заключается в том, что она привлекла внимание ученых к этим, с одной стороны, хорошо известным, а с другой – абсолютно неизученным веществам. Она обнаружила, что мыло уменьшает поверхностное натяжение воды, что его молекулы каким-то образом “выносятся” на поверхность воды и изменяют ее свойства. Эти вещества были названы поверхностно-активными. Сейчас сокращение ПАВ известно всем и не нуждается в расшифровке [5] .

Обнаруженный эффект гораздо проще объяснить с высоты нашего современного знания. Молекулам мыла, в целом плохо смачивающимся водой, некомфортно в толще воды, намного выгоднее им находиться на поверхности, опустив головку в воду и выставив хвост наружу. Опять полная аналогия с гусеницей, вгрызающейся в яблоко. Хвост может свободно изгибаться, но когда молекул на поверхности станет очень много, они покроют ее плотным слоем с частоколом вытянутых в струнку хвостов. Если смотреть снаружи на поверхность мыльной воды, то это будет уже и не вода, а нечто очень похожее на… масло.

Масло и вода – опыты Бенджамина Франклина. Он получал слои масла толщиной в несколько нанометров, двигаясь к ним, как сейчас принято говорить, сверху вниз, растягивая каплю жидкости сантиметрового диаметра в тонкую пленку площадью в сто квадратных метров. Покелс пришла к похожим слоям, двигаясь снизу вверх, от изолированных молекул, свободно плавающих в водном растворе, к их ассоциату бесконечной протяженности, состоящему из плотно прилегающих и определенным образом ориентированных молекул. Конечно, все это еще предстояло доказать, но направление движения Покелс задала.

Ответа же на вопрос, почему мыло смывает жир и грязь, пришлось ждать еще четверть века. Начало разгадке положил в 1913 году канадский химик Джеймс Уильям Макбейн (1882–1953), работавший тогда в английском Университете Бристоля. Он изучал электропроводность растворов мыла, которая оказалась аномально высокой. Для объяснения полученных результатов он предположил, что самоорганизация молекул мыла может протекать не только на поверхности, но и в объеме раствора. Следуя Макбейну, мы можем зримо представить, как это происходит: гидрофобные “хвосты” молекул мыла сплетаются между собой, образуя подобие капельки масла, поверхность которой покрыта гидрофильными “головками”, обращенными к воде. Эти гипотетические частицы Макбейн назвал мицеллами.

Последующие исследователи подтвердили правильность его предположения. Оказалось, что размер мицелл наиболее распространенных ПАВ составляет несколько нанометров , а в их состав входит несколько десятков молекул. Формируются мицеллы весьма необычно. Логично было бы предположить, что сначала в растворе образуются агрегаты из двух молекул, потом из трех и так до тех пор, пока не возникнет полноценная мицелла. Для нас, высших животных, такое поведение вполне естественно. Когда-то наши предки бродили в одиночестве по лесам и степям, потом стали сбиваться в семьи, роды, племена, чтобы в итоге превратиться в народ, нацию. Молекулы ПАВ ведут себя по-другому, при достижении некоторой критической концентрации в растворе они собираются в мицеллу без всяких промежуточных альянсов, раз – и готово! Кроме того, размер мицеллы остается практически постоянным при дальнейшем росте концентрации ПАВ, увеличивается при этом не число молекул ПАВ в мицелле, а число мицелл в растворе. То есть молекулы сразу находят оптимальный размер их сообщества, обеспечивающий им стабильное и комфортное существование, то, к чему мы, люди, приходим мучительным путем проб и ошибок.

Одно из важнейших свойств мицелл – способность поглощать молекулы гидрофобных веществ. Понятно, что “рабочим телом” здесь служит ядро мицеллы, сам процесс, по сути, аналогичен экстракции гидрофобных соединений из воды органическим растворителем типа бензина, а мицеллы служат экстракторами нанометровых размеров, или нанореакторами . Внешне же все выглядит как растворение в присутствии мицелл нерастворимых в воде соединений, поэтому оно получило название “солюбилизация”. Именно на этом эффекте основано действие мыла и других моющих средств.

Но вернемся к слоям ПАВ на поверхности воды. Как уже было сказано, Агнесс Покелс выступила в качестве забойщицы этой области коллоидной химии, основные же исследования развернулись четверть века спустя. Вероятно, вы ждете рассказа об Ирвинге Ленгмюре, и, действительно, он вполне заслуживает звания одного из главных апостолов нанотехнологий. Но, с другой стороны, мужчин-ученых в нашей книге и так подавляющее большинство, что ни в коей мере не соответствует как доле женщин в науке, так и их реальному вкладу в научные открытия. Так что расскажу-ка я лучше об одной сотруднице Ленгмюра, которая во многих отношениях была первой.

Кэтрин Блоджетт родилась в Скенектади, штат Нью-Йорк, 10 января 1898 года. За несколько недель до ее рождения в семье произошла трагедия: вооруженный грабитель, проникший в их дом, застрелил отца Кэти, начальника патентного отдела компании “Дженерал электрик”. Компания объявила награду в пять тысяч долларов за поимку убийцы, но потери было не вернуть. Впрочем, семья была достаточно обеспечена финансово, что позволило молодой вдове с сыном Джорджем и маленькой Кэти перебраться сначала в Нью-Йорк, а в 1901 году – во Францию, где они прожили одиннадцать лет.

После возвращения в США Кэти поступила в частную женскую школу в Нью-Йорке, а затем в женский Колледж свободных искусств в Брин-Маре, штат Пенсильвания. Не стоит пренебрежительно относиться к словам “женский” и “свободные искусства”. В то время в США, как и в большинстве других развитых стран, господствовала система раздельного обучения, что было, несомненно, шагом вперед по сравнению с исключительно мужским образованием. А “свободные искусства” включали математику и физику. По уровню их преподавания женские колледжи группы “Семь сестер”, в которую входил и Колледж Брин-Мар, не сильно уступали мужской Лиге плюща.

Незадолго до окончания колледжа произошло знаменательное событие. В рождественские каникулы группу школьниц направили на экскурсию в Скенектади, в исследовательскую лабораторию компании “Дженерал электрик”. Там еще работали люди, помнившие старину Блоджетта, так что Кэти встретили как родную. Ее представили новой “звезде” компании, довольно молодому, тридцатипятилетнему мужчине, докторанту Гёттингена, блестящему ученому и просто красавцу Ирвингу Ленгмюру. Судьба Кэти была решена: она будет работать вместе с ним и будет заниматься… тем, чем занимается он. “Сначала выучись”, – сказал Ленгмюр, отложив решение проблемы на потом. Девушка произвела на него сильное впечатление – своей любознательностью и энтузиазмом, проблема же заключалась в том, что в исследовательский центр “Дженерал электрик” не принимали женщин.

В 1917 году Блоджетт поступила в Чикагский университет. Ее дипломная работа была посвящена изучению адсорбции различных веществ активированным углем. Эта “вечная” тема имела самое непосредственное отношение к усовершенствованию противогаза, единственному средству защиты от отравляющих газов, широко применявшихся в Первой мировой войне. Не меньшее значение для Кэти имело и то, что ее работа находилась в русле научных интересов Ленгмюра.

Кэти стала-таки сотрудницей исследовательского центра “Дженерал электрик”. Подозреваю, что при этом руководители компании в первую очередь отдавали долг памяти ее отцу и лишь во вторую воздавали должное способностям девушки, но им не пришлось раскаиваться в своем решении.

Заниматься ей выпало не адсорбцией, а лампами накаливания. Компанию возглавлял Томас Эдисон, изобретатель этих самых ламп. Он был убежден, что идеальная лампочка получается только при использовании высокого вакуума. Ленгмюр, вскоре после своего прихода в компанию в 1909 году, доказал ошибочность этого взгляда. Лампы, заполненные азотом при нормальном давлении, светили сильнее и ярче, были проще в производстве и безопаснее. А еще Ленгмюр обнаружил, что нанесение тончайшего, нанометрового слоя окиси тория на поверхность вольфрамовой нити улучшает ее характеристики. Все эти изменения в технологии принесли компании огромную прибыль, неудивительно, что на работы в этой области были брошены лучшие силы.

В 1924 году компания направила Блоджетт на стажировку в Англию, в Кавендишскую лабораторию, которой в то время руководил Эрнст Резерфорд. Кэти не стушевалась в сугубо мужском коллективе, в состав которого входил, в частности, П.Л. Капица. Она стала первой женщиной, получившей докторскую степень по физике, в истории Кембриджского университета.

По возвращении из Англии Блоджетт наконец занялась делом своей жизни – изучением слоев поверхностно-активных веществ. К этому времени Ленгмюр изобрел устройство, вошедшее в историю под его именем, “ванну Ленгмюра”, которая действительно напоминала ванну, но с подвижными стенками. За счет этого можно было растягивать и сжимать слой мыла на поверхности воды. Ванна, мыло – эти слова ассоциировались с женщинами, возможно, поэтому Ленгмюр отдал эти исследования на откуп Кэти.

Они научились делать с молекулами мыла все, чего ни пожелаешь. При низких концентрациях молекулы плавали поодиночке на поверхности воды и вели себя как своеобразный двумерный газ. С ростом концентрации они конденсировались в плоские “жидкие” капли, а затем “застывали” в сплошной слой толщиной в одну молекулу, который при сжатии приобретал строго регулярную структуру, подобную кристаллу. Эти и многие другие полученные ими результаты были чрезвычайно интересны с научной точки зрения и вполне заслуживали присуждения Нобелевской премии, но их практическая значимость была нулевой. Ведь все эти слои получали на поверхности воды, субстанции, как известно, текучей и изменчивой.

Все переменилось, когда Блоджетт придумала, как переносить эти слои на твердую подложку. В том, что придумала это именно Кэти, сомнений нет. Да, в научной литературе употребляют словосочетание “слои (метод) Ленгмюра – Блоджетт”, но в патентах фигурирует только одна фамилия – Блоджетт. Наука наукой, а роялти врозь.

Метод чрезвычайно прост, как и все великое. Плотный слой мыла на поверхности воды можно уподобить прочному покрывалу, одна сторона которого, обращенная к воде, гидрофильна, а другая – гидрофобна. Возьмем теперь тонкую пластинку, подведем ее стоймя под слой мыла и начнем поднимать вертикально вверх. Вода будет стекать по стенкам, а “покрывало” будет плотно облегать поверхность пластинки. Этот опыт вы можете воспроизвести у себя дома, в тазу или ванне. Все, что вам нужно, – это вода, мыло и хорошо отмытая стеклянная пластинка, на которой вода растекается тонким слоем. Сделав все описанные выше манипуляции, вы получите пластинку, на которой вода собирается в капли. Получилось? Поздравляю, вы только что нанесли на поверхность пластинки слой толщиной в два нанометра и практически осуществили один из классических процессов нанотехнологий.

Технология , конечно, более сложна. Вы и сами, исходя из бытового опыта, уже догадались, что “покрывало” при таком подъеме непременно должно натягиваться и растягиваться, а там и до разрыва недалеко. Вот тут-то и пригодились подвижные стенки, которых, увы, нет в наших ванных. В сконструированном Блоджетт устройстве стенки постепенно сближаются, поддерживая постоянным давление (натяжение) в поверхностном слое. Искусство экспериментатора, желающего получить качественное покрытие, заключается в точном согласовании скорости подъема пластинки и скорости движения стенок ванны.

Как и во всяком деле, самым трудным был первый шаг. Перед Блоджетт, придумавшей, как нанести мономолекулярный слой на твердую поверхность, открылись широчайшие перспективы. Вот и вы, проделав на практике или мысленно описанный выше эксперимент, наверняка уже задавались вопросом: а зачем непременно поднимать пластинку снизу вверх, ведь это так неудобно, почему бы не опускать ее сверху вниз? Что ж, можно делать и так, но при этом “покрывало” ляжет на пластинку другой стороной. “Черный верх, белый низ” трансформируется в “белый верх, черный низ”. Тоже интересно! А кто сказал, что надо брать непременно “голую” пластинку? Действительно, можно взять пластинку с нанесенным на нее монослоем и тем же способом нанести поверх него еще один слой, и еще, и еще. А слои-то могут быть разными, и ориентированы они могут быть по-разному, и т. д. и т. п. Все это не что иное, как молекулярный конструктор, в который можно играть до бесконечности.

Сейчас в научно-популярной да даже и в научной литературе можно встретить утверждения, что в 1930-е годы метод Ленгмюра – Блоджетт вызывал чисто академический интерес, практическую же его реализацию стимулировало лишь развитие нанотехнологий – детища нашего времени. На самом деле это не так. Не будем забывать, что Ленгмюр с Блоджетт работали в компании “Дженерал электрик”, которую интересовали в первую очередь практические результаты.

Я уже рассказывал об оптических эффектах в тонких слоях, связанных с отражением света и интерференцией. Вот и Блоджетт обнаружила, что цвет получаемых ею “слоеных пирогов” зависит как от химической природы молекул поверхностно-активного вещества, так и от числа слоев. Она составила детальную цветную шкалу, позволявшую легко определять толщину нанесенного покрытия без каких-либо измерений. А еще Блоджетт обнаружила, что при определенных условиях покрытие вообще практически не отражает падающий свет, пропуская более 99 %. Оно не только само становится невидимым, но и делает идеально прозрачным стекло, на которое оно нанесено. “Просветленная оптика” – так это называется, и люди, профессионально занимающиеся фотографией, прекрасно знакомы с этим термином.

О создании “невидимого” стекла компания “Дженерал электрик” объявила в 1938 году, не вдаваясь в технические детали. Они стали известны из патента, полученного Блоджетт в 1940 году. Наилучшие результаты были получены ею при нанесении 44 (!) мономолекулярных слоев стеарата бария на поверхность стекла.

Не вина Блоджетт, что эти исследования были остановлены. Таково было решение компании, кроме того, в дело вмешалась Вторая мировая война. Блоджетт разрабатывала составы, предотвращающие обледенение самолетов, и рецептуру дымовых смесей, она занималась тем же, чем занимался в те годы Ирвинг Ленгмюр.

За сорок лет своей научной деятельности Блоджетт опубликовала тридцать научных статей и получила восемь патентов. В положенное время она все же вышла на пенсию и прожила еще почти двадцать лет в своем доме в Скенектади, городке, где она родилась и проработала всю жизнь. Мужем она так и не обзавелась и детей не родила. Единственный родной ей человек, брат Джордж, сгинул в начале 1950-х годов в джунглях Коста-Рики, разбившись на пилотируемом им спортивном самолете. А в 1957 году ушел из жизни Ирвинг Ленгмюр.

По воспоминаниям современников, Кэтрин была весьма активной дамой: играла в любительском театре, участвовала в разных гражданских и благотворительных мероприятиях, днем возилась в саду, по вечерам играла в бридж с друзьями, а по ночам наблюдала звезды в телескоп. Вот уж воистину интеллигентному человеку никогда не бывает скучно, даже наедине с самим собой он всегда найдет чем заняться.

Кэтрин Блоджетт повезло в жизни в том смысле, что она смогла реализовать свои способности. И в то же время ее судьба чем-то напоминает судьбу Агнесс Покелс, не так ли?

Сейчас фамилия Блоджетт на слуху у всего научного сообщества, хотя склоняют ее часто как мужскую не столько из-за мужского шовинизма (грешат этим и женщины), сколько из-за пренебрежения историей вопроса, историей всего. Ежегодно проводятся научные конференции, посвященные исключительно слоям Ленгмюра – Блоджетт, сокращение ЛБ (LB) не нуждается в расшифровке в специальной литературе. Интерес к ним действительно резко возрос в эпоху нанотехнологий, но я бы затруднился дать однозначный ответ на вопрос, что здесь причина, а что – следствие.

С помощью молекулярного конструктора Блоджетт на поверхности различных подложек получают тончайшие слои (вплоть до толщины в один атом) электропроводящих, полупроводниковых и магнитных веществ. Подвижные слои поверхностно-активных веществ армируют холестерином и другими соединениями, придавая им твердость, на их поверхность или внутрь вводят молекулы белков, все в целом это чрезвычайно напоминает – вы абсолютно правы! – мембраны клеток живых организмов.

ЛБ-слои сами могут служить подложкой для образования и роста неорганических кристаллов. Похожим образом в живых организмах формируются кости, зубы, панцири, и мы, моделируя и воспроизводя Природу, сможем с помощью метода Блоджетт получить новые бионеорганические материалы (их иногда называют биокерамикой) для протезирования или иных технических целей.

Это дело будущего, но уже сейчас ЛБ-слои используют для производства рентгеновских дифракционных решеток, газовых сенсоров, рабочих элементов так называемых первапорационных мембран, позволяющих разделять небольшие по размеру молекулы различных веществ, наноразмерных диэлектрических покрытий и прослоек в электронных устройствах и многого другого. Нанотехнологии в действии.

Глава 4 Прочность через разрушение

Память человеческая устроена очень странно, какие-то события, порой несущественные, человек помнит крепко, о других, куда более значительных, забывает напрочь, особенно если воспоминания о них ему неприятны или неудобны. Это свойство памяти обостряется у пропагандистов какой-нибудь идеи, тех же нанотехнологий. Например, о книге Вольфганга Оствальда, сына Вильгельма Оствальда, “Мир обойденных величин” они вспоминают часто, ведь в ней описаны разнообразные системы, имеющие наноразмеры. А уж название – лучше не придумаешь, отталкиваясь от него так просто начать рассказ о том, что наномир был долгое время обойден вниманием ученых и лишь в последние годы произошел революционный скачок и все такое прочее. За всеми этими рассуждениями как-то теряется из виду, что книга эта была написана в 1914 году и представляла собой учебник по коллоидной химии. То есть уже в те годы было накоплено достаточное количество вполне устоявшихся знаний о свойствах наноразмерных систем.

В предыдущей главе мы прикоснулись к сравнительно небольшому разделу коллоидной химии. И уж коли нас занесло на это поле, так давайте продолжим его сканирование. И вот что удивительно, куда бы мы ни пошли, везде нам будут попадаться следы, оставленные нашим соотечественником Петром Александровичем Ребиндером.

В 1969 году П.А. Ребиндер вместе с президентом Академии наук СССР М.В. Келдышем был приглашен на празднование 50-летия Шведской королевской академии инженерных наук. Там ему торжественно преподнесли книгу с генеалогическим древом рода Ребиндеров, ведущего отсчет с 1100 года. Имелась в этой книге и запись о рождении в 1898 году Петра Александровича, сына Александра Михайловича Ребиндера и Анны Петровны Ребиндер, урожденной Халютиной.

Прибалтийские немцы, Ребиндеры оставили заметный след в истории Швеции и России. Собственно, в Россию Ребиндеры попали вследствие военного столкновения двух держав в начале XVIII века: основоположник русской ветви рода, подполковник Генрих Ребиндер, один из десяти сыновей губернатора Финляндии барона Генриха фон Ребиндера, был взят в плен под Полтавой в 1709 году. Император Петр I уважительно относился к “своим учителям”, и пленному офицеру был предоставлен в России режим наибольшего благоприятствования. Энергичный и плодовитый род дал новой родине множество военных, вплоть до фельдмаршала, а также дипломатов и общественных деятелей.

П.А. Ребиндер чрезвычайно гордился своей родословной и никогда не отрекался от национальных и дворянских корней, что в условиях коммунистической власти было по меньшей мере безрассудно, а в определенные времена и самоубийственно. Полагаю, что осознание принадлежности к древнему и славному роду не только питало его самоуважение, но и побуждало постоянно двигаться вперед. Звание наследника такого рода ко многому обязывало, ему надо было соответствовать, и П.А. Ребиндер соответствовал.

Знаменитая фамилия была главным, если не единственным, капиталом семьи П.А. Ребиндера. Поместье было давно утеряно, отец Пьерика (так называли мальчика в семье) служил морским врачом, в 1905 году он скончался от туберкулеза после возвращения с Русско-японской войны. Жизнь в столице всегда дорога, и Анна Петровна Ребиндер, кстати, прямой потомок выдающегося русского скульптора И.П. Мартоса, была вынуждена пойти работать учительницей гимназии. Но тут на семью свалилась новая напасть – у мальчика обострилась бронхиальная астма, которой он страдал с раннего детства. В 1909 году по рекомендации врачей Анна Петровна с сыном покинули промозглый Петербург и отправились для лечения в Европу. Судя по всему, пенсии, получаемой за умершего главу семьи и недостаточной для жизни в русской столице, вполне для этого хватало.

Семья провела в Европе пять лет, вплоть до Первой мировой войны, сначала в швейцарской Лозанне, затем в Бретани (Франция) и, наконец, в Италии, в Генуе и Нерви. Там Ребиндер приобщился к европейской культуре, а также приобрел потрясавшую всех легкость в общении и, конечно, свободное владение французским, немецким и итальянским языками (английский он освоил позднее). Именно этот базис общей культуры вкупе с уникальными природными задатками и истинно немецкой организованностью позволил ему совершить феноменальный рывок в освоении естественных наук, предпринятый им в последующие годы.

Ведь, по сути дела, все образование шестнадцатилетнего подростка сводилось к домашнему обучению. Только в этом возрасте он поступил в гимназию. Случилось это в Кисловодске, который был выбран для проживания по медицинским соображениям. Предгорье, теплое лето, мягкая зима с сухой погодой и обилием солнца – та же Лозанна, только русского разлива. Восьмилетний курс гимназии юноша прошел за четыре года, по существу, экстерном, и поступил на химическое отделение Донского университета в Ростове-на-Дону. Университет обладал великолепным штатом преподавателей, переведенных сюда в начале войны из Варшавского университета, по праву считавшегося одним из лучших в Российской империи (мы посетим этот университет в десятой главе).

Так пересеклись жизненные пути студента Петра Ребиндера и профессора Венедикта Викторовича Курилова (1867–1921), который познакомил его с концепциями химической термодинамики Гиббса и Вант-Гоффа. Существенно, что Курилов сам какое-то время работал в лаборатории Вант-Гоффа и воспоминания о непосредственном сотрудничестве с первым лауреатом Нобелевской премии по химии, несомненно, придавали его лекциям особую живость и убедительность. В особенности увлекли Ребиндера идеи Гиббса, но для их освоения ему тогда, по его собственному признанию, не хватало глубоких знаний в области высшей математики и физики. Поэтому вскоре он начал параллельно учиться на математическом отделении физико-математического факультета, а потом и полностью перешел на него.

Продолжалось это, впрочем, недолго. Революция, Гражданская война – не лучшее время для обучения в университете. Что тогда творилось на юге России, прекрасно описано в романе “Тихий Дон” Михаила Шолохова. Так что после захвата Ростова-на-Дону деникинскими войсками Ребиндер был вынужден вернуться в Кисловодск и продолжить уже привычное самостоятельное образование.

С другой стороны, революция породила невероятный душевный подъем и энтузиазм, который нам с высоты нашего прагматичного времени даже трудно представить и понять. В условиях разрухи и хаоса Петр Ребиндер с товарищами организуют “Общество изучения математики, физики и химии”, издают рукописный “Журнал экспериментальной физики и химии” и наполняют его описаниями экспериментов, проводимых ими в лаборатории, оборудованной в заброшенном доме на окраине Кисловодска. В этом же журнале появляются и первые теоретические статьи П.А. Ребиндера по химической термодинамике. В те годы проявилась еще одна отличительная черта будущего ученого – стремление доводить любую работу до практического результата или, с другой стороны, исходить из постановки научного исследования практических задач. Думается, молодые энтузиасты не случайно организовали в Кисловодске глицериномыльное производство и опытное промышленное производство аммиачной соды – не иначе как жизнь заставила.

В 1922 году Ребиндер – звезда на научном небосводе Терской губернии [6] , его даже командируют в Московский университет для “продолжения научной работы”. Но сам он понимает, что ему надо еще учиться и учиться, поэтому просит зачислить его на четвертый курс математического отделения физико-математического факультета. И опять – не лучшее время для учебы. Полный развал промышленности, транспорта, энергоснабжения как следствие Гражданской войны, натуральный голод как следствие политики военного коммунизма, потеря значительной доли образованного населения (в том числе из-за эмиграции, добровольной или вынужденной) и инфляция, измеряемая десятками процентов (не в год, а в день). Какой же тягой к знаниям нужно было обладать, чтобы в этих условиях не просто учиться, но еще добывать средства к существованию. Характерная деталь: жил молодой студент в зоопарке, в комнате над помещением слона, которую он получил, устроившись на работу электромонтером.

Никогда не забуду, как к нам, студентам-первокурсникам химического факультета МГУ, зашел в общежитие на Ломоносовском проспекте академик Александр Наумович Фрумкин (1895–1976), выдающийся электрохимик и, кстати, большой друг Ребиндера. Случайно или нет, но разговор зашел о тех давних годах. О суровых реалиях жизни тогдашних студентов и молодых ученых Александр Наумович рассказывал с улыбкой и в то же время с какой-то грустью в глазах. Мы слушали, разинув рты от удивления, и постепенно проникались осознанием сносности, даже комфортности своего существования. Пусть жили мы по пять человек в комнате, зато в тепле и с горячим душем, что уж говорить о сорокарублевой стипендии, которой хватало на завтрак, обед или ужин, по выбору, и даже на маленькие субботние удовольствия, на поход с девушкой в кино или пиво с друзьями.

Но вернемся к Ребиндеру. Похоже, что все эти житейские неурядицы его нисколько не обескураживали, но еще сильнее мобилизовывали. Студент математического отделения стал посещать семинар по молекулярной физике профессора Б.Н. Ильина, а вскоре под его руководством начал собственные научные исследования по коллоидной химии. Тему он выбрал самую что ни на есть модную и актуальную – образование упорядоченных слоев поверхностно-активных веществ на поверхности воды. Ведь именно в те годы Ленгмюр публиковал результаты своих исследований в этой области, о которых мы уже рассказывали.

Поле для работы было огромным и практически неизученным. Пахать целину – дело трудное, но благородное и благодарное. При настойчивости и доле везения можно наткнуться на большой, неожиданный эффект. Первые же эксперименты принесли обнадеживающие результаты, молодого исследователя заметили и пригласили работать в Институт физики и биофизики, который возглавлял академик П.П. Лазарев.

Институт – двухэтажное здание на Миусской площади, в котором поначалу работало 20, а затем 36 исследователей. Большинство из них были обременены другой деятельностью: студенты учились, преподаватели преподавали, и все еще где-нибудь подрабатывали, потому что надо было на что-то жить. Научными исследованиями занимались в свободное от всего этого время, ставя эксперименты по вечерам и заканчивая их зачастую под утро. И все это, как сейчас говорят, “за идею”. Тогда это называлось вольным, свободным трудом – веяние революционного времени.

Думается, что они были счастливы. Они были молоды, занимались любимым делом, каждый день приносил им радость научных открытий и общения с близкими по духу людьми. По субботам они собирались вместе на институтский коллоквиум, рассказывали о результатах своих исследований, слушали доклады коллег из других институтов.

Среди них были и иностранные ученые, посещавшие в те годы СССР, в частности великий французский физик Поль Ланжевен (1872–1946), создатель теории диамагнетизма и парамагнетизма. Он, несомненно, с интересом всматривался в лица “новой волны” ученых, отвечал на их острые, неожиданные вопросы. Ведь именно тогда, в 1923–1924 годах, он был научным руководителем Луи де Бройля, предложившего концепцию волновой теории электрона, легшей в основу современной квантовой механики и, как следствие, нанотехнологий. “Де Бройль или сумасшедший, или гений – его диссертацию я не понимаю”, – признавался Ланжевен в частных беседах. Но он честно пытался понять и новые идеи, и молодых людей, сидевших перед ним в зале института, – тридцатилетнего Сергея Вавилова, будущего президента Академии наук СССР и лауреата Нобелевской премии по физике, двадцатипятилетнего Петра Ребиндера, двадцатилетнего Бориса Дерягина, создавшего в 1941 году вместе с Л.Д. Ландау теорию устойчивости коллоидных систем, используемую до сих пор, и других.

Кто только не выступал на коллоквиумах в институте – математики, физики, физико-химики, химики, биофизики, биохимики, физиологи. Это была великая школа для всех участников, и именно там следует искать истоки феноменальной эрудиции Ребиндера, потрясавшей всех, кому посчастливилось общаться с ним. Так, еще в ранние годы, сформировался ученый, который может служить образцом и для нашего времени, для эпохи нанотехнологий. Равняясь на него, попытаемся сформулировать основные качества современного ученого: высокая общая культура; свободное владение математическим аппаратом; широкая эрудиция, способность использовать в работе и для объяснения полученных результатов данных различных наук – физики, химии, биологии; “заточенность” на практический результат, умение видеть, как проводимые фундаментальные исследования могут быть претворены в материалы и устройства; и наконец, такие черты характера, как упорство, трудолюбие, любовь к науке и – бескорыстие.

Но не будем забывать, что молодой ученый был еще и студентом, и проведенные им исследования – по сути, его дипломная работа. Некоторые выдержки из нее были опубликованы в ведущем немецком журнале по коллоидной химии – Kolloid Zeitschrift. Нисколько не умаляя значимости полученных результатов, замечу, что ничего экстраординарного в факте этой публикации нет, такова была обычная практика того времени – публиковаться в немецких журналах. И эти журналы охотно принимали статьи российских ученых, продолжавших проводить исследования мирового уровня, несмотря на всеобщую разруху. Да и языкового барьера в то время не существовало, немецкий был языком науки, большинство ученых знали немецкий с детства, как Ребиндер, и оттачивали его во время стажировок и других поездках за рубеж.

После окончания университета Ребиндер продолжил исследования поверхностно-активных веществ, ведя их одновременно в нескольких направлениях и поражая коллег неожиданными идеями.

Не углубляясь в детали, приведу один пример. Из предшествующего чтения и школьных воспоминаний у вас наверняка сложилось представление, что поверхностно-активные вещества – это непременно сложные органические молекулы с гидрофильными головками и гидрофобными хвостами, которые обволакивают частички грязи и масла в водном растворе или выстраиваются частоколом на поверхности воды “по Ленгмюру”. Ничего удивительного, ведь такого мнения придерживались (и придерживаются) даже многие специалисты. И как на этом фоне вы воспримите название доклада Ребиндера, начинающего ученого, на IV съезде Менделеевского общества в 1925 году: “Вода как поверхностно-активное вещество”? Чушь? Ересь?

А Ребиндер “всего лишь” расширил понятие поверхностно-активного вещества и включил в него все вещества, способные адсорбироваться на поверхности и изменять ее свойства. Как вода, адсорбирующаяся на поверхности расплавленной соли {3} . Согласно этим воззрениям, активность или неактивность вещества уже не была его абсолютным, навечно застолбленным за ним свойством, а зависела от природы поверхности раздела фаз.

Новый взгляд на проблему принес щедрые плоды, вскоре молодой ученый открыл явление адсорбционного понижения прочности твердых тел, носящее теперь его имя, – эффект Ребиндера. Этот эффект, имеющий принципиальное значение для интересующих нас нанотехнологий, мы рассмотрим подробнее чуть позже, пока же опишем другой эффект – от доклада Ребиндера о своем открытии.

Случилось это в августе 1928 года на VI съезде русских физиков, без преувеличения историческом. Он открылся в Москве и продолжился на пароходе, плывшем по маршруту Нижний Новгород – Казань – Саратов. На нем присутствовало множество иностранных гостей: Макс Борн (лауреат Нобелевской премии по физике 1954 г.), Леон Бриллюэн, Петер Дебай (лауреат Нобелевской премии по химии 1936 г. и иностранный член АН СССР с 1924 г.), Поль Дирак (лауреат Нобелевской премии по физике 1933 г. и иностранный член АН СССР с 1931 г.), физик Чарльз Дарвин, внук великого деда, Гилберт Льюис (с 1942 г. – почетный член АН СССР) и другие. С нашей стороны выступали будущие нобелевские лауреаты С.И. Вавилов, Л.Д. Ландау и Н.Н. Семенов с сообщением о первых результатах изучения механизма цепных реакций, Л.И. Мандельштам рассказал об открытии эффекта комбинационного рассеяния света, а Лев Термен продемонстрировал возможность передачи движущегося изображения по проводам – прообраза телевидения. Вот в такой аудитории предстояло выступать Петру Ребиндеру.

Его доклад вызвал “скептическое отношение”, что в воспоминаниях о заслуженных деятелях служит эвфемизмом провала и разгрома. Наибольшие возражения вызвал центральный тезис доклада о том, что механические свойства кристаллического тела могут быть существенно изменены за счет адсорбции на его поверхности специально подобранного вещества, поверхностно-активного по отношению к этому кристаллическому телу. На ум приходит прочная металлическая балка, которую для защиты от ржавления или из эстетических соображений покрывают тончайшим слоем краски, обладающей хорошим сцеплением с поверхностью, и после этого балка вдруг начинает деформироваться или ломаться при небольших механических нагрузках. Да как такое может быть?! Очевидно , что какой бы “краской” ни покрывать балку, о ее природе “осведомлены” лишь поверхностные атомы балки, в крайнем случае, несколько внешних атомарных слоев, но их количество пренебрежимо мало по сравнению с количеством атомов, находящихся внутри балки и несущих основную нагрузку. Элементарный расчет показывает, что даже для проволоки диаметром 1 мм доля поверхностных атомов составляет 1/10000000, что уж говорить о балке? О каком влиянии здесь вообще можно говорить? Были и другие общетеоретические возражения, а представленные экспериментальные доказательства воспринимались как артефакты.

Это была настоящая проверка на прочность. Многие ученые ломались при куда более поверхностных возражениях против их концепций, но Ребиндер показал, что у него твердая сердцевина и настоящий мужской характер. Он дал единственно правильный в такой ситуации ответ оппонентам – провел серию новых, еще более изощренных экспериментов и доказал свою правоту. Но самым убедительными свидетельствами в пользу эффекта адсорбционного понижения прочности твердых тел стали его многочисленные практические приложения в процессах измельчения различных веществ, бурения горных пород и металлообработки.

Ломать – не строить, скажете вы. Поспешу с вами согласиться, потому что это подводит нас к следующему этапу развития работ Ребиндера. Всем выдающимся ученым старой школы, к которым несомненно принадлежал и Ребиндер, было свойственно проникновение в суть явления, они зримо представляли себе процессы, протекающие в изучаемых ими системах, и это глубинное понимание вкупе с привлечением аналогий из смежных областей позволяло им находить неожиданные решения. Разобравшись с тем, как и почему разрушаются твердые тела, Ребиндер предложил путь создания сверхпрочных материалов. Прочность через разрушение – так кратко звучала новая концепция. Сущность этого парадоксального подхода мы рассмотрим чуть позже, пока же вспомним очень далекую аналогию, впрочем, весьма актуальную для описываемого времени: “Весь мир насилья мы разрушим до основанья, а затем мы наш, мы новый мир построим, кто был ничем, тот станет всем”. Именно так Ребиндер предлагал идти к получению сверхпрочных материалов, и в отличие от теории Маркса его стратегия доказала свою жизнеспособность.

Признание пришло быстро. В 1933 году Ребиндер был избран членом-корреспондентом Академии наук СССР, в 1934 году ему была присуждена научная степень доктора физико-математических наук, а в 1935-м – доктора химических наук. (Возможно, вы удивитесь такой последовательности событий, но дело в том, что большевики в запале разрушения отменили “буржуазные” научные степени и сам институт защиты диссертаций и восстановили этот традиционный и необходимый этап квалификации научных кадров лишь через пятнадцать лет.)

Не будем задерживаться на других научных работах Ребиндера, хотя все они имеют самое непосредственное отношение к нанотехнологиям. Он изучал золи – коллоидные растворы твердых частиц нанометрового размера – и образование из них ажурных объемных структур – гелей, он исследовал растворы полимеров и белков и все это в привязке к промышленности, с доведением фундаментальных исследований до практического результата. Достаточно сказать, что во многих со временных пищевых продуктах можно обнаружить “ребиндеровский” след – в мороженом, шоколаде, желе, маргарине и растворимом кофе. (Все они содержат нанообъекты или обладают наноструктурой, так что процесс их производства с полным правом может быть отнесен к нанотехнологиям.)

Судьба была благосклонна к Ребиндеру. Несмотря на “сомнительное” происхождение и фамилию, он благополучно пережил и чистки 1930-х годов, и борьбу с космополитизмом в конце сталинской эпохи и всю жизнь имел возможность заниматься любимым делом.

Он любил жизнь во всех ее проявлениях. С детства собирал марки и к концу жизни обладал одной из лучших коллекций в нашей стране (сам он полагал, что несомненно лучшей). Он участвовал в создании Московского общества филателистов, а в 1966 году на 1-й Всесоюзной конференции ему вручили членский билет филателистического общества с номером 1.

Его любили женщины, собаки и студенты. И всем он отвечал взаимностью. До сих пор жалею, что мне не довелось лично услышать лекции Ребиндера: я поступил на химический факультет МГУ в год его кончины. Остались лишь многочисленные студенческие байки об этих лекциях, а такая память дорогого стоит. И дело было даже не в высочайшем научном уровне лекций или в том, что Ребиндер мог просто и доходчиво объяснить самые сложные вещи. Это была магия личности. Красивая внешность, благородная осанка, звучный голос, богатый и безупречный русский язык. Ребиндер выводил каллиграфическим почерком на доске длинные математические формулы и разряжал интеллектуальное напряжение какой-нибудь шуткой. Не заготовленной и повторяемой из года в год, как у некоторых других лекторов, а родившейся тут же, на месте. Он вообще был склонен к импровизации и часто, увлеченный внезапно пришедшей в голову научной идеей, начинал ее развивать тут же, у доски, на глазах у студентов. Глядя в этот момент на него, все понимали, каким должен быть настоящий ученый, и это имело огромное воспитательное значение. Ребиндер задавал высокую планку, к сожалению, недостижимую.

Приведу лишь одну студенческую байку. В конце лекции Ребиндеру передают записку. “Уважаемый Петр Александрович…” – начинает читать он вслух, пробегает глазами записку до конца и поднимает голову. – Уважаемый – так в мои молодые годы обращались к извозчику, – со сдерживаемой улыбкой говорит он. – В научной среде принято обращение глубокоуважаемый. Итак, глубокоуважаемый коллега, отвечаю на ваш вопрос”. Даже услышанная из вторых уст, эта байка так прочно засела в памяти, что до сих пор я вздрагиваю при виде обращения “уважаемый”, а рука сама печатает “глубокоуважаемый” при обращении ко всем людям независимо от возраста и профессиональной принадлежности.

А еще Ребиндер любил показывать на лекциях опыты, не мультимедийные (тогда слова такого не знали), а самые настоящие. Как-то раз один нетерпеливый студент в самом начале курса лекций спросил, что такое эффект Ребиндера. Петр Александрович немедленно откликнулся и дал знак ассистентам. Они принесли кристаллизатор – это такой невысокий стеклянный цилиндр диаметром около полуметра и бадью с литром ртути, чуть меньше пятнадцати килограммов. Ртуть вылили в кристаллизатор, она заполнила его плотным слоем. Сверху налили воду из-под крана, в которой растворили щепотку какого-то вещества [7] . Ребиндер взял стеклянную палочку и, легким движением проведя ею по слою ртути, разрезал его пополам. “Вот это и есть эффект Ребиндера”, – сказал он. Эффект бы действительно потрясающий, и студенты завороженно смотрели на слой ртути, который рассекал явно видимый разрез. Этого не может быть! Не знаю как вы, а мы в детстве любили играть с капельками ртути, гоняя их туда-сюда или натирая ими двухкопеечную монетку и превращая ее в десятикопеечную. Весь наш опыт говорил, что капли ртути при соприкосновении сливаются в большую каплю, в этом проявляется действие сил поверхностного натяжения. А тут они лежали вплотную друг к другу – и не сливались. А Ребиндер между тем наносил палочкой новые разрезы, рисовал разные замкнутые фигуры, а затем, слегка покачивая кристаллизатор, заставлял эти разрезы менять форму, превращаться в идеальные прямые линии и окружности, соприкасаться с образованием причудливых фигур, похожих очертаниями на мыльную пену. Затем следовали легкие удары стеклянной, поистине волшебной палочкой – и разрезы смыкались. Следует сказать, что этот опыт завораживал не только студентов. Его засняли на кинопленку и продемонстрировали фильм на Международной научно-технической выставке в Брюсселе в 1958 году. Это был фурор.

Опыт, конечно, эффектный, но мало приближающий нас к пониманию эффекта Ребиндера. Ведь речь шла, напомню, об адсорбционном понижении прочности твердых тел. И многим оппонентам, выдающимся физикам, было очевидно , что такого просто не может быть. Но так ли уж это очевидно? Поразительно, но с проявлениями этого эффекта мы сталкиваемся даже в быту. Вспомните невинную детскую шалость – слегка намочить мелок перед школьным уроком. Твердый мелок начинает крошиться и становится непригодным для писания на доске. Если намочить так все доступные мелки, то срыв урока гарантирован. Более конструктивное применение: возможно, вы обращали внимание на то, что кофе, перец, сахар гораздо легче и тоньше измельчаются в ручной мельнице или в ступке, если предварительно их немного смочить водой.

В чем тут дело? Строение реальных твердых тел далеко от идеального кристалла, к которому апеллировали физики-теоретики. Посмотрите на свежий разлом камня или металла, и в большинстве случаев вы увидите четкую зернистую или, как говорят ученые, микрогетерогенную структуру. Внешне зерна могут выглядеть плотно прилегающими друг к другу, но на самом деле число контактов не столь уж велико и они относительно легко разрушаются при механической нагрузке. Именно поэтому прочность реальных твердых тел в десятки, а то и сотни раз меньше теоретических величин, рассчитанных для идеальных монокристаллов того же состава.

Итак, при нагрузке в месте соединения зерен появляется трещина, постепенно увеличивающаяся. Если мы снимем нагрузку до того, как произойдет разлом, то стенки трещины вновь соединятся и разрушенные контакты восстановятся. Но что будет, если мы смочим твердое тело каким-нибудь веществом (или его раствором), способным прочно связываться с его поверхностью – поверхностно-активным веществом в терминологии Ребиндера? Это вещество “заползет” в образующуюся трещину, покроет всю поверхность ее стенок и не позволит им вновь прочно соединиться при снятии нагрузки. Адсорбированный слой может быть толщиной всего в одну молекулу, но этого вполне достаточно, чтобы предотвратить восстановление разрушенных контактов. (Именно это и происходит при разрезании слоя ртути в описанном выше опыте.)

После такого объяснения эффект Ребиндера выглядит простым, даже слишком простым, не так ли? Но, несмотря на кажущуюся простоту, эффект снижения прочности может быть очень значительным – в разы. Главное – правильно подобрать адсорбирующееся вещество. Как и во многих других случаях, тут работает принцип подобия, близости химического строения и свойств для пары твердое тело – жидкость. Например, для металла нет ничего лучше… расплава металла. Или жидкого металла, например ртути. Цинковая пластинка легко гнется, и ей можно придать любую форму, но стоит смочить ее поверхность ртутью (или еще лучше – галлием, плавящимся при 30 °С), и она при нагрузке треснет на кусочки, как стекло. Это, кстати, один из опытов, который Ребиндер демонстрировал на лекциях.

Этот эффект широко применяется на практике. Возможно, вы видели, воочию или на экране телевизора, как бурят скважины или обрабатывают металлические детали на станках, и обратили внимание на то, что в скважину закачивают какой-то раствор, а на металлическую деталь постоянно льется какая-то жидкость. Очевидные объяснения, которые приходят на ум: это делается, во-первых, для охлаждения трущихся поверхностей и, во-вторых, для удаления образующихся мелких частичек горной породы или металла. Все это правильно, но не меньшее значение имеет содержащееся в растворе, специально подобранное поверхностно-активное вещество, которое уменьшает прочность обрабатываемого твердого тела и многократно увеличивает скорость процесса.

Что ж, с обычными материалами все понятно, скажете вы, причины эффекта кроются в их несовершенстве, но как обстоит дело с монокристаллическими твердыми телами, в которых отсутствуют внутренние поверхности раздела? Ведь недаром критики Ребиндера апеллировали именно к этим материалам? И тем не менее эффект адсорбционного снижения прочности наблюдается и в этом случае. Дело в том, что твердое тело может обладать идеальный внутренней кристаллической структурой, но поверхность-то его при этом будет неидеальной, на ней будут присутствовать разные впадинки, микротрещины, выступы и уступы. И именно в местах этих дефектов поверхности при механической нагрузке происходит разрушение кристалла. Начинается оно с образования трещины, а если рядом с этим местом находится поверхностно-активное вещество, то… см. выше.

Так есть ли предел процессу измельчения твердого тела? Есть. “Стоит только измельчить твердое тело на достаточно мелкие кусочки, и эти кусочки той же самой природы, того же состава будут наиболее прочными, почти идеально прочными”, – писал еще несколько десятилетий назад Ребиндер. Причина этого заключается в том, что описанное выше разрушение кристалла происходит по так называемым плоскостям спайности и в результате этого образуются идеально гладкие поверхности, то есть по мере разрушения происходит как бы идеальная огранка образующейся частицы. Ребиндер оценил минимальные размеры такого идеального кристаллита, которые составили 5–10 нанометров. Разрушить его практически невозможно, ведь в нем нет трещин и других дефектов – все они были “использованы” на предыдущих стадиях размола.

Но мысль Ребиндера на этом не остановилась. Ведь если мы имеем идеально прочные строительные блоки, то почему бы не попытаться собрать из них новое твердое тело? По составу оно ничем не будет отличаться от тела, подвергнутого разрушению, но прочность его должна быть существенно выше. Это вытекает из следующего примера. Наполним ящик шариками. Как мы их ни перетряхивали, общее число контактов между ними останется постоянным. Но это число будет зависеть от диаметра шариков: чем диаметр меньше, тем больше шариков поместится в ящике и тем больше будет между ними контактов. Если принять, что прочность каждого контакта не зависит от диаметра шарика (а в реальности дело обстоит именно так), то окажется, что с уменьшением диаметра шариков общая прочность их сцепления возрастает.

Таким образом, стратегия “прочность через разрушение” заключается в следующем: мы разрушаем некое твердое тело до минимально возможных частиц, затем максимально плотно заполняем ими заданный объем и дополнительно упрочняем контакты между частицами, например, за счет нагревания или специального клея. Это на бумаге. На практике все выглядит намного сложнее, но это работает. Давно и в промышленном масштабе.

А что мы имеем в наше время, в эпоху нанотехнологий?

Любая вводная лекция или научно-популярная книга по нанотехнологиям непременно включает описание методов получения наноразмерных объектов. Так как на шкале размеров эти объекты занимают промежуточное положение между атомами и макроскопическими телами, существует две наиболее общие стратегии их получения: мы можем собрать их из атомов (мысленно, конечно) или, наоборот, измельчить макроскопический объект. Образно эти стратегии называются “снизу-вверх” (bottom-up) и “сверху-вниз” (top-down).

При дальнейшем изложении проблемы лекторы и авторы книг испытают легкий дискомфорт. Единственным примером, который приходит им на ум при обсуждении “общего” метода получения нанообъектов методом “сверху-вниз”, служит банальное механическое измельчение. В рассказе о “революционных” технологиях оно выглядит как-то странно, отсюда и дискомфорт. У некоторых авторов это порождает желание “улучшить” ситуацию, и они записывают в технологии “сверху-вниз” методы, которые таковыми не являются. На руку им играет то, что во многих случаях при получении нанообъектов в качестве исходных используют макроскопические тела. Приведу один пример. Есть такая молекула – фуллерен С60, вылитый футбольный мяч, составленный из шестидесяти атомов углерода (о ней более подробно – в двенадцатой главе). Изумительно красивая молекула и размер – в точности один нанометр, поэтому фуллерен С60 часто используют в качестве символа или эмблемы нанотехнологий. Так вот, получают его сейчас нагреванием при высокой температуре куска графита – в одну стадию! Чем не технология “сверху-вниз”? Но ведь механизм этого процесса состоит в том, что графит испаряется с образованием атомов углерода, которые в газовой фазе “собираются” в молекулу фуллерена, то есть перед нами классический пример метода “снизу-вверх”.

На самом деле примеры технологий “сверху-вниз” существуют, и по крайней мере один из них мы рассмотрим в дальнейшем. Не разделяю я и несколько пренебрежительного отношения к механическому диспергированию, которое по-прежнему служит наиболее универсальным, а в некоторых случаях и единственным, методом получения многотоннажных количеств нанодисперсных неорганических материалов. Несмотря на кажущуюся простоту, в этом методе имеется множество подводных камней, обойти которые невозможно без использования достижений высокой науки, основы которой были заложены Ребиндером.

Начнем с главного недостатка метода механического диспергирования – высокого энергопотребления. Понятно, что разрыв химических связей в твердых телах требует затрат большого количества энергии, равно как и обеспечение функционирования самих мельниц. Более того, чем мельче мы измельчаем вещество, тем больше удельный расход энергии. Вы уже понимаете, в чем тут дело: вначале в ход идут крупные дефекты (в них число контактов, которые необходимо разрушить, невелико), а затем все более мелкие трещинки, расколоть по которым крупинку вещества становится все сложнее.

Как можно уменьшить расход энергии? Тут на помощь приходит эффект Ребиндера. Не поленимся рассмотреть его еще раз, на этот раз с энергетической точки зрения. Поверхность любого объекта обладает избытком энергии по сравнению с его объемом, при размоле образуются новые поверхности, на обеспечение их “избыточной” энергии идет значительная доля энергии, затрачиваемой на весь процесс. Сорбция любого вещества на поверхности уменьшает величину ее избыточной энергии и, следовательно, затраты энергии на ее образование. Понятно, что для этого оба процесса – образование “горячей” поверхности и ее “гашение” сорбирующимся веществом – должны протекать практически одновременно. Но это как раз представить очень легко: если есть дефект – углубление на поверхности, заполненное жидкостью, то при механической нагрузке дефект превращается в трещинку, в которую немедленно втягивается жидкость, смачивая образующуюся новую поверхность. Современная техника позволяет наблюдать сей процесс воочию, и, поверьте, это стоит потраченного времени: создается впечатление, как будто жидкость “силой” проникает внутрь вещества, раздвигая стенки наметившейся трещинки.

Таким образом, правильный выбор адсорбирующегося (поверхностно-активного) вещества обеспечивает заметное снижение энергозатрат. Более того, измельчить твердые материалы механическим способом до частиц размером порядка десяти нанометров без добавления сорбирующихся на поверхности веществ никому пока не удалось.

И вряд ли это возможно в принципе. Ведь модификаторы поверхности выполняют еще одну важную функцию – они препятствуют плотному слипанию образующихся наночастиц. Даже если нам удастся расколоть частицу пополам в отсутствие модификатора, то половинки могут встретиться вновь и – слипнуться. Отчасти поэтому при механическом размоле независимо от его продолжительности всегда образуются порошки с очень широким разбросом по размерам частиц, например от двадцати до двухсот нанометров.

Надо сказать, что стремление наночастиц к слипанию и агрегации – едва ли не главная головная боль всех специалистов, работающих в области нанотехнологий. Причина заключается в упомянутой выше избыточной поверхностной энергии, которую частицы стремятся уменьшить за счет слипания. В сущности, это ничем не отличается от слияния двух капелек ртути. Как говорят ученые, – самопроизвольный процесс.

“Голая”, изолированная наночастица – редчайшее исключение из общего правила {4} . Если исследователи хотят получить именно изолированные наночастицы, то независимо от использованного подхода – “сверху-вниз” или “снизу-вверх” – им приходится одевать их в защитную шубу из тех же поверхностно-активных веществ, препятствующих слипанию. Процедура эта обязательная, настолько обязательная, что многие даже не упоминают о ней как о чем-то само собой разумеющемся, и для простоты говорят, например, о наночастицах золота, забывая добавить “стабилизированных тем-то и тем-то”. Это порождает недоразумения даже в кругу специалистов, ведь одни и те же наночастицы золота, покрытые разными модификаторами, – по сути дела, разные вещества, отличающиеся по свойствам. И это составляет еще одну большую проблему нанотехнологий – зависимость свойств наночастиц от их предыстории, мало ли что они могут нахватать из раствора или атмосферы в процессе получения, выделения и очистки (последнее слово в этой связи звучит несколько двусмысленно).

Да, сложности есть, но они решаемые. Специалисты в области коллоидной химии за многие десятилетия накопили колоссальный опыт по стабилизации наночастиц, которые они на своем языке называют золями. Они научились также использовать во благо стремление частиц к слипанию, направляя этот самопроизвольный процесс в нужную им сторону, от максимально плотного заполнения пространства (это необходимо, например, для получения сверхпрочных керамик) до создания ажурных, воздушных структур.

(Эпитет “воздушный” – отнюдь не метафора. Есть такое вещество – аэрогель, представляющий собой пространственную сетку, составленную из наночастичек диоксида кремния. По своему химическому составу это тот же песок или всем известный силикагель, да и получают его так же, но с некоторыми технологическими ухищрениями, в которые мы углубляться не будем. Аэрогели диоксида кремния – одни из самых легких твердых веществ, существующих в природе. Их плотность достигает 1,9 кг/м3, что всего лишь в полтора раза больше плотности воздуха. При всей своей “воздушности”, они весьма прочны и способны выдерживать механическую нагрузку, в тысячи раз превышающую их собственный вес. Они являются отличными теплоизоляторами, что удачно сочетается с их высокой термостабильностью – температура плавления аэрогелей диоксида кремния составляет ~1200 °C. Это делает их чрезвычайно перспективными для применения в самых различных областях, от строительства до аэрокосмической отрасли.)

Все эти исследования составляют в настоящее время одну из важнейших частей нанотехнологий. Научные основы этих технологий были заложены еще в первой трети прошлого века и весомый вклад в них внесли работы Петра Александровича Ребиндера, выдающегося ученого и потрясающего человека.

Глава 5 Био и Нано – близнецы-братья

Название главы навеяли строки из поэмы Владимира Маяковского. Немного перефразировав “лучшего и талантливейшего поэта советской эпохи”, продолжим:

“Био и Нано – близнецы-братья.

Кто более матери Природе ценен?

Мы говорим Био – подразумеваем Нано,

Мы говорим Нано – подразумеваем Био”.

Постараюсь доказать вам, что это сопоставление по меньшей мере столь же верно, как утверждение Маяковского о тандеме Партия – Ленин, и что привычные нам био технологии есть в основе своей не что иное, как нано технологии.

В качестве главного персонажа этой главы я выбрал человека, чей приоритет в рассматриваемой области признается всеми, включая гуру истории науки Айзека Азимова. Звали его Константин Готлиб Сигизмунд Кирхгоф, по-нашему, Константин Сигизмундович.

Константин Кирхгоф родился в 1764 году в местечке Тетеров немецкого герцогства Мекленбург-Шверин в семье аптекаря. Фармацевтическое и химическое образование он получал, помогая отцу в работе, после смерти которого продолжил семейную традицию и дослужился до звания гезеля – помощника провизора. В 1792 году Кирхгоф, как и многие немцы той поры, отправился в Россию, полагаю, что за “длинным” рублем, крепким и полновесным. Он устроился работать в Главную петербургскую аптеку, которой в то время управлял уже знакомый вам Товий Егорович Ловиц. Под его руководством Кирхгоф выполнил свою первую научную работу, опубликованную в 1795 году: “Об очистке хлебной водки (сивухи) при помощи древесных углей”.

Эта работа задала тон всей последующей научной деятельности Кирхгофа. Он не изучал явления, а решал практические задачи, которые ему в изобилии подбрасывали жизнь и правительство. По складу своего мышления он был технологом, а не ученым-естествоиспытателем. При этом Кирхгоф был, несомненно, наделен феноменальной научной интуицией, ведь он выдавал новые технологии на гора едва ли не ежегодно. Добиться такого результата лишь за счет немецкой основательности и методичности невозможно, они в какой-то мере даже мешают такой скорострельности, потому что исследователь надолго увязает в деталях и несущественных мелочах.

Одна из многих технологий, разработанных Кирхгофом, – получение киновари, сульфида ртути. Из нее делали ярко-алую краску, столь любимую на Руси, ввозили же киноварь, как и все сейчас, преимущественно из Китая. Предложенный Кирхгофом способ получения киновари привел бы в ужас современных специалистов по охране труда и экологов: ртуть смешивали с серой и перетирали пестиком в ступке, затем прибавляли крепкий раствор щелочи и, помешивая, грели до готовности. Но по тем временам способ считался вполне безопасным. В 1805 году Кирхгоф ходатайствует перед Министерством внутренних дел о выдаче ему разрешения на устройство фабрики по производству киновари и о привилегии (эквивалент патента) на это производство. Закона о привилегиях в России тогда не было, поэтому в этом Кирхгофу было всемилостивейше отказано, но фабрику построить разрешили. Академик Я.Д. Захаров, посетивший эту фабрику через несколько лет, писал в отчете: “Сию киноварь можно здесь сколько угодно купить по 10 рублей за фунт, и она отправляется по изящной ее доблести за море”. При отсутствии “привилегии”, способ стали быстро использовать и другие русские фабриканты.

Точно такая же схема была реализована Кирхгофом при создании технологии очистки постного масла, которой он стал заниматься по указанию министра внутренних дел Кочубея в 1805 году. Дело в том, что масленичные семена [8] составляли значительную долю общероссийского экспорта. Еще выгоднее было продавать масло из них, потребность в котором была огромна, ведь оно использовалось не только для приготовления пищи, но и для освещения – масляные лампы Карселя были широко распространены в России и за границей. Но масло, вырабатываемое на российских кустарных маслобойнях, для этой цели не подходило. В общем, извечная наша проблема: как сделать так, чтобы поставлять на экспорт не сырье (семена/нефть/ металл), а продукты его переработки (масло/бензин/трубы).

Технологию Кирхгоф разработал, но ее детали, наученный опытом, придержал. Известно лишь было, что он использовал для очистки серную кислоту. Кирхгоф попросил у правительства беспроцентную ссуду в двадцать пять тысяч рублей на пять лет для открытия фабрики по очистке масла с условием, что по истечении срока ссуда будет возвращена, а “секрет” будет опубликован. Вышло как по писаному, сначала заработала фабрика Кирхгофа, а через пять лет технология была передана всем заинтересованным лицам и вскоре стала широко применяться на русских маслобойных предприятиях.

В 1808 году Кирхгоф выполнил еще одну работу – “О сохранении молока и яиц путем высушивания”, которая, естественно, проходила по военному ведомству. В условиях безостановочных войн во всех странах разрабатывали способы снабжения войск питательными и транспортабельными продуктами длительного хранения. Француз Николя Аппер (1749–1841) изобрел в 1809 году консервы, за что получил награду из рук самого Наполеона Бонапарта. Вполне возможно, что и Кирхгоф получил “наградной лист” за подписью Александра I – разрешение на строительство фабрики по производству сухого молока и яичного порошка, но известные мне исторические источники об этом умалчивают.

Мы подошли к главным технологическим свершениям Кирхгофа, которые в значительной мере тоже были инициированы тогдашней международной обстановкой. Речь пойдет о производстве сахара. О важности проблемы свидетельствует нижеследующий образчик старой русской словесности, взятый из “Предуведомления” к сборнику “Способы заменить иностранный сахар домашними произведениями”, изданного российским правительством: “Хотя употребление сахара в физическом смысле не только безвредно, но еще приятно и полезно почитается, но судя о чрезвычайно возвысившейся цене его, ежегодно составляющей знатные суммы для Отечества нашего, можно почесть оный весьма вредным как для частных людей, так и для блага всего народа. Сие доказывается и тем, что во многих местах стараются возможнейшим образом приготовлять сахар из домашних произведений. Сие также есть единственное средство избавить себя от корыстолюбия иностранных народов”. Добавим, что затраты на покупку и ввоз сахара равнялись стоимости всех импортируемых в Россию машин, инструментов и металла в изделиях, вместе взятых. Положение усугубилось после восстания негров-рабов на Гаити, основном поставщике сахара в Европу, и введения Наполеоном континентальной блокады.

Именно в те годы был разработан способ получения сахара из свеклы, используемый поныне. Ловиц, как мы помним, пытался выделить сахар из меда. Кирхгоф пошел другим путем. Он исходил из известных всем наблюдений: что хлебные зерна при прорастании становятся сладкими, то же происходит и с кислыми плодами при созревании. Он предположил, что это связано с превращениями крахмала, содержащегося в зернах и плодах, и стал искать способы ускорения этого процесса. Наилучшим “ускорителем” оказалась серная кислота. 14 августа 1811 года на заседании Академии наук Кирхгоф сделал доклад “О получении сахара из различных мучнистых продуктов, картофельного крахмала, пшеницы, ржи, проса и гречихи”. Он также представил технологию получения крахмала из картофеля – Кирхгоф полагал его наиболее выгодным с экономической точки зрения, тем более что можно было использовать промерзший картофель, который употреблять в пищу можно только от полной голодухи.

Кирхгоф отдавал себе отчет в том, что он получил не сахар, а глюкозу, или виноградный сахар, который в несколько раз уступает в сладости тростниковому сахару. Но как верно было замечено в заключении академии, “если оный сахар весьма дешево обходится, то заслуживает всякого внимания”. Еще бы не дешево – ведь выход “сахара” по методу Кирхгофа составлял 77 % от веса использованного крахмала, что лишь немногим уступает современным технологиями. Для целей же нашей книги существенно другое: Кирхгоф установил, что серная кислота при этом процессе не расходуется, то есть она служит истинным “ускорителем” – катализатором превращения крахмала в глюкозу.

Исследователь на этом не остановился. Его по-прежнему интересовал вопрос, почему становятся сладкими зерна злаков при прорастании, ведь серной кислоты там не было и в помине. Из проросших семян ячменя (солода) Кирхгоф выделил “клейковатое вещество”, которое эффективно превращало крахмал в сахар [9] . Сейчас мы называем это вещество ферментом амилазой. 14 ноября 1814 года на заседании Академии наук Кирхгоф сделал доклад “О получении сахара при осолаживании злаков”. Этот день стал днем рождения новой науки энзимологии, изучающей биологические катализаторы белковой природы – ферменты, или энзимы.

Работы Кирхгофа были широко известны как в России, так и за границей. Высшее признание он заслужил со стороны отечественных заводчиков, которые беззастенчиво использовали разработанные им технологии. Кирхгофа избрали членом Бостонской академии, Венского экономического общества и Падуанской академии наук. А вот с “родной” академией, как это часто бывает, возникли проблемы.

В краткой биографии Кирхгофа указывают, что он с 1812 года был академиком Петербургской академии наук, опуская существенный нюанс. Кирхгоф был экстраординарным академиком, что-то вроде почетного члена, и кроме почета ничего от академии не имел. Ординарные (действительные) академики имели лаборатории с соответствующим “бюджетным” финансированием, Кирхгоф же выполнял некоторые свои исследования в лаборатории Главной петербургской аптеки, если они соответствовали тематике проводимых там работ, а другие, включая работы по превращению крахмала, “у себя на дому”, как писал Кирхгоф, за свой счет. В 1816 году освободилось место ординарного академика по технологии, Кирхгофа выдвинули на это место. И тут началось – интриги, тяжбы, доносы.

Показательно, что споры велись преимущественно вокруг превращения крахмала в сахар, то есть даже современники понимали, что это – главное открытие Кирхгофа. Один из академиков приписывал приоритет открытия себе, другой отдавал его французам, третий подвергал сомнению практическую реализуемость процесса, а академик Нассе отрицал его в принципе. Дело в том, что крахмал и клейковина, выделенные из плода, и тем более серная кислота были “мертвой” материей, лишенной “органической жизненной силы”, без которой превращение крахмала в сахар считалось невозможным. Такова была парадигма того времени, в рамках существовавших концепций работа Кирхгофа была лженаукой.

Устав от склок, Кирхгоф в 1818 году отказался от борьбы за место действительного академика и подал в отставку. Отставка во всех отношениях лучше инфаркта, которым обычно заканчиваются академические дрязги. Оставив занятия наукой де-юре и де-факто, Кирхгоф не уехал на родину, остался в России. Великий ученый скончался в Петербурге в 1833 году.

“Что принадлежит до умозрения, как образуется сахар из крахмала, о том я не могу ничего сказать решительно”, – откровенно писал Кирхгоф. Сделать какие-либо заключения было действительно трудно, не зная, что представляет собой исходное вещество – крахмал. Для понимания этого науке предстояло проделать долгий путь длиной в столетие. Лишь в 1920 году немецкий химик Герман Штаудингер (1881–1965) выдвинул гипотезу , что крахмал и целлюлоза представляют собой полимеры – длинные молекулы, составленные из фрагментов глюкозы, соединенных химическими связями [10] .

Кирхгоф не понимал истинной сути открытых им процессов, он решал частную проблему и не замахивался на всеобщность, но при этом заложил первый камень сразу в два важнейших направления развития науки и техники – в катализ и биотехнологии.

Начнем с катализа. Конечно, не Кирхгоф открыл явление катализа. Многие историки отдают приоритет великому шведскому химику Карлу Вильгельму Шееле (1742–1786), который в 1782 году обнаружил, что реакция уксусной кислоты с этиловым спиртом с образованием сложного эфира протекает в присутствии небольших добавок соляной кислоты. Но несомненно, что именно Кирхгоф осуществил первый промышленный каталитический процесс.

Сам же термин “катализ” появился лишь спустя четверть века, его предложил в 1835 году другой великий шведский химик Йёнс Якоб Берцелиус (1779–1848), который обобщил результаты исследований различных ученых, в том числе и Кирхгофа. Тогда же сложилось представление о катализаторе как веществе, которое влияет на протекание химической реакции, но само при этом не входит в состав конечных продуктов. О природе этого влияния ничего не говорилось, кроме обязательности контакта исходных веществ с катализатором. Не случайно предшественник Берцелиуса Митчерлих, первым на самом деле обобщивший все имевшиеся на тот момент данные, предложил термин “контактные реакции”. Берцелиус же говорил о некой “каталитической силе”.

Следующего прорыва в изучении катализа пришлось ждать еще полвека. В 1880-х годах Вильгельм Оствальд, уже встречавшийся нам на страницах книги, доказал, что катализатор влияет на скорость химической реакции, сам при этом оставаясь неизменным. Оствальд также первым обратил внимание на то, что если реакция может протекать как в прямом, так и в обратном направлении, то катализатор в равной степени ускоряет обе эти реакции, то есть конечное состояние системы – положение равновесия – не зависит от присутствия катализатора. Оствальд получил за эти исследования Нобелевскую премию по химии, но и он не смог ответить на вопрос, каким образом катализатор ускоряет реакцию. Камнем преткновения стал доказанный им же факт, что катализатор остается неизменным после проведения процесса. Проблему разрешил Поль Сабатье, он доказал, что в ходе процесса катализатор вступает в химическое взаимодействие с исходными веществами с образованием неустойчивых промежуточных соединений, которые превращаются в конечные продукты. На круг выходит легче и быстрее.

Собственно только после этих работ, выполненных в преддверии XX века, катализ вырос из детских пеленок и вышел на широкую дорогу жизни. Разработанная Кирхгофом технология гидролиза крахмала под действием серной кислоты, бывшая на протяжении многих десятилетий едва ли не единственным промышленно реализованным каталитическим процессом, дополнилась сотнями и тысячами других. В настоящее время катализаторы используются в подавляющем большинстве процессов нефтепереработки, нефтехимии и химической промышленности, но это уже другая история, которой посвящена отдельная глава.

Здесь же мы рассмотрим судьбу другого детища Кирхгофа – ферментов, история изучения которых была еще более долгой и трудной и которые ожидало столь же блестящее будущее.

Выше я лихо определил ферменты как биологические катализаторы белковой природы, и вы, не сомневаюсь, спокойно восприняли это знакомое со школьной скамьи определение. Парадокс ситуации заключается в том, что долгое время ферменты и белки рассматривали как соединения разной природы и “великое объединение” произошло сравнительно недавно, в 1926 году. И до этого момента нам, следуя исторической правде, придется рассматривать две независимые истории изучения одного и того же объекта.

Первыми перед учеными предстали белки, с них и начнем. В конце XVIII века французский химик Антуан Фуркруа {5} и другие ученые обратили внимание на то, что из различных биологических жидкостей при нагревании или действии кислот осаждается некая субстанция, которая составляет значительную долю органического вещества этих самых жидкостей и в целом разнообразных живых организмов и растений. Субстанции, извлеченные из различных биологических объектов, обладали похожими свойствами, что позволило выделить их в отдельный класс соединений.

Но лишь в 1838 году голландский химик Геррит Ян Мульдер (1802–1880) доказал, что все они обладают близким химическим составом и включают углерод, азот, водород и кислород с небольшой примесью серы. Тогда же этот класс веществ обрел название – протеины (ну а мы будем называть их по-нашему – белками). Его предложил Берцелиус, с которым Мульдер состоял в переписке. Берцелиус вообще был большим специалистом по названиям, но, возможно, все дело было в его высочайшем авторитете в научном сообществе.

Мульдер также выделил продукты разрушения белков и идентифицировал их как аминокислоты, но на этом дело надолго застопорилось. То есть роль белков как строительных материалов всех живых организмов не подвергалась сомнению, не случайно Фридрих Энгельс определил жизнь как способ существования белковых тел, но при этом строение белков оставалось тайной за семью печатями. Первый луч света блеснул лишь в начале XX века, когда великий немецкий химик-органик Эмиль Фишер [11] (1852–1919) определил, как аминокислоты связываются между собой – посредством так называемой амидной химической связи. Он начал с синтеза дипептида – соединения, состоящего из двух аминокислот, и к 1907 году дошел до олигопептида, составленного из восемнадцати различных аминокислот. Но окончательно представление о том, что белок представляет собой аминокислотный полимер , утвердилось лишь в 1920-х годах после работ Штаудингера, о котором я уже рассказывал выше.

История изучения ферментов прошла еще более извилистый и запутанный путь. Кирхгоф ничего не говорил о химической природе “клейковатого вещества”, которое он использовал для превращения крахмала в сахар, а, учитывая состояние химии того времени, и не мог ничего сказать. Лишь в 1833 году французские химики Ансельм Пайен и Жан Персо выделили из солода более или менее чистый препарат, который они назвали диастазой. Именно диастаза вызывала превращение крахмала в сахар, но ее химическая природа по-прежнему оставалась неясной, а словосочетание “более или менее чистый” стало кошмаром ученых, работающих в этой области, на многие десятилетия.

В те же годы из различных биологических объектов было выделено еще несколько похожих веществ, способных осуществлять превращения сложных химических соединений. В 1836 году Берцелиус высказал гениальную гипотезу, что “в живых растениях и животных в тканях и жидкостях протекают тысячи каталитических процессов, при которых происходит большое количество различных химических синтезов из общего исходного материала”. Открытые вещества как нельзя лучше подходили на роль этих природных катализаторов. В 1858 году немецкий ученый Маркус Траубе вы двинул предположение, что все они имеют белковую природу, а в 1877 году эта группа веществ обрела, наконец, общее название – энзимы, которое предложил немецкий физиолог Вильгельм Кюне.

Но тут история пошла на второй круг. Я уже рассказывал об обвинениях в “лженаучности”, которые выдвинул против Кирхгофа академик Нассе, и полагаю, что вы восприняли это как курьез. Но по прошествии десятилетий эти споры возродились на более высоком уровне. Инициатором их стал Луи Пастер. В числе его величайших научных заслуг было доказательство невозможности самозарождения живых организмов {6} и установление факта, что многие природные явления и процессы, включая заболевания, обусловлены деятельностью микроорганизмов. Обратной стороной медали была абсолютизация жизни и жизненной силы. Пастер был уверен, что брожение (превращение сахара в спирт или уксусную кислоту) могут осуществлять только живые клетки микроорганизмов – дрожжей. Именно к этим микроорганизмам он относил термин фермент – “закваска” по-латыни. Поэтому Пастер в штыки воспринял идею о ферментах как растворимых химических веществах природного происхождения. “Я не вижу никакой необходимости ни в существовании этих ферментов, ни в полезности их функционирования при брожении”, – писал он. Собственно, для того чтобы избежать возникшей путаницы в представлениях и был придуман термин “энзимы”.

Противостояли Пастеру великий немецкий химик-органик Юстус Либих (1803–1873) и уже встречавшийся нам на страницах книги Марселен Бертло. Последний сомневался в существовании молекул и отрицал атомы, но при этом непоколебимо верил во всемогущество химии и полагал, что в основе всех процессов, протекающих в живом организме, лежат химические реакции. В его системе научных ценностей не было места “жизненной силе”, хотя сам он, по свидетельству современников, был наделен этой самой силой в преизбытке. Вот Бертло и ввязался в яростный многолетний спор со своим коллегой по Французской академии.

Вышло по русской присказке: на колу мочало, начинай сначала. Бертло разрушил клетки дрожжей, получил бесклеточный экстракт, высадил из него спиртом некую субстанцию и показал, что она вызывает точно такое же брожение, как и дрожжи. Но авторитет Пастера был настолько велик, что различные исследователи были вынуждены раз за разом повторять этот эксперимент в надежде, что количество доказательств перейдет в качество убеждения. Спор был разрешен только после смерти Пастера. По всеобщему признанию точку в нем поставила статья немецкого исследователя Эдуарда Бухнера [12] “Спиртовое брожение без дрожжевых клеток”, опубликованная в 1897 году. В 1907 году благодарное научное сообщество увенчало Бухнера Нобелевской премией по химии ни много ни мало “за открытие внеклеточной ферментации”. С момента открытия Кирхгофа прошло почти сто лет.

Нельзя сказать, что все эти годы ученые были заняты лишь поисками аргументов в затянувшемся историческом споре. Именно тогда был установлен факт, имеющий принципиальное значение, – специфичность действия ферментов, их способность взаимодействовать со строго определенными веществами (субстратами) и катализировать одну конкретную реакцию. Кроме того, было доказано, что в ходе реакции образуется промежуточный комплекс фермента с субстратом, в этом отношении ферментативный катализ обогнал другие ветви катализа, на первый взгляд более простые.

Все эти вопросы чрезвычайно занимали Эмиля Фишера. Для объяснения высокой специфичности ферментов он сформулировал в середине 1890-х годов свое знаменитое положение о том, что субстрат подходит к ферменту как ключ к замку, которое выдержало испытание временем и дожило до наших дней. Проблема заключалась в том, что Фишер не мог сказать ничего определенного об устройстве “замка”, ведь к изучению строения белков он приступил лишь десятилетие спустя.

Собственно, давняя теория Траубе о том, что ферменты – вещества белковой природы, продолжала пребывать в статусе недоказанной гипотезы. Да, ферменты проявляли многие свойства белков, но из этого отнюдь не следовало, что именно белки обладают каталитическими свойствами ферментов. Многие специалисты, включая такого авторитетного ученого, как лауреат Нобелевской премии Рихард Вильштеттер, считали, что белки выполняют лишь функцию носителя для “истинного энзима” – небольшой каталитически активной молекулы. На фоне белка такая молекула выглядела незначительной примесью, что объясняло, по мнению этих специалистов, трудности ее обнаружения и идентификации.

В сущности, дело сводилось к чистоте ферментных препаратов и к вопросу о том, представляют ли они собой индивидуальное соединение или смесь двух веществ – белка и энзима. На этот случай у химиков есть простой и надежный тест: чистые вещества в большинстве своем образуют правильные кристаллы, если же вещество не кристаллизуется ни при каких условиях, то это почти наверняка смесь различных соединений. Так вот, в начале XX века были получены кристаллы многих известных на тот момент белков, но ни одного – фермента. Тут было о чем призадуматься.

То, что многим уже казалось невозможным, удалось американскому биохимику Джеймсу Бетчеллеру Самнеру (1887–1955). Он потратил несколько лет жизни на улучшение методик очистки фермента уреаза и на попытки закристаллизовать его. И он сделал это! Самнер получил препарат индивидуального вещества, которое по всем показателям было белком и при этом проявляло ферментативную активность. Это было действительно принципиальное открытие, после которого картина белкового мира обрела законченный вид: белки были строительными блоками живых организмов, они были ответственны за передачу наследственных признаков (так тогда полагали) и осуществляли все жизненно важные процессы, в общем, белки были квинтэссенцией мира живой природы. Неудивительно, что Самнер за эту работу получил в 1946 году Нобелевскую премию по химии.

Следствием этого объединения стало то, что ферменты на какое-то время отошли на второй план. Сначала надо было разобраться с внутренним устройством белков, а уж потом приниматься за их более сложных братьев. Об этом устройстве даже в 1930-е годы было известно крайне мало. Большинство ученых, основываясь на работах Фишера и Штаудингера, сходились в том, что белки – это полимерные молекулы, составленные из фрагментов аминокислот, соединенных пептидной связью. Доподлинно знали только состав белков – все известные на тот момент белки состояли из двадцати различных аминокислот. Оценки молекулярного веса белков показывали, что общее число аминокислот в различных белках может составлять десятки, сотни и даже тысячи. Это все.

В какой последовательности соединены аминокислоты в белке? Да и есть такая строго определенная последовательность? Как бы изобретательна ни была Природа, осуществить такую точную сборку из тысяч строительных блоков даже ей не под силу, считали многие ученые. Так, может быть, все дело в соотношении различных аминокислот в белке? Но почему небольшие различия в этом соотношении приводят к получению белков с совершенно разными свойствами? И чем вообще обусловлены уникальные и разнообразные биологические свойства белков – молекул чрезвычайно простых с химической точки зрения? Ответить на все эти вопросы было не под силу одному человеку, даже гениальному. Впрочем, без гениев дело не обошлось. О двух из них я расскажу.

Подчиняясь логике ответов на вопросы, начну с более молодого.

Биография Фредерика Сенгера по-своему уникальна. В его жизни не было нужды и лишений, мучительных поисков своего призвания, многократной смены видов деятельности, места жительства и жен, непризнания его открытий и травли со стороны завистливых коллег. Его жизнь – прямая как рельса, эталон “нормальной”, с точки зрения большинства людей, жизни, ее стоит описать хотя бы ради того, чтобы как-то уравновесить все остальные “ненормальные” биографии. И, конечно, потому, что Фредерик Сенгер – единственный в истории лауреат двух Нобелевских премий по химии.

Родился он в 1918 году в Англии во вполне благополучной и обеспеченной семье. Вскоре после этого его отец, практикующий врач, ударился в квакерство {7} , что наложило неизгладимый отпечаток не только на воспитание, но и на всю жизнь Фредерика. В 1936 году Сенгер поступил в престижный колледж Св. Иоанна в Кембридже (в этом городе он живет и поныне). Окончил колледж в числе лучших в 1939 году, на следующий год женился. Тут его жизнь, как и жизнь всех современников, чуть было не пошла наперекосяк из-за разразившейся Второй мировой войны, но он был квакером и имел по закону право отказаться от несения воинской службы. Он и отказался, а в 1943 году защитил диссертацию по биохимии.

В сущности, первое же самостоятельное научное исследование принесло Сенгеру всемирную славу. Он установил точное строение одного из белков – бычьего инсулина. Почему был выбран именно инсулин? Во-первых, в то время уже понимали роль инсулина при диабете, во-вторых, бычий инсулин был одним из немногих белков, доступных в чистом виде, и, наконец, это был самый маленький из известных белков – как выяснилось, он состоял всего из 51 аминокислоты {8} .

Сенгер придумал, как определить последовательность аминокислот в белке. Для этого он “разрезал” его на фрагменты – олигопептиды, состоявшие из небольшого количества аминокислот. Сделать это можно с помощью гидролиза кислотой или все тех же ферментов, выполняющих аналогичную роль в организме. Затем Сенгер разделял между собой и идентифицировал все эти фрагменты. У химиков для этого есть универсальный прием – сравнение с эталоном, специально синтезированным веществом с известной структурой. Понятно, что из двадцати различных аминокислот можно составить огромное количество, например, трипептидов (203=8000), но делать было нечего, пришлось синтезировать. И это было только первым этапом. Давайте представим, что каждая аминокислота обозначается своей буквой, и после анализа мы получили фрагменты ник и ель . Как они соединяются в белке? Это может быть никель или ельник , возможно также, что они далеко разнесены и между ними вклинились другие фрагменты: ник итасрубил ель . Чтобы прояснить это, надо взять другой фермент (каждый из них разрезает белок по-своему), повторить операцию и так до тех пор, пора все фрагменты, полученные во всех экспериментах, не сложатся в одну-единственную последовательность. Умопомрачительная работа, особенно если делать ее впервые в истории, не имея под рукой необходимых реактивов и отработанных методик. Сенгер затратил на нее семь лет.

Он установил, что инсулин состоит из двух полипептидных цепочек, составленных из 30 и 21 аминокислот, соединенных между собой двумя дисульфидными мостиками. Из его данных также следовало, что аминокислоты в белке располагаются в строго определенной последовательности, а не хаотически. Кроме того, разработанный им метод был универсален и мог быть использован для установления строения любого белка. По проторенной дорожке анализ делался намного быстрее, и вскоре было установлен еще один принципиальный факт – каждый белок характеризуется уникальной аминокислотной последовательностью.

Это был подлинный прорыв и триумф. В 1958 году Сенгер получил свою первую Нобелевскую премию по химии. Как признавал сам Сенгер в автобиографии, столь быстрое признание немало помогло ему в жизни. Звание нобелевского лауреата дает всякие приятные привилегии: не надо заботиться о хлебе насущном и заниматься преподаванием, можно забыть о всяческих нудных административных обязанностях и полностью сконцентрироваться на науке или почивать на лаврах, это кому как нравится. Сенгер был довольно молод и выбрал занятия наукой.

В это время он перешел работать в кембриджскую Лабораторию молекулярной биологии вместе с Максом Перуцем (1914–2002), Джоном Кендрю (1917–1997), Аароном Клюгом (род. в 1926 г.) и Фрэнсисом Криком (1916–2004), все сплошь свежеиспеченные или будущие нобелевские лауреаты. Наступала эра ДНК, и вполне естественно, что интересы Сенгера сместились в эту область. Тем более что первостепенная задача там была все той же – установление точной последовательности нуклеотидов в цепи. Поначалу Сенгер использовал подход, столь успешно зарекомендовавший себя при исследовании белков, но по мере развития работ он внес в него много принципиальных изменений и усовершенствований. Сенгер упустил приоритет в анализе РНК, но восполнил потерю при анализе ДНК. Руководимой им группе удалось впервые расшифровать структуру ДНК бактериофага (5386 нуклеотидов), а затем митохондриальной ДНК человека (16 569 пар оснований). Разработанные Сенгером методы секвенирования ДНК были затем использованы при анализе генома человека. А сам он в 1980 году получил за эти работы вторую Нобелевскую премию по химии.

В 1983 году в возрасте 65 лет Сенгер, как принято в цивилизованных странах, вышел на пенсию и с тех пор занимается садоводством в своем небольшом поместье близ Кембриджа. По его собственному признанию, вера в Бога покинула его.

Сенгер ответил на вопрос о последовательности аминокислот в белках, сейчас мы называем это первичной структурой белка. Но еще до исследований Сенгера было понятно, что первичной структурой дело не ограничивается, должна быть как минимум еще одна, вторичная структура. Вытекало это из простого наблюдения: белки при нагревании денатурируют, буквально – теряют свою природу, свои свойства, причем необратимо, безвозвратно. Пептидные связи в этих условиях не разрываются, то есть первичная структура сохраняется, следовательно, разрушается что-то еще. Разрешил проблему еще один гениальный ученый, также лауреат двух Нобелевских премий. Но с Сенгером его никто не сравнивает. По мнению многих ученых, он стоит в одном ряду с Эйнштейном и Ньютоном. Звали его Лайнус Карл Полинг.

Он родился в 1901 году в Портленде, США, в малообеспеченной семье. Вслед за ним родились две его сестренки, а в 1910 году их отец умер от прободения язвы желудка, оставив семейство практически без средств к существованию. Аттестат зрелости Полинг так и не получил (ему вручили его через сорок пять лет в знак уважения заслуг тогда уже дважды нобелевского лауреата), впрочем, у него были на то уважительные причины – вместо сдачи положенных экзаменов он зарабатывал деньги для продолжения образования. Потеряв год, Полинг поступил в колледж. Он еще не определился со своим призванием и слушал все курсы подряд, от математики до современной английской прозы и опять же непрерывно зарабатывал деньги на оплату учебы, житье-бытье и помощь матери. А на втором курсе Полингу несказанно повезло: ему предложили преподавать студентам количественный анализ, который он сам только что освоил. За сорок часов работы в неделю ему платили аж 25 долларов. Но жизнь постепенно налаживалась. Полинг определился с призванием – им стала химия, окончил университет, перебрался в Калифорнийский технологический институт, знаменитый Калтех, и в 1925 году защитил там диссертацию.

Его работа была связана с использованием метода рентгеноструктурного анализа, изобретенного за десятилетие до этого. При просвечивании кристалла рентгеновскими лучами на фотопластинке возникал сложный узор, состоящий из точек и дужек. Это было не изображение атомов или молекул, а образ плоскости, состоящей из атомов определенного сорта и расположенных в кристалле в строгой периодичности. Эта плоскость выступала в качестве дифракционной решетки для рентгеновских лучей. Из этого узора путем неочевидных и сложных математических вычислений можно было выявить картину пространственного расположения атомов в кристалле и рассчитать расстояние между центрами атомов. Отсюда, исходя из предположения о плотнейшей упаковке атомов в кристалле, можно было с высокой точностью оценить размер атома. Если же кристалл состоял из молекул некоего вещества, то можно было определить геометрию этой молекулы и рассчитать длину химической связи между определенными атомами. Все эти данные вывели химию на новый уровень развития. Для успешной расшифровки рентгеновских дифрактограмм надо было обладать высокой интуицией и хорошей математической подготовкой. С этим у Полинга все было в порядке.

В 1926 году Полинг отправился на двухлетнюю стажировку в Европу к Арнольду Зоммерфельду (1868–1951), Нильсу Бору (1885–1962), к тому времени уже нобелевскому лауреату по физике за создание теории строения атома, и Эрвину Шрёдингеру (1887–1961). Попал Полинг, как говорится, к самой раздаче, ведь именно в 1926 году Шрёдингер предложил свое знаменитое уравнение, легшее в основу квантовой механики. Полинг немедленно включился в работы в этой новой области науки и большую часть стажировки провел в Цюрихе, вместе с его ровесниками Вальтером Гейтлером (1904–1981) и Фрицем Лондоном (1900–1954), которые занимались первым квантово-механическим анализом молекулы водорода.

Во всей этой славной компании отцов – основателей квантовой механики Полинг был единственным химиком, что несомненно давало ему некоторое преимущество. Физики были сосредоточены на атомах, а он – на молекулах. Так что именно Полингу было суждено продвинуться дальше всех в квантовомеханическом объяснении природы химической связи. Многое из того, что составляет теоретическую часть современного школьного курса химии, создано Полингом. Природа ионной и ковалентной связи, шкала электроотрицательности элементов, гибридизация атомных орбиталей, объяснение строения различных органических соединений, от метана до бензола, – это все Полинг. Результаты своих десятилетних упорных исследований он обобщил в монографии “Природа химической связи и структура молекул и кристаллов”, вышедшей в 1939 году (в СССР – в 1947 г.) и ставшей настольной книгой нескольких поколений ученых.

В 1954 году Полингу за эти работы присвоили Нобелевскую премию по химии. В это время он уже занимался совсем другим. Полинг был увлекающимся человеком. И если уж он увлекался каким-нибудь делом, то отдавался ему со всей страстью. Но больше всего поражало то, что таких “страстных” дел у него одновременно было несколько и на все хватало времени и сил.

В середине 1930-х годов Полинг увлекся белками и доказал, в частности, что структура гемоглобина изменяется при связывании молекулы кислорода. Вот тогда-то он и попытался установить строение белков, просвечивая их кристаллы рентгеновскими лучами. Но картинки получались слишком запутанными из-за сложности строения самих белков, размытыми из-за несовершенства аппаратуры, да и обсчитать их было просто физически невозможно из-за отсутствия электронно-вычислительных машин – все расчеты в то время делались вручную! И тогда Полинг призвал на помощь свой мощный интеллект и представил себе, как может быть устроен белок. Перед его мысленным взором возникла спираль, в которую закручивается полипептидная цепь белка. Эта спираль с шагом в 0,54 нм скрепляется так называемыми водородными связями, образующимися между фрагментами аминокислот, находящимися на разных участках цепи. Еще одним вариантом самоорганизации полипептидной цепочки было образование “гармошки” подобной сложенному листу бумаги, эти структуры так и назвали – бета-листами, по аналогии с предыдущей структурой, которая получила название альфа-спирали. Так возникло представление о вторичной структуре белков, и в скором будущем гипотеза Полинга получила прямые экспериментальные подтверждения.

Эту работу Полинг завершил в 1951 году, а на подходе была уже новая проблема – установление структуры ДНК. Мало кто сомневался, что именно Полинг сможет разрешить эту проблему в кратчайшие сроки, но судьба распорядилась иначе. Некоторые авторы объясняют эту относительную неудачу вмешательством политики, но все обстояло проще. Полинг какое-то время исходил из неверного предположения (такое случается даже с гениями) об образовании тройной спирали, в результате на финишной прямой его обошли Фрэнсис Крик и Джеймс Уотсон, молодые, да ранние. Но о перипетиях этой великой гонки – отдельная глава, здесь же расскажу о злодейке-политике.

Полинг стал пацифистом отчасти по внутреннему убеждению, отчасти под влиянием жены. Он отказался участвовать в Манхэттенском проекте, а в 1946 году вместе с Альбертом Эйнштейном, с чьей подачи, собственно, и началась разработка атомного оружия, выступил за ограничение работ в этой области. В 1952-м сенатская комиссия США во главе с Маккарти записала Полинга в коммунисты и постановила изъять у него паспорт для заграничных поездок. Но такие мелочи “увлекшегося” Полинга остановить не могли, и он продолжил свои выступления. В 1962 году за антивоенную деятельность ему была присуждена Нобелевская премия мира, а в 1970-м – аналогичная Ленинская премия, что возродило обвинения в коммунистических убеждениях. Полинг, конечно, не был коммунистом, он был просто честным и смелым человеком, пекущимся о будущем человеческой цивилизации.

Еще одно увлечение Полинга связано с медициной. К этому его подтолкнула жизнь – в 1941 году у него диагностировали хронический нефрит, тяжелое заболевание почек. Но его первое открытие в медицине было связано с другой болезнью – серповидноклеточной анемией. Полинг доказал, что она связана с нарушением строения белка гемоглобина, в сущности, это было первое выявленное “молекулярное” заболевание. А так как синтез белка в организме направляется генами, то открытие Полинга повлекло за собой резкую интенсификацию исследований в области генетических заболеваний. Полинг также много занимался изучением роли белков и ферментов в функционировании мозга и полагал, что возрастные изменения мыслительных способностей связаны с нарушением функций белков. Эти его мысли полувековой давности очень созвучны современным представлениям о причинах болезни Альцгеймера.

Но затем его медицинские интересы сместились в другую сторону. В книге “Как жить дольше и чувствовать себя лучше” Полинг предложил новую панацею от всех болезней – витамины. Особенной его любовью пользовался витамин С – аскорбиновая кислота, которую он рекомендовал принимать по три грамма в день. Полинг был убежден, что витамины способны победить даже рак. Независимые медицинские испытания не подтвердили эту его теорию, но так называемая “мегавитаминная терапия” приобрела в 1970-е годы вселенский масштаб, помню, как мы тогда ели горстями эти витамины, все какие могли достать. Затем психоз спал и при упоминаниях об этих работах Полинга мы крутили пальцем у виска, неполиткорректно намекая на старческий маразм – слова “Альцгеймер” мы тогда не знали.

А Полинг тем временем увлекся еще одной грандиозной идеей – созданием теории атомного ядра. Ею он занимался на протяжении тридцати лет до самой своей смерти. Несмотря на витамины, он все-таки заболел раком – раком простаты, который свел его в могилу в 1994 году.

То, что не удалось сделать Полингу, на новом этапе развития науки и техники совершили уже упоминавшиеся английские исследователи Макс Перуц и Джон Кендрю из Кембриджа. В 1959 году они расшифровали структуру белка гемоглобина, за что незамедлительно, в 1962 году, получили Нобелевскую премию по химии. Лиха беда начало, структуры разнообразных белков и ферментов посыпались как из рога изобилия, счет быстро пошел на сотни и тысячи. Эти исследования не только подтвердили гипотезу Полинга о вторичной структуре белка, но выявили существование третичной структуры – следующего этапа самоорганизации молекулы белка, при которой он сворачивается в глобулу (чаще всего) диаметром в десятки нанометров или формирует протяженные структуры толщиной в несколько нанометров , из которых состоят, например, наши мышцы {9} .

Разобрались, естественно, и с внутренним устройством ферментов. Центральное место в них занимает так называемый активный центр, состоящий из нескольких фрагментов аминокислот и часто включающий в себя ион металла. На этом центре и происходит превращение молекулы субстрата, вся же остальная часть белка выполняет функции инфраструктуры: формирует “замочную скважину”, поддерживает определенную кислотность среды внутри белка и, наконец, фиксирует молекулу субстрата в определенном положении, наиболее удобном для тонкой хирургической операции, выполняемой активным центром. В сущности, “старики” во главе с Вильштеттером были не так уж и неправы, белок выступает в качестве своеобразного носителя собственно энзима – активного центра.

После этих исследований начался бум ферментативного катализа, который пришелся на 1970-е – начало 1980-х годов.

Но прежде я предлагаю вам вернуться немного назад и послушать рассказ еще об одной работе, которая по праву считается одним из крупнейших достижений химии второй половины XX века, и о человеке, который сделал то, что многим казалось невозможным.

Роберт Брюс Меррифилд родился в 1921 году в Форт-Уэрте, Техас. Его детство пришлось на годы Великой депрессии, семья, перебравшись в Калифорнию, переезжала с места на место, в поисках работы и лучшей доли. Сам Меррифилд как-то подсчитал, что он посещал в общей сложности около сорока разных школ. Тем не менее в нем пробудился интерес в науке и конкретно к химии. В 1938 году он поступил в Калифорнийский университет в Лос-Анджелесе, но годы учебы затянулись – степень Ph.D. по химии Меррифилд получил лишь в 1949 году. Зато затем события последовали с калейдоскопической быстротой: 18 июня защитился, 19-го – женился, 20-го – отправился на другой конец Америки, в Нью-Йорк, в Рокфеллеровский институт медицинских исследований, где и провел все годы своей научной карьеры.

Меррифилду выпало работать в области синтеза пептидов, тогда такой “наработкой” занималось множество исследователей, включая Сенгера. При всем том идеология синтеза практически не изменилась со времен Эмиля Фишера. Пептид последовательно удлиняли, приставляя к нему новую аминокислоту. Проблема заключалась в том, что пептиды и аминокислоты – вещества одной природы, молекулы аминокислоты с не меньшей охотой реагировали между собой, чем присоединялись к пептиду. Чтобы избежать этого нежелательного процесса, химики используют разные ухищрения, в результате присоединение одной кислоты превращается в многостадийный процесс. Но это маленькая проблема, большая же заключается в выделении целевых веществ из реакционного раствора, содержащего множество других компонентов. Упаривание раствора, осаждение, перекристаллизация – при всех этих операциях теряется много вещества. Обычное дело: синтетик стартует с килограмма исходного вещества, а по прошествии месяца работы и множества стадий получает на выходе несколько маленьких крупинок продукта.

В 1959 году Меррифилд дозрел до мысли: “Необходим быстрый, количественный, автоматизированный метод синтеза длинных пептидных цепей”. Он придумал нетривиальную вещь: привить первую аминокислоту к твердой поверхности (полимеру), затем нарастить пептидную цепь “по Фишеру”, а по окончании процесса “отрезать” полученный полипептид от поверхности. Изюминка заключалась в том, что все трудоемкие операции выделения промежуточных веществ заменялись простой промывкой гранул полимера, при этом, понятно, никаких потерь вещества не происходило.

На отработку метода у Меррифилда ушло три года. В 1963 году в журнале Американского химического общества была опубликована его статья с изложением основных принципов и экспериментальных особенностей “твердофазного” синтеза пептидов. У статьи был только один автор, что даже в те времена считалось редкостью, а в наши так и вовсе чем-то невообразимым. Сейчас эта статья входит в пятерку самых цитируемых за всю историю существования этого престижнейшего журнала. У руководителей Института медицинских исследований было на сей счет, судя по всему, собственное мнение, и они прохладно отнеслись к идее Меррифилда о создании автоматического синтезатора пептидов. Возможно, просто не верили в осуществимость этой идеи, как не верили все остальные, за исключением самого Меррифилда и двух его друзей.

Они работали в подвале дома Меррифилда и через два года собрали первую автоматизированную установку. Гранулы полимера с растущим на его поверхности пептидом располагались в стеклянной колонке, через которую с помощью насоса прокачивались растворы аминокислот, других различных реагентов и промывные жидкости, которые в свою очередь засасывались по заданной программе из емкостей, расположенных вокруг установки. С тех пор в принципиальной схеме установки мало что изменилось, разве что добавились анализатор выходящего из колонки раствора, работающий в режиме обратной связи, и компьютер, управляющий работой всей системы.

Для начала Меррифилд с коллегами синтезировали на установке несколько пептидных гормонов, затем сразу перешли к синтезу белков – давней и тайной мечте Меррифилда, ради которой он, собственно, и затеял весь этот проект. Как вы уже наверно догадались, синтезировали они инсулин. В принципе его получали химическим путем и раньше, на это у группы профессиональных химиков-синтетиков уходило несколько месяцев. Меррифилд уложился в три недели.

В 1969 году Меррифилд вместе с Берндом Гутте синтезировал фермент рибонуклеазу А, состоящую из 124 аминокислот. Для этого им, а точнее говоря, автомату, пришлось осуществить 369 стадий химического синтеза [13] и около десяти тысяч различных технологических операций. При этом исследователи получили еще один принципиальный результат. Рибонуклеаза – это вам не инсулин, гормон по сути и строению. Рибонуклеаза – фермент со сложной третичной структурой и специфической каталитической активностью. Так вот оказалось, что синтезированная полипептидная цепочка при определенных условиях самоорганизуется в фермент, ничем не отличимый от природного аналога. Так был перекинут еще один мостик между неживой и живой природой.

Конечно, никто сейчас белки и ферменты так не синтезирует, природа справляется с этим намного лучше. И не все получается так гладко, как я вам только что описал, у метода твердофазного синтеза, как и у любого метода, есть свои недостатки и ограничения. “Сборка” полипептидов с длиной более 100 аминокислот признана в настоящее время экономически и технически нецелесообразной. Но ведь число “коротких” пептидов измеряется сотнями тысяч и многие из них востребованы в научных исследованиях, в медицине и биотехнологических процессах. Сейчас вам под заказ синтезируют за день любое из этих соединений, требуется лишь написать на листке последовательность аминокислот в нужном вам полипептиде, которую оператор затем введет в процессор автоматического синтезатора.

Меррифилд на этом не остановился. Он создал аналогичные установки для синтеза полисахаридов, в которых в цепочку соединяются различные молекулы углеводов и нуклеиновых кислот, фрагментов ДНК и РНК. Как мы увидим в следующей главе, сейчас без этих коротких олигонуклеотидных последовательностей, так называемых праймеров, не обходятся ни генные технологии, ни медицинская диагностика.

В 1984 году Меррифилд был удостоен Нобелевской премии по химии. Будь моя воля, я бы присудил ему еще одну Нобелевскую премию за беспрецедентный поступок: ни он сам, ни Рокфеллеровский институт не запатентовали метод твердофазного синтеза, хотя имели для этого все возможности и основания. Они отдали его в безвозмездное пользование людям. Возможно, причина кроется в том, что Меррифилд был бойскаутом и до конца своих дней (он скончался в 2006 году) принимал активное участие в бойскаутском движении вместе с шестью своими детьми. Будь готов! Всегда готов!

В настоящее время известно более 3700 ферментов, различающихся по катализируемым ими реакциям, установлена детальная структура большинства из них, многие используются в тонком органическом синтезе, фармацевтической промышленности, бытовой химии, сельском хозяйстве и защите окружающей среды. Между тем бум ферментативного катализа с очевидностью спал. В новостных лентах науки ферменты ушли в тень генных технологий, в промышленных же биотехнологиях, где ферменты работают де-факто, де-юре главенствуют микроорганизмы. Но можно сказать и так: ферменты стали настолько привычным элементом ландшафта науки, что при обсуждении “революционных” нанотехнологий о них зачастую просто забывают.

Падение общественного интереса к ферментам имеет и объективные причины. Эйфория 1970-х годов подогревалась верой во всесилие ферментов – без этапа “великих ожиданий” не обходится развитие ни одной новой области науки и техники.

Между тем ферменты не всесильны. За миллиарды лет эволюции Природа настроила их на осуществление строго определенных процессов, у людей же свои интересы. Нам для удовлетворения наших аппетитов нужно множество веществ и материалов, которые не значились в планах Природы, так что при их производстве природные катализаторы – ферменты нам не помощники. Высокая избирательность ферментов, их главное достоинство, сработала против них.

Кроме того, с нашей человеческой точки зрения ферменты нетехнологичны. Они слишком нежные создания и привыкли работать в тепличных условиях, при температуре живого организма. Стоит чуть поднять температуру (а это стандартный способ увеличения скорости процесса), как их активность падает, а то они и вовсе денатурируют. Да и работать они могут только в водных растворах, а воду технологи терпеть не могут – как растворитель она слишком активна и требует огромных затрат энергии на испарение – то ли дело органические растворители! И наконец, ферменты, по сути дела, катализаторы одноразового использования, их чрезвычайно трудно отделить от продуктов реакции без потери активности. Слишком дорогое получается удовольствие.

Специалистам все эти недостатки были понятны с самого начала, просто они в своих полных оптимизма реляциях не акцентировали на них внимание. Но при этом значительную часть усилий направляли на преодоление этих недостатков. Именно энзимологи стали первыми химически “прививать” гомогенные катализаторы к поверхности твердого носителя. Так была решена проблема отделения от продуктов реакции (здесь энзимологи шли по пути, проторенному Меррифилдом) и многократного использования катализатора. В терминах сегодняшнего времени эти работы были примером конструирования нанообъектов. К поверхности неорганического материала – носителя – прививали органическую “ножку” длиной в несколько нанометров, а к ней в свою очередь молекулу фермента диаметром в десятки нанометров.

Ученые стали также загонять ферменты в так называемые обращенные мицеллы. Это такие ассоциаты обычных поверхностно-активных веществ, растворенных в органических растворителях. В отличие от прямых мицелл, о которых я уже упоминал, в обращенных мицеллах полярные головки молекул ПАВ обращены внутрь, а углеводородные хвосты торчат наружу, как иглы ежа. И если прямые мицеллы способны поглощать органические вещества, то обращенные – воду, превращаясь, грубо говоря, в капельку воды диаметром в единицы и десятки нанометров, покрытую мономолекулярным слоем ПАВ. Если мы поместим в ядро обращенной мицеллы молекулу фермента, то он, находясь в привычной для него среде обитания, будет вести свойственные ему химические реакции, но формально процесс будет протекать в органическом растворителе, который служит резервуаром вещества, подвергаемого ферментативному превращению, и местом сбора продуктов реакции. В сущности, энзимологи придумали и впервые практически осуществили идею нанореактора , ключевую для современных нанотехнологий.

Еще одна амбициозная цель: создание новых ферментов, природных катализаторов, которых нет в природе. Сделать это стало возможным в результате глубокого проникновения в устройство ферментов и в механизм их формирования. Зная это, можно растянуть или сжать глобулу фермента, изменяя таким образом размер “замочной скважины” и настраивая фермент на новый субстрат. Можно дополнительно сшить полипептидную цепь фермента и застабилизировать его третичную структуру, препятствуя денатурации. Можно ввести в фермент новые аминокислотные фрагменты, повышающие, например, его термостабильность или способствующие фиксации на твердом носителе. Можно, наконец, внести изменения в состав активного центра фермента и тем самым создать катализатор принципиально новой реакции. Возможности такого тонкого конструирования на наноуровне практически безграничны, и это то, что с полным правом может называться нанотехнологиями.

Эти работы пока мало известны широкой общественности, но мне кажется, в ближайшие годы нас ждет вторая волна бума ферментативного катализа. Дело в том, что мы постепенно и неотвратимо возвращаемся к природе. Взлет цен на углеводородное сырье и экологические соображения заставляют уделять все большее внимание возобновляемым источникам сырья. А это в свою очередь повлечет за собой изменение всей идеологии химической промышленности. Так называемое биотопливо можно залить в бак автомобиля, и он после этого поедет. В химической промышленности это не проходит. В реактор, рассчитанный на углеводородное сырье, нельзя засыпать глюкозу, получаемую при гидролизе целлюлозы. То есть засыпать, конечно, можно, но ничего путного не получится. Необходимо разрабатывать новые технологии, причем принципиально новые, потому что все наше научное и технологическое мышление было заточено под углеводородное сырье, а что делать с кислородсодержащими природными соединениями, мы, честно говоря, понятия не имеем [14] .

И вот здесь следует ожидать выхода на передний край ферментов, которые умеют управляться с природными веществами гораздо лучше химиков. Так что ферментативный катализ (=нанотехнологии) – это наше будущее с большой вероятностью. Поживем – увидим.

Глава 6 Жизнь одного химика

В предыдущей главе мы упомянули о катализе как об одном из важнейших химических явлений, но затем, увлекшись ферментами – образцовыми наноразмерными объектами, ушли далеко в сторону, сканируя поле биохимии. Теперь вернем иглу нашего исторического микроскопа назад и рассмотрим катализ в его наиболее распространенном, “классическом” варианте.

До систематических исследований катализа как явления наука доросла лишь через много десятилетий после его открытия – в конце XIX – начале XX века. Важность получаемых результатов была оценена быстро – одна из первых Нобелевских премий по химии была присуждена в 1909 году уже встречавшемуся нам на страницах книги Вильгельму Оствальду “за изучение природы катализа и основополагающие исследования скоростей химических реакций”. В 1912 году Нобелевскую премию получил французский химик Поль Сабатье (1854–1941) “за предложенный им метод гидрогенизации органических соединений в присутствии мелкодисперсных металлов, который резко стимулировал развитие органической химии”. Промышленная реализация каталитических процессов также не заставила себя долго ждать. Фриц Габер (1868–1934) и Карл Бош (1874–1940) разработали процесс каталитического синтеза аммиака из водорода и атмосферного азота при высоком давлении. За этой скучной формулировкой скрывается один из важнейших прорывов в истории человеческой цивилизации. Дело в том, что азот – необходимый элемент для построения клеток всех живых организмов, но ни растения, ни тем более мы, высшие животные, не способны усваивать азот напрямую из воздуха, так что все мы были заложниками жизнедеятельности и производительности специальных почвенных бактерий, ответственных в природе за этот процесс. Процесс Габера открыл путь к крупномасштабному производству азотных удобрений и резкому росту урожайности сельскохозяйственных культур. За это Фрицу Габеру присудили Нобелевскую премию по химии в 1918 году. Карл Бош также получил свою Нобелевскую премию в 1931 году “за заслуги по введению и развитию методов высокого давления в химии”.

Это были титаны с интересными, подчас драматическими судьбами. Но в этой главе речь пойдет не о них, а об их современнике, не просто титане, а – гении. Вот как аттестовал его на торжественном заседании Американского химического общества, посвященного семидесятипятилетию ученого, нобелевский лауреат Рихард Вильштеттер {10} : “Никогда за всю историю химии в ней не появлялся более великий человек, чем Ипатьев”. Ему вторил известный американский химик Фрэнк Уитмор: “Среди многих замечательных химиков Россия дала миру трех выдающихся. Это Ломоносов, Менделеев и Ипатьев. Ипатьев оказал гораздо большее влияние на мировую химию, чем оба его знаменитых соотечественника. Он был химиком-первооткрывателем и продолжает таким оставаться до сих пор”. Ипатьева называют отцом современной нефтепереработки и нефтехимии. К моему великому стыду, в студенческие годы, уже работая на кафедре химии и органического катализа, я слыхом не слыхивал о Владимире Николаевиче Ипатьеве. И то, что он был вычеркнут из официальной отечественной истории, не может служить мне оправданием. Историю своей страны надо знать, во всем ее величии и неприглядности.

“Жизнь одного химика” – автобиографическая книга Ипатьева, изданная в двух томах в Нью-Йорке в 1945 году на русском языке. Не оставляю надежды, что когда-нибудь ее все же издадут в полном объеме в России и люди будут читать ее как роман, ведь долгая жизнь, прожитая Ипатьевым, была удивительной сама по себе, даже безотносительно сделанных им научных открытий.

Владимир Ипатьев родился в 1867 году в дворянской семье. Отец – Николай Алексеевич, уже немолодой, известный московский архитектор. Мать – Анна Дмитриевна, в девичестве Глики, гречанка. Через два года родился брат Николай, который, сам того не желая, оказался косвенно причастен к одному из самых позорных деяний нашей истории. А еще через три года дети лишились матери. Во многих биографиях написано, что Анна Дмитриевна умерла, возможно, так говорили и мальчикам, но на самом деле она ушла к Александру Чугаеву, скромному учителю физики, в которого была влюблена с юности. В этом союзе родился сын Лев, также ставший известным ученым [15] . Тут поневоле задумаешься о существовании генов научной гениальности, которые передаются по женской линии.

О том, что у него есть младший брат, Владимир Ипатьев узнал лишь в сорокалетнем возрасте, а общественность – еще десятью годами поз же в результате курьезного случая. Дело в том, что В.Н. Ипатьев и Л.А. Чугаев одновременно баллотировались в Академию наук. Во время представления их академическому собранию прозвучала девичья фамилия их матери – одна и та же. Председательствующий даже попенял секретарю за небрежное составление “справки-объективки”, но никакой ошибки, как мы теперь знаем, не было. И высокое собрание решило “на первый раз” избрать в академики старшего из братьев.

Но до этой вершины Владимиру Ипатьеву предстояло пройти долгий и тяжелый путь. После разрыва родителей мальчики, по обычаям того времени, остались у отца, а тот, не желая, вероятно, обременять себя воспитанием отпрысков, отдал их в кадетский корпус, а затем в военные училища, Владимира – в артиллерийское, а Николая – в инженерное.

По собственным воспоминаниям В.Н. Ипатьева, он “запал” на химию еще в кадетском корпусе, прочитав раздел “химические явления” в учебнике физики Краевича, и тогда же решил посвятить свою жизнь этой молодой науке. Но признаем, что военное училище, при всем уважении к нашей доблестной армии, не лучшее место для овладения основами естественных наук и выработки творческого образа мышления. Многие годы Ипатьев самостоятельно изучал химию, читая книги и ставя химические эксперименты в домашней лаборатории, намного опережая в знаниях своих преподавателей. Он не оставил своих занятий даже в военном гарнизоне в Серпухове, где молодой офицер служил после окончания училища. Это была страсть, великая страсть к химии.

Но, однажды попав в военную колею, из нее уже трудно выбраться. Единственным шансом удовлетворить свою страсть к науке для Ипатьева было поступление в Петербургскую артиллерийскую академию. Артиллерия – это боеприпасы, а боеприпасы – не что иное, как химия. И после двадцати месяцев службы в гарнизоне Ипатьев сделал это! Лишь в академии в возрасте 23 лет он начал постепенно приобщаться к профессиональным занятиям химией. Но ему было суждено оставаться военным еще долгие годы. Погоны с его плеч сняла только революция 1917 года. Погоны были генеральские – генерал-лейтенантом русской армии и действительным членом Российской академии наук Ипатьев стал практически одновременно.

И, завершая эту “семейную” прелюдию, нельзя не рассказать о судьбе его брата Николая. Тот тоже отдал военной службе более 15 лет жизни и вышел в отставку в 1904 году в звании инженер-капитана. Николай Ипатьев с семьей обосновался в Екатеринбурге и организовал небольшую фирму по строительству железнодорожных путей. В частности, он получил подряд на прокладку путей дороги Пермь – Екатеринбург. По отсыпанному им полотну поезда ходят до сих пор.

А еще Николай Ипатьев приобрел одноэтажный, но просторный дом, в котором расположилась контора фирмы и жила его семья. Дом был обустроен по последнему слово техники того времени: электрическое освещение, телефон, горячая вода. Вероятно, поэтому Ипатьевский дом приглянулся в 1918 году большевикам, которые реквизировали его для размещения семьи бывшего русского царя Николая Второго. Именно в подвале этого дома вся царская семья, включая детей, была расстреляна в ночь на 17 июля 1918 года.

Николай Ипатьев с семьей покинул Екатеринбург, Россию и кружным путем добрался до Праги, где до самой кончины в 1938 году занимался строительством и преподавательской деятельностью.

Но вернемся к нашему главному герою. В академии его постигло очередное разочарование – уровень преподавания химии не отвечал его требованиям и ожиданиям. И вот слушатель первого курса пишет двухсотстраничное учебное пособие по качественному анализу для своих однокашников, на втором курсе – еще одно пособие по количественному анализу. Еще более удивительно, что руководство академии принимает их в качестве официальных учебных пособий и вообще создает для талантливого офицера все условия для занятия научной работой. Всего лишь год спустя Ипатьев докладывает результаты своих исследований кристаллической структуры особого сорта стали на заседании Императорского технического общества. Выводы начинающего исследователя шли вразрез с господствовавшими в то время воззрениями, а сам он удостоился одобрения от председательствовавшего Д.И. Менделеева, который вообще крайне редко снисходил до похвалы.

Такими ценными кадрами не разбрасываются. После окончания военной академии новоиспеченный штабс-капитан артиллерии Владимир Ипатьев приступил к чтению лекций по химии в своей alma mater и одновременно – к исследованиям по органической химии в Петербургском университете. Диссертация, защищенная им через два с половиной года, была посвящена изопрену – веществу, незадолго до этого выделенному из натурального каучука.

Это сейчас в школьном курсе разъясняют, что натуральный каучук – полимер изопрена, а в конце XIX века было неизвестно само понятие полимера. Кроме того, каучук практически не был востребован промышленностью, потому что его основных потребителей – автомобиле– и самолетостроения тогда просто не было. Здесь в полной мере проявился удивительный дар Ипатьева – он видел на десятилетия вперед, его фундаментальные исследования торили дорогу будущим поколениям.

В 1896 году академия направила Ипатьева на стажировку за границу. Германия, Мюнхен, лаборатория Адольфа фон Байера (1835–1917), ставшего вскоре одним из первых лауреатов Нобелевской премии по химии, – лучшее в то время место для продолжения образования в области органической химии. Впрочем, “господин тайный советник” (так надлежало обращаться к Байеру) редко лично занимался с “постдоками”, а выполненные под его руководством исследования публиковал исключительно под своей фамилией. Но вот Ипатьева взял под свое крыло, и статьи, посвященные синтезу изопрена, выполненному Ипатьевым впервые в мире, они опубликовали вместе. Байер верно угадал в этом напористом русском, плохо знавшем тогда немецкий язык, будущего генерала – и в жизни, и в науке. Дело дошло до беспрецедентного в истории мюнхенской лаборатории случая: Байер пригласил стажера на семейный ужин, а через несколько дней прибыл с ответным визитом к Ипатьеву и его жене.

После возвращения в Санкт-Петербург Ипатьев приступил к самостоятельным исследованиям, и открытия – действительно открытия! – последовали ошеломляющей чередой, едва ли не ежегодно.

Первое родилось, как это часто бывает, случайно. Ипатьев изучал разложение спиртов при высокой температуре, при шестистах градусах. Тогда считалось, что при такой температуре ничего хорошего из органических соединений получить невозможно, они просто разваливались на части, и, что хуже всего, разваливались непредсказуемым образом. Но химики традиционно работали в стеклянной посуде, а Ипатьев, истинный артиллерист, использовал железные трубки. В этих условиях он неожиданно получил из спиртов вполне определенные органические соединения – альдегиды и кетоны. Он догадался, что все дело в материале трубок, в железе, которое изменило направление реакции и выступало в качестве катализатора процесса.

Так Ипатьев впервые столкнулся с явлением катализа, которому он оставался верен на протяжении всей своей жизни. Чтобы оценить значимость открытия, вспомним, что катализ в те годы был совсем молодой областью науки, именно науки, потому что о его промышленном использовании даже речи не было. Было известно, что катализаторами некоторых реакций служат благородные металлы, платина или палладий. И вдруг – железо!

Открытие Ипатьева резко расширило круг возможных катализаторов, распространив его на неблагородные металлы. А вскоре Ипатьев показал, что окислы металлов обладают зачастую даже большей каталитической активностью, чем сами металлы. Так дело быстро, за считаные месяцы, дошло до окиси алюминия и алюмосиликатов, попросту говоря, глин, которые были несравненно дешевле платины и палладия. Расширил Ипатьев и перечень возможных реакций, которые можно проводить в присутствии катализаторов, и круг получаемых при этом органических соединений. Например, он впервые получил из этилового спирта, бывшего в то время одним из главных исходных веществ нарождающейся химической промышленности, этилен и бутадиен.

О последнем соединении следует сказать особо. Через четверть века Сергей Васильевич Лебедев (1874–1934), опираясь на работы Ипатьева, впервые в мире запустил промышленный процесс получения синтетического каучука. Делали его полимеризацией бутадиена.

Ипатьев же первым получил другой, не менее важный, полимер – полиэтилен. Это было еще одно открытие, ценность которого оценили по прошествии десятилетий и плодами которого мы пользуемся ежедневно до сих пор.

Ипатьев является также пионером применения высоких давлений в химии. В начале этой главы я упоминал, что Нобелевскую премию за это получил Карл Бош, усовершенствовавший в 1909–1913 годах процесс каталитического синтеза аммиака Фрица Габера. Но приоритет в этой области все ученые мира отдают Ипатьеву, сконструировавшему в 1903 году аппарат, позволявший осуществлять химические реакции при давлении до 450 атмосфер и температуре до 550 °С. Такие характеристики казались в то время несбыточными и даже невозможными. Ипатьеву весьма помогла его артиллерийская подготовка, ведь в канале ствола орудия при выстреле достигаются и не такие параметры. Аппарат был изготовлен по чертежам ученого и при его непосредственном участии и образно назван “бомбой”.

“Бомба Ипатьева” вошла в историю науки, с ее помощью были разработаны многие процессы, легшие в основу современной нефтехимии, – и бог с ней, с Нобелевской премией!

В 1911 году Ипатьев сделал еще одно открытие. В сконструированном им аппарате он получил из газообразного этилена “искусственную нефть”, а еще через тридцать лет, уже находясь в США, довел эту работу до промышленного применения. Именно из этилена во время Второй мировой войны получали высокооктановый бензин, которым заправляли самолеты союзников. Не случайно на обелиске, установленном на Свято-Владимирском кладбище в Нью-Джерси, США, написано: “В память о русском гении Владимире Николаевиче Ипатьеве, изобретателе октанового бензина”.

Но до Второй мировой войны была Первая. В начале 1915 года генерал-лейтенант Ипатьев возглавил Химический комитет, ведавший химической промышленностью всей страны. По сути, он создал ее заново.

Принято считать, что глобализация – примета нашего времени. При этом забывают о высочайшей интеграции стран, достигнутой в начале XX века. Достаточно сказать, что мировая торговля находилась на таком уровне, что ее объем после войн и революций удалось восстановить (в сопоставимых ценах) лишь к 80-м годам [16] . С началом Первой мировой войны выявились и недостатки тогдашней глобализации. Дело в том, что большинство химических продуктов, необходимых для производства взрывчатых веществ, Россия ввозила из-за границы, преимущественно из Германии. Речь шла о базовых веществах – толуоле, азотной кислоте, аммиаке, селитре, потребность в которых исчислялась миллионами тонн.

Ипатьеву пришлось озаботиться не просто строительством новых заводов, а организацией новых отраслей химической промышленности. Поразительно, но в этой пиковой ситуации ставка во многих случаях делалась не на апробированные, а принципиально новые технологии. Например, в Германии толуол (для производства тринитротолуола, тротила) выделяли из газов коксования угля, в России его впервые в мире стали получать из нефти. Ипатьев также разработал и внедрил процесс прямого получения селитры окислением аммиака. Вследствие его усилий уже к концу 1915 года производство взрывчатых веществ в стране возросло в 50 раз на частных предприятиях и вдвое на государственных.

В годы Первой мировой войны появилось еще одно новое оружие – боевые отравляющие вещества. Ипатьев по долгу службы занимался как созданием средств защиты от них, так и организацией их производства. Показательно, что это никогда не ставилось ему в вину, в отличие от Фрица Габера, отца немецкого химического оружия. Личное участие в его применении в боевых условиях стоило Габеру потери репутации и вообще жизненного краха.

Война породила революцию со всеми вытекающими последствиями: развалом всего и вся, анархией, массовым бандитизмом. Так что в определенной степени Ипатьев даже приветствовал захват власти большевиками, потому что, по его собственному признанию, в России в то время не было другой силы, способной остановить “разъяренную стихию, могущую бессознательно разрушить всю страну” [17] . Более того, Ипатьев с первых дней пошел на сотрудничество с новой властью, сохранив, по сути дела, пост, который он занимал в царском правительстве, – Ипатьев стал председателем технического управления при Военном совете республики и постоянным членом этого совета. Неоднократно встречался Ипатьев и с Лениным, который уважительно называл ученого “главой нашей химической промышленности”. Двигали Ипатьевым вполне понятные цели: “Я готов сделать все от меня зависящее, чтобы спасти созданную нами во время войны химическую промышленность”. Он болел душой за свое детище и свою страну.

В тех безумных условиях Ипатьев не только спасал и сохранял старое, но и созидал новое, глядя, по своему обыкновению, далеко вперед. По его инициативе в 1922 году был создан Радиевый институт, “призванный объединять и направлять все работы по радиоактивности”, а также Институт удобрений, Институт силикатов, Государственный институт прикладной химии. Для собственных же научных изысканий Ипатьев организовал лабораторию высоких давлений {11} , преобразованную в 1929 году в одноименный институт. Уровень исследований был настолько высок, что Ипатьев получал много заказов от ведущих зарубежных фирм.

В Советской России, а затем в СССР Ипатьев пользовался большой свободой и, в частности, часто выезжал за границу как по государственным делам, так и для проведения совместных научных работ. Но ситуация вокруг него постепенно менялась к худшему. Большевики, провозглашая в теории наличие объективных законов развития общества, на практике зачастую скатывались в откровенный волюнтаризм. Они хотели всего и сразу и, не получая желаемого, начинали искать виноватых – вредителей и саботажников. Судя по сделанным открытиям, наука в СССР, в стране, только что пережившей революцию и Гражданскую войну, в 1920-е годы находилась на высшем мировом уровне (как такое было возможно, остается лично для меня величайшей загадкой XX века), а по темпам развития химической промышленности СССР превосходил не только сегодняшнюю Россию, что неудивительно, но и современный Китай. Но большевикам этого было мало, и они обрушили репрессии на “буржуазных” специалистов – никаких других специалистов в стране в то время не было, их еще не успели выучить.

Но Ипатьев до поры до времени даже не задумывался об отъезде из страны. Во время одной из командировок в Германию в 1927 году его пригласили в гости к нобелевскому лауреату Вальтеру Нернсту (1864–1941). Там во время обеда, вспоминал Ипатьев, “один из немецких профессоров спросил меня, почему я совсем не покину СССР и не переселюсь за границу для продолжения своих научных работ, где я найду, несомненно, гораздо больше удобств, чем у себя на Родине. Я не замедлил ответить, что как патриот своей Родины должен остаться в ней до конца моей жизни и посвятить ей все мои силы. Профессор Эйнштейн слышал мой ответ и громко заявил: “Вот этот ответ и я вполне разделяю, так и надо поступать”. И вот прошло 4–5 лет после этого разговора, и мы оба нарушили наш принцип: мы теперь эмигранты и не вернулись в свои страны по нашему персональному решению, а не потому, что были изгнаны нашими правительствами…”

Свое “персональное решение” Ипатьев принял в 1930 году, когда аресты начались в его ближайшем окружении. Немало способствовало ему и то обстоятельство, что Ипатьеву позволили поехать на Энергетический конгресс в Берлин вместе с женой. Впрочем, никаких решительных заявлений сделано не было. Прибыв в Берлин, Ипатьев попросил у советского правительства годичный отпуск для поправки здоровья за границей, и такой отпуск был ему предоставлен.

Ни о каком отпуске речь, конечно, не шла. Ипатьев, похоже, вообще не знал, что означает это слово. Он немедленно включился в научную работу на одном из баварских химических концернов. Но Германия того времени была слишком тесно связана с СССР, и вскоре Ипатьев перебрался во Францию. Русские эмигрантские круги встретили его враждебно. Ему припомнили и сотрудничество с большевиками, и даже то, что в доме его брата была расстреляна царская семья. Так что Ипатьев был вынужден перебраться за океан.

Не будем забывать, что ему было уже 63 года. Он считался классиком науки, и не случайно декан химического факультета Северо-Западного университета в Чикаго, узнав, что ему предстоит познакомиться с Ипатьевым, удивленно воскликнул: “Какой это Ипатьев? Тот давно умер!” Нормальные люди в этом возрасте выращивают розы и нянчат внуков, пребывая на заслуженном отдыхе. Ипатьеву же предстояло строить свою жизнь с нуля в чужой для него стране, язык которой он ко всему прочему практически не знал.

Обосновались Ипатьевы в Чикаго. В компании Universal Oil Products Ипатьеву была предоставлена полная свобода действий как в наборе персонала лаборатории, так и в выборе тематики исследований, лишь бы они касались применения катализа в нефтяной промышленности. Ситуация, с одной стороны, беспрецедентная, а с другой – легко объяснимая. По признанию Ипатьева, в те годы мало кто мог даже предполагать, что катализаторы понадобятся в этой области производства. Перед ученым простиралось непаханное поле, на котором он мог двигаться в любом направлении.

И началась обычная для Ипатьева жизнь: разработка новых процессов в компании, фундаментальные исследования в университетской лаборатории, лекции по катализу в университете, патенты, десятки патентов, запуск новых производств. Феноменальная работоспособность и научная эффективность Ипатьева привела к тому, что буквально на глазах рождалась новая отрасль американской промышленности. Это было по достоинству оценено – в 1937 году журнал “Тайм” назвал Ипатьева “Человеком года”. В 1939 году его избрали членом Национальной академии США, и в том же году в Париже ему вручили высшую награду Французского химического общества – медаль имени Антуана Лавуазье.

Это было своеобразной компенсацией за лишение его в 1937 году звания действительного члена Академии наук СССР. Решение, конечно, дурацкое, но отнюдь не скоропалительное. На протяжении всех предшествующих лет Ипатьев и Советское правительство поддерживали вполне благопристойные отношения. Ученый регулярно посылал в СССР отчеты о своих работах, выполненных в США, а в СССР в 1936 году вышла его фундаментальная монография “Каталитические реакции при высоких температурах и давлениях”. Ипатьеву периодически предлагали вернуться в СССР, но он вежливо отклонял приглашения, ссылаясь на великую занятость и контрактные обязательства, что полностью соответствовало действительности. В конце концов терпение правительства истощилось и оно рубануло с плеча, лишив Ипатьева не только звания академика, но и советского гражданства и навсегда запретив ему въезд на территорию СССР.

Последнее решение выглядит ненужным довеском, каким-то актом бессильной злобы, но оно имело свои последствия. Дело в том, что, начиная с 1944 года, уже выйдя на пенсию, Ипатьев неоднократно пытался вернуться на Родину, но неизменно получал отказ.

Несмотря на многие годы, проведенные в США, широкую известность и всеобщее признание, Ипатьев так и не прижился в этой стране и чувствовал себя в ней чужим. Благодаря своим патентам он мог считаться богатым человеком даже по американским меркам, но жил очень скромно, снимая с женой номер в отеле. Ни автомобиля, ни коттеджа, ни роз на клумбе. Все зарабатываемые им деньги он тратил на оснащение лаборатории, на научные исследования, которыми занимался до последних дней своей жизни.

Эта страсть к веществу, к работе руками – одна из самых поразительных черт Ипатьева. Нынешним академикам такое и в голову не придет. А вот Ипатьев работал руками всегда, невзирая на условия, мало подходящие для этих занятий, – в армейском гарнизоне, во время войны и революции, на пенсии. Он так и умер, работая, в возрасте 85 лет.

Завершим жизнеописание Ипатьева тем, с чего начали – рассказом о его семье. Женился Ипатьев сразу после окончания академии в 1892 году, на своей старинной московской приятельнице Варваре Дмитриевне Ермаковой и прожил с ней до конца своих дней, хотя, по воспоминаниям современников, был отнюдь не схимником и часто увлекался женщинами – у него и на это доставало времени и сил!

В семье Ипатьевых было четверо детей – сыновья Дмитрий, Николай и Владимир и дочь Анна. Дмитрий погиб на германском фронте в 1916 году. Николай, также бывший офицером, после революции примкнул к Белому движению и навсегда порвал с отцом, которого считал ренегатом. Впоследствии он погиб в Африке при испытании изобретенного им средства против желтой лихорадки. Владимир пошел по стопам отца и работал в созданной им лаборатории высоких давлений. В 1936 году его, по обычаю того людоедского времени, заставили выступить на упомянутом заседании Академии наук с осуждением поступка отца. Владимир осуждать не стал, ограничившись общими словами о том, что не знает всех обстоятельств дела, но в принципе не одобряет тех, кто покидает Родину. Его тогда даже не арестовали. Впрочем, свой срок Владимир Ипатьев-младший все же получил, в 1941 году. Но срок был по тем временам символический – пять лет, его давали тогда “ни за что”. И отбывал его Владимир на “шарашке” в Москве. Впоследствии он стал профессором Ленинградского университета, потом – Лесотехнической академии, а в 1955 году скоропостижно скончался, пережив отца всего на три года. Дочь Анна тоже осталась в России и тоже хлебнула лиха после обструкции отца. В сущности, Ипатьевы потеряли детей и, живя в Америке, тяжело переживали это. Чтобы скрасить одиночество и утолить хоть как-то тоску по детям, они удочерили и воспитали двух русских девочек-сирот. Варвара Дмитриевна пережила мужа лишь на несколько месяцев…

За время жизни Ипатьева и в значительной мере благодаря его работам катализ претерпел разительные перемены. Если в конце XIX века катализаторы были предметом сугубо академических исследований с туманными перспективами их применения в промышленности, то в середине века XX, наоборот, уже невозможно было представить химическую промышленность без использования катализа. В настоящее время каталитические процессы обеспечивают более 80 % продукции химических отраслей и около 20 % ВВП развитых стран. Вы только вдумайтесь в последнее число: ведь это больше, чем вклад электроники, автомобилестроения, строительства, любой другой отрасли материального производства!

Какое отношение это имеет к нанотехнологиям? Самое непосредственное! После прочтения главы о Ловице и сорбентах вы можете сами легко воссоздать эту прямую логическую связь. Упомянутые выше катализаторы, металлы и окислы металлов, представляют собой твердые вещества. Понятно, что превращения различных соединений происходят на их поверхности . Чем больше поверхность, тем выше производительность катализатора. А высокой удельной величиной поверхности обладают только структуры, характеризующиеся наноразмерами .

Об одном из таких веществ я уже рассказывал. Это – цеолиты с их поразительной по красоте структурой, состоящей из многогранных полостей размером чуть более нанометра, соединенных столь же геометрически правильными “окнами”, удивительный продукт природных нанотехнологий, расшифрованный, скопированный и усовершенствованный учеными. В настоящее время цеолиты используют, например, для получения высокооктанового бензина, для осуществления множества других реакций нефтехимического синтеза, для обессеривания нефтяных фракций, на их основе создают катализаторы дожигания отходящих газов автомобильных двигателей и т. д. Суммарная стоимость химической продукции и моторного топлива, производимых ежегодно с использованием цеолитов, давно превысила 1 триллион долларов. К слову сказать, именно в такую сумму оценивают перспективный рынок продукции всех нанотехнологий. Даже интересно, как при этих расчетах оценивали вклад цеолитных катализаторов? Или о них просто забыли?



Поделиться книгой:

На главную
Назад