Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Квантовая магия - Сергей Иванович Доронин на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Измененные состояния сознания нужны для того, чтобы выделить эти суперпозиционные состояния среди «шума» других более сильных взаимодействий, которые их заглушают. В случае успеха у сознания появляется возможность напрямую управлять корреляциями на тонких уровнях реальности — в этом и есть суть магии. Задача не простая — по уровню сложности она сопоставима с сооружением сложных физических установок, которые сейчас используются для экспериментального изучения нелокальных квантовых корреляций, то есть для выделения отдельных взаимодействий и целенаправленного манипулирования квантовой запутанностью. У макросистем существует большое число самых различных взаимодействий с окружением, много каналов декогеренции и квантовой запутанности. Сложные экспериментальные установки для того и нужны, чтобы суметь выделить и отследить отдельные каналы этих взаимодействий, причем нужно не просто управлять каким-то отдельным каналом, но и суметь теоретически описать выделенные взаимодействия и квантовые корреляции, которые являются их следствием.

Поскольку декогеренция — это нарушение квантовой суперпозиции состояний в результате взаимодействия с окружением, то любое такое взаимодействие может рассматриваться как канал декогеренции, как процесс, который ее осуществляет или сопровождает.

Проще говоря, декогеренция — процесс «проявления» тел из пустоты, из небытия, из нелокального квантового источника. В результате этого процесса появляются плотные локальные объекты окружающего мира, в том числе различные классические поля, например, электромагнитное или гравитационное.

Декогеренция и рекогеренция — самые фундаментальные физические процессы в окружающей реальности, известные науке к настоящему времени. Процесс декогеренции лежит в основе всех известных классических взаимодействий (гравитационного, электромагнитного и т. д.), которые можно считать лишь его следствием. Различные виды взаимодействий в этом плане рассматриваются как отдельные каналы декогеренции. Взаимодействия могут быть любые — все, которые сопровождаются изменением состояния системы.

В физических экспериментах можно изучать различные типы взаимодействий непосредственно в аспекте декогеренции. Это, например, делалось в экспериментах А. Цайлингера [Nature 427, 711–714 (2004)], где исследовался процесс декогеренции по одному из каналов взаимодействия с окружением — за счет теплового излучения. Еще раз подчеркну, что эти процессы фундаментальные, и характерны они не только для микрочастиц, как иногда ошибочно считают, а для любых объектов, в том числе и для макроскопических тел. В подтверждение приведу цитату из этой статьи:«Декогеренция тепловым излучением — общий механизм, который относится ко всем макроскопическим телам» (Выделено мной. — С. Д.).

По большому счету, все взаимодействия являются «эффектом декогеренции». Более того, согласно теории декогеренции, весь классический мир — это «эффект декогеренции». Данный момент подчеркивается, например, в самом названии книги по теории декогеренции: E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I. O. Stamatescu «Decoherence and the Appearance of a Classical World in Quantum Theory» (Springer, Heidelberg, 2003). Ссылка на эту работу идет первой в списке литературы статьи в Nature, о которой упоминалось выше. Это серьезный источник, и авторы — известные ученые.

На сайте первого автора этой книги — E. Joos-а http://www.decoherence.de — можно прочитать следующие утверждения (выделения сохранены).

«Декогеренция…

— объясняет, почему кажется, что макроскопические системы обладают привычными классическими свойствами;

— объясняет, почему некоторые объекты кажутся нам локализованными в пространстве;

— объясняет, почему появились ранее противоречивые уровни описания в физике (классический и квантовый).

— Никаких дополнительных классических концепций не требуется для самодостаточного квантового описания.

— Не существует никаких частиц.

— Не существует никакого времени на фундаментальном уровне.

— Существует всего лишь ОДИН основной каркас для всех физических теорий: квантовая теория».

Все эти выводы сделаны не на пустом месте. Они отражают и обобщают результаты многолетних научных исследований тысяч и тысяч ученых, подтвержденные многочисленными экспериментами. В последнее время в научных журналах ежегодно публикуется огромное количество экспериментальных и теоретических статей по декогеренции и квантовой запутанности. Подчеркну, что речь идет о стандартной квантовой теории, а не о различных новомодных «интерпретациях» квантовой механики. Теория декогеренции, квантовая теория информации, теория запутанных (несепарабельных) состояний — все это прикладные разделы стандартной квантовой теории, и на их основе разрабатываются технические устройства, основным рабочим ресурсом которых являются запутанные состояния.

Процессы декогеренции, наличие квантовой запутанности, возможность целенаправленно ее изменять — все это факты, которые сегодня нельзя игнорировать. Все это уже работает в технических устройствах.

Таким образом, во многом благодаря практическим нуждам, важнейшие фундаментальные физические процессы, происходящие в реальности, которые наука раньше не рассматривала, вошли в сферу внимания научного сообщества и стали объектом тщательного (как теоретического, так и экспериментального) исследования. Пришло понимание того, что мера квантовой запутанности системы, ее динамика и физические процессы, ведущие к усилению или уменьшению квантовой запутанности, — это основополагающие характеристики системы. А фундаментальность новых (для науки) физических процессов обусловлена тем, что они являются неотъемлемым свойством любого элемента реальности.

Ориентируясь на потребности общества в новых перспективных технологиях, наука была вынуждена сделать психологически трудный для нее шаг. Ей пришлось перейти от привычной полуклассической копенгагенской интерпретации квантовой механики, подразумевающей обязательное наличие классического наблюдателя (измерительного прибора), к чисто квантовому подходу, в котором уже не осталось места классическому «пережитку». И это был поистине революционный шаг.

В результате квантовый подход к описанию окружающей реальности стал самодостаточной согласованной теорией, построенной из единых общих принципов, логично включающей в себя классическую физику как частный случай квантового описания.

Другое дело, что при осмыслении квантовой запутанности и процессов декогеренции, при попытке увязать их с нашим мировоззрением и пониманием окружающей реальности возникает множество вопросов. Тут может быть очень широкий диапазон различных мнений и точек зрения.

Таким образом, от теоретических основ квантового компьютера мы постепенно подошли к фундаментальным вопросам естествознания, к тем существенным изменениям в научной картине мира, которые следуют из последних достижений современной теоретической физики.

1.4. Нелокальный источник реальности

Для начала давайте сформулируем основной вопрос, который мы хотим прояснить. Как известно, правильно поставленный вопрос — более половины ответа. Попробуем спросить:«Действительно ли окружающий нас мир состоит из обособленных твердых объектов?» Действительно ли мир ограничивается материей и различными физическими полями, которые мы можем воспринимать непосредственно или с помощью классических приборов, и кроме этого ничего не существует? Или все, что мы видим вокруг себя, — лишь незначительная часть более сложной совокупной реальности? На первый взгляд, вопрос может показаться абстрактным, «нефизичным», не имеющим однозначного ответа со стороны физики, которая бы подтверждала свои выводы экспериментами. Такие эксперименты проводились и проводятся, и мы еще будем о них говорить более подробно, и есть однозначные выводы, хотя не все готовы их принять. Но пока не будем торопиться и начнем издалека.

Практически каждый из нас что-то слышал о волнах де Бройля, о дуализме волна-частица. Тот, кто знаком с квантовой теорией, может вспомнить, что поля и частицы — это не разные объекты, а разные способы описания одного и того же объекта. Для микромира давно решен вопрос и о том, что мы будем наблюдать в эксперименте — волну или частицу. Решение это очень поучительное. Оказывается, все зависит от наблюдателя. Если он захочет увидеть исследуемый объект в виде частицы, то возьмет нужный измерительный прибор — и увидит ее вполне твердой «на ощупь», а пожелает увидеть распределенным в пространстве (волну), возьмет другой прибор, и вся твердость куда-то исчезнет (частица проходит через две щели одновременно). Прибор играет роль своеобразного фильтра восприятия, отбирая и показывая нам лишь один из возможных способов описания материи. Как говорил Луи де Бройль[18], «этот прибор как раз и извлекает из состояния, которое существовало до измерения, одну из содержащихся в нем возможностей».

Квантовая механика первой поставила под сомнение, казалось бы, очевидную предметность нашего мира и осознала, что немаловажная роль в процессе «опредмечивания» окружающей действительности принадлежит измерительному прибору и наблюдателю. До недавнего времени считалось, что такое необычное поведение материи характерно только для микрочастиц. Но классики уже в момент становления квантовой механики прекрасно понимали, какое огромное значение имеют эти выводы для общей картины окружающего мира, и что они выходят далеко за рамки микромира. Например, В. Гейзенберг[19], рассуждая на эту тему, говорил: «Идея реальности материи, вероятно, являлась самой сильной стороной жесткой системы понятий XIX века; эта идея в связи с новым опытом должна быть, по меньшей мере, модифицирована». Однако недостаток научных данных в то время позволял ученым лишь философствовать на эту тему.

Лишь в последние годы результаты, полученные теорией запутанных состояний и декогеренции, смогли пролить свет на ситуацию в макромире. Как уже упоминалось, одним из первых «пал» постулат редукции волновой функции, и был сделан вывод, что все составные части Вселенной, как замкнутой системы, должны находиться в когерентном запутанном состоянии. Окружающий мир оказался намного сложнее так хорошо всем знакомой картины реальности.

Дело в том, что одна из основных особенностей запутанных состояний — это их несепарабельность. То есть объекты, находящиеся в запутанном состоянии с окружением, в принципе не могут быть полностью описаны в предметном мире. Они не принадлежат целиком и полностью привычному для нас пространству-времени и могут не подчиняться причинно-следственным связям. В своем обычном режиме восприятия мы способны видеть лишь проекции этих состояний, и их поведение может противоречить всем известным законам предметного мира.

Вот одна из близких аналогий. При просмотре какого-либо художественного фильма многие из нас прекрасно понимают, что если на экране мы видим «чудо», то оно объясняется действиями, которые происходят «за кадром». Специалист способен даже определить последовательность этих действий. Современная теоретическая физика доказывает, что аналогичная ситуация происходит и в фильме под названием «Предметная жизнь физических тел».

С точки зрения квантовой теории проще всего анализировать замкнутые системы.

Единственным объектом, который можно назвать в полной мере замкнутой системой, является весь Универсум, Вселенная в целом. Она считается замкнутой системой (и, следовательно, чистым состоянием) по определению — нет ничего, что было бы вне ее. Все другие объекты уже не будут абсолютно замкнутыми, и речь в лучшем случае может идти о квазизамкнутых системах (псевдочистых состояниях) с различной степенью приближения к чистому состоянию. Такие открытые системы находятся в так называемом смешанном состоянии.

Первый концептуальный вывод, который следует практически сразу, — у Универсума нет внешнего окружения, следовательно, никто не может осуществить его редукцию. Декогеренция — это процесс перехода чистого состояния в смешанное. Процесс, который имеет место только для подсистем, для составных частей замкнутой системы. Универсум, как единая система, в любом случае будет оставаться в чистом состоянии, независимо от того, что происходит у него «внутри», на уровне подсистем. И чистое состояние может оставаться нелокальным независимо от того, какое «шевеление» происходит внутри Универсума. Во всей своей целостности он по-прежнему будет нелокальным, нетварными по-прежнему будет оставаться вне времени и пространства.

Согласно космологической концепции теории декогеренции, весь классический мир со всеми объектами и взаимодействиями между ними возник из нелокального источника реальности. Сейчас уже никого не шокируют названия научных книг[20] и статей[21], звучащие примерно так: «Декогеренция и появление классического мира в квантовой теории». При этом значение слова «appearance» (появление) имеет дополнительные оттенки: видимость, призрачное явление, нечто внешнее, противопоставленное «истинному», настоящему.

Весь материальный классический мир, согласно квантовой теории, не является основой реальности. Совокупная квантовая реальность гораздо богаче и шире. Классический мир — это лишь «картинка», видимость, внешнее проявление одной из сторон квантовой реальности.

Нелокальный источник реальности, из которого «проецируется» наш плотный мир — это довольно глубокое понятие. Может ввести в заблуждение сам термин «нелокальный». Речь идет о квантовой нелокальности, которая не имеет отношения к волнам, полям, к классическим энергиям любого вида и типа. Квантовая нелокальность вообще не может быть описана классической физикой.

Нелокальный квантовый источник реальности — это мир, в котором вообще нет никакой массы и потоков энергии. Это пустота, которая, тем не менее, содержит в себе всю полноту классических (тварных) энергий в нелокальной суперпозиции. Все тварные энергии (в том числе на тонких уровнях) как бы компенсируют друг друга и в своей совокупности образуют Всеобъемлющую Пустоту. Пустоту лишь в том смысле, что этот мир невидим в своей целостности. На уровне Универсума остается только одна возможность — оперировать квантовой информацией, кроме которой там ничего больше и нет.

Нелокальный источник реальности не является материальным, поскольку в нем нет массы и энергии, и вообще в нем нет ничего, что имело бы отношение к классической физике. Можно условно назвать его единым информационным полем, которое содержит в себе информацию о внутренней структуре Универсума, а декогеренция — это своеобразное проявление этой информации в виде той или иной классической реальности (проекции) — проявление «картинки», которое сопровождается потоками тварных энергий (в том числе на тонких уровнях, где выше мера квантовой запутанности). Все эти проекции, «картинки», остаются внутри Универсума, и снаружи они все равно не видны, нет одной, общей для всех «сцены». Различные части системы «смотрят» (и участвуют в качестве декораций) в своих постановках, на различных «сценах», и все зрители распределяются по своим «интересам», по параметрам и энергетическим характеристикам в качестве локальных объектов-участников.

Нет общей классической реальности, общего мира, единого для всех частей (подсистем). Квантовая теория позволяет гораздо шире взглянуть на окружающую реальность, и, в отличие от классической физики, которая предполагает, что есть некий единый, общий для всех материальный мир, говорит о том, что могут существовать другие миры из тварных энергий различной плотности (различные по мере квантовой запутанности). В моей интерпретации декогеренция, как фундаментальный физический процесс, имеет место не только среди плотных энергий привычного нам мира классической реальности, но и других более «тонких» энергий. Там «собираются» уже другие «картинки», другие проекции реальности.

«Мы не умрем, но изменимся», — примерно так говорится во всех религиозных и мистических учениях, и наше изменение одновременно означает смену «декораций» окружающей нас реальности. В результате квантового перехода после смерти мы попадаем в другой мир, который станет для нас не менее реальным, чем нынешний, поскольку наше новое «тело» будет состоять из тех же энергий, что и энергии окружающих объектов, то есть процесс декогеренции пойдет уже в новом энергетическом диапазоне. Хотя с точки зрения классической физики эти «потусторонние» энергии вообще не существуют, и их нельзя зафиксировать и описать в классическом приближении. Это энергии на уровне того, что сейчас называется квантовыми ореолами, и они могут быть поняты и объяснены только в квантовой теории. Но такие энергии все равно остаются тварными, поскольку являются результатом декогеренции, хотя для них мера квантовой запутанности (доля нетварных энергий) будет выше.

Классическая физика способна предложить концепцию лишь одного мира, общего для всех (пусть и с учетом теории относительности). Квантовая теория, в частности, теория декогеренции, в состоянии предложить более глубокую концепцию, согласно которой существует уже не один классический мир, а совокупность миров с разной мерой квантовой запутанности, с качественно различной энергией. Теория декогеренции может стать теорией относительных реальностей, когда для частей системы из различных классов состояний существуют свои реальности, свои процессы декогеренции, свои энергии и частицы, своя метрика пространства-времени.

Таким образом, материальный мир, который считался раньше первоосновой всего сущего, с точки зрения квантовой теории является вторичным образованием в пределах всеобъемлющего квантового источника реальности. Весь классический мир сам «погружен» в реальности более высоких квантовых уровней.

В свете квантовой парадигмы реальности приоткрывается завораживающая глубина, всеобъемлющая целостность и потрясающая красота законов мироустройства.

Говоря упрощенно, совокупную квантовую реальность можно представить в виде многоуровневой системы. Каждый ее энергетический уровень — своего рода отдельная реальность со своими объектами, энергетическими характеристиками, пространственно-временными метриками. А совокупная реальность — суперпозиция всех этих энергетических уровней. Причем между ними возможны квантовые переходы, но непосредственно изучать один уровень, находясь при этом на другом, невозможно. С одного уровня нельзя напрямую влиять на другой — энергии этих миров различны. Здесь может иметь место лишь косвенное влияние через нелокальные квантовые корреляции, поскольку все уровни объединены в когерентную суперпозицию, то есть находятся в запутанном состоянии между собой.

С нашим привычным миром, который еще недавно считался исчерпывающим, можно сопоставить лишь один энергетический уровень в сложной квантовой картине реальности. При этом другие реальности не удастся наблюдать непосредственно из нашего предметного мира. «Потусторонние» реальности не принадлежат ему, об их объективном физическом существовании мы в состоянии судить лишь по наличию эффектов квантовой запутанности в нашем мире, проявлению в нем «запредельных» реальностей в виде «чудес». Эффектов, которые не могут быть объяснены классической физикой, и которые с точки зрения привычных представлений об окружающем мире обладают «сверхъестественной» природой.

Именно этими необычными свойствами запутанных состояний можно объяснить практически все «необъяснимые» явления — от банального полтергейста до самых невероятных взаимодействий с различными объектами вне нашего предметного мира. К этому же классу относятся и явления, связанные с действиями шаманов, колдунов, экстрасенсов, магов, ясновидящих и т. д. и т. п., а также чудеса, о которых рассказывается в религиозной литературе. Все они находят научное объяснение в рамках теории запутанных состояний и теории декогеренции.

Однако большинство из нас предпочитает сосредотачивать все свое внимание на классических корреляциях со своим окружением. Как уже отмечалось, степень классичности окружения зависит от количества информации, «записываемой» в человеческом теле и отраженной в сознании, то есть той информации, над которой сознание может «манипулировать». Декогеренция человека окружением, потеря им «магических» свойств запутанных состояний и, как следствие, «опредмечивание» окружающего мира являются своеобразной расплатой за ясность сознания, развитие разума и мышления. Очевидно, что это был довольно длительный процесс в истории человечества, и такие выводы в рамках теории декогеренции хорошо согласуются со Священным Писанием. Когда говорят об Адаме и Еве, то иногда забывают, что перволюди были лишены плотного «дебелого» тела — они были подобны ангелам небесным, бесплотными духами, и лишь после своего падения люди получили плотное физическое тело. Святитель Игнатий Брянчанинов пишет[22]:

«До падения человека тело его было безсмертно, чуждо недугов, чуждо настоящей его дебелости и тяжести, чуждо греховных и плотских ощущений, ныне ему свойственных

<…>

Боговдохновенный писатель Бытейской книги говорит, что по падении первых человеков, Бог, произнесши приговор над ними, еще до изгнания их из рая, сотвори им ризы кожаны и облече их (Бытие 3, 21). Ризы кожаныя, по объяснению святых Отцов (Святаго Иоанна Дамаскина. Точное изложение Православной веры, книга 3, глава 1), означают нашу грубую плоть, которая при падении изменилась: утратила свою тонкость и духовность, получила настоющую свою дебелость».

Горек плод познания, поскольку он сопровождается декогеренцией, облачением в плотную телесную форму и изгнанием из «райского» существования в запутанном состоянии.

В макромире, так же как и в микромире, основная ответственность за результат наблюдения возлагается на «измерительный прибор», под которым можно понимать любую структуру, взаимодействующую со своим окружением. Естественно, что мир, который она «собирает» вокруг себя, зависит от ее внутренних свойств, от той информации, которая может в ней «записаться». Мы ограничимся наиболее «совершенной» структурой — сознанием человека с его инструментами — органами восприятия.

Окружающий нас мир содержит огромное количество информации, которую человек не способен анализировать одновременно. Механизм восприятия изучают такие науки, как психология и психофизиология восприятия. Эта научная область располагает большим количеством исследований и публикаций, огромным количеством накопленных фактов. Исследования ведутся на самых разных уровнях: морфофизиологическом, психофизическом, психологическом, теоретико-познавательном, клеточном, феноменологическом, фонографическом. Изучаются филогенез, онтогенез восприятия, функциональное развитие восприятия и процессы его восстановления. Используются самые разнообразные методы, процедуры, индикаторы. Начиная с самых первых теорий восприятия (Д. Бродбент — «модель с фильтрацией»[23]), большинство ученых в этой области приходят к выводу, что восприятие — явление в значительной степени «элиминативное»[24] (вытесняющее), а не продуцирующее.

То есть основная функция мозга и нервной системы, как это ни парадоксально звучит, — не отражение окружающей действительности, а защита, своеобразный барьер, призванный оградить нас от огромного объема информации, поступающей извне, и оставить лишь весьма небольшой, специфически отобранный материал, который может пригодиться, прежде всего, для биологического выживания человека. Таким образом, теория восприятия также подтверждает, что развитие человека, в частности, его нервной системы, — это естественный процесс возведения все более прочного «барьера» между человеком и окружающей действительностью. Этот «экран» позволяет человеку наиболее эффективно действовать в окружающем мире за счет ограничения широты восприятия, располагая при этом более детальной информацией о процессах, происходящих в узкой области восприятия, выделенной его вниманием.

Человеческое тело (как результат эволюции) можно считать инструментом познания окружающей реальности. Оно «отвердевает» одновременно с окружающим миром по мере декогеренции, в результате чего становится возможным развитие индивидуального сознания. Происходит снижение степени запутанности, и непосредственное восприятие других слоев реальности, в том числе высших сущностей, все более и более затрудняется — человек «отпадает» от Бога. Однако, с другой стороны, «отпадая» от Бога, он получает свободу воли, свободу быть самостоятельным существом, способным взрастить индивидуальное зерно духа и разума, обогащая тем самым мировой Разум. В раю, на тонких слоях реальности, это невозможно было сделать — там высокая мера квантовой запутанности, там человек несамостоятелен. Так, ангелы небесные не обладают свободой воли и не имеют необходимых условий и возможности для индивидуального творчества и развития самосознания.

Но погружение в плотный мир не означает, что сознание человека не в состоянии преодолеть ограничения, накладываемые на него физическим телом. Наиболее весомым подтверждением этого факта, а также справедливости наших рассуждений о роли запутанных состояний является широкое распространение различных магических и религиозных практик, неразрывно связанных со всей историей развития человечества. Даже самый поверхностный анализ показывает, что все основные методики расширенного восприятия связаны с умением управлять степенью запутанности своего сознания с окружающей реальностью. К их числу относятся остановка внутреннего диалога, медитация, созерцание, религиозные практики (например, искренняя молитва), техника перепросмотра своей жизни, даже такая относительно редкая техника, как стирание личной истории, и т. д. Все они имеют достаточно четкое научное объяснение в рамках теории запутанных состояний и могут быть описаны уже не только качественно, но и количественно — с помощью чисто физических величин, например, различных мер запутанности. Теория запутанных состояний и декогеренции способна предоставить исследователю теоретический аппарат для научного анализа магических практик.

Многообразие подобного рода методик и практик впечатляет, но суть у них одна — ослабить взаимодействие сознания с привычным предметным миром и перейти в запутанное состояние с окружающей реальностью, то есть осуществить процесс, обратный декогеренции (очищения запутанности, рекогеренции), предоставить сознанию возможность действовать вне привычных рамок пространства и времени. Более глубокий анализ этих техник с точки зрения теоретической физики вызывает лишь уважение к различным школам, разработавшим в мельчайших деталях практическую реализацию теории запутанных состояний сознания с окружающим миром.

Научный подход к указанным методикам позволяет обобщить, систематизировать и классифицировать эти знания, которые до сих пор оставались вне системы общепринятого мировоззрения. Мы получаем возможность ввести новые понятия в структуру нашего описания мира и сознательно их использовать.

Теперь самое время ответить на вопрос, поставленный в начале раздела: «Действительно ли окружающий нас мир состоит из обособленных твердых объектов?» Предметность окружающего мира, его «твердость» — не есть исходное, изначальное и неизменное состояние окружающей реальности, а лишь один из уровней более сложной квантовой реальности. С другой стороны, это один из возможных «способов описания» узкого слоя совокупной реальности наблюдателем (в самом широком смысле этого слова), который извлекает из окружающего мира одну из содержащихся в нем возможностей в соответствии с информацией, которая записывается, отражается в его внутренней структуре, «улавливается» ею. В частности, для каждого из нас предметность окружающего мира обусловлена декогеренцией человеческого тела, его органов восприятия со своим окружением и представляет собой одну из возможных картин, проекций многогранной реальности. Причем даже в ней мы в настоящее время воспринимаем лишь незначительную часть информации, только одну из сторон, один из «способов описания» в виде локальных твердых объектов (узкий диапазон восприятия, но с подробной информацией). Мы уже разучились воспринимать другой возможный «способ описания» в виде нелокальных полевых структур (широкий диапазон, но с менее детальной информацией).

Однако, с практической точки зрения, самый важный вывод заключается в том, что, управляя степенью запутанности своего сознания с окружением, мы в состоянии расширить свое восприятие. Во-первых, можно «размягчить» данный предметный мир и научиться воспринимать содержащуюся в нем дополнительную информацию. Для этого необходимо перейти в режим видения полевой энергетической структуры «твердых» объектов и даже структур, не имеющих предметного воплощения. Во-вторых, мы способны воспринимать и «проявлять» другие реально существующие проекции реальности, причем также в различных режимах, как в виде локального предметного мира, так и в виде нелокальных энергетических структур. И, в-третьих, наше сознание в состоянии создавать новые объекты реальности, ранее не существовавшие.

1.5. Нелокальность в окружающем мире. Экспериментальная проверка

Вопрос об обособленности объектов окружающей реальности, который мы рассматривали в предыдущем параграфе, достаточно четко может быть сформулирован в квантовой теории, и к настоящему времени осуществлена его экспериментальная проверка. Остановимся на этом более подробно.

Такие специфические черты квантовых систем[25], как нелокальность и квантовая запутанность, не имеют аналога в классической физике, и их проявления кажутся сверхъестественными для тех, кто привык иметь дело с классическим описанием окружающей реальности.

Первым, кто обратил внимание на эти особенности квантовых систем, был Эйнштейн, который в 1935 году на примере запутанных состояний ЭПР-пары[26] пытался доказать неполноту описания мира квантовой механикой. Возможность существования мгновенного действия на расстоянии ему казалась противоестественной, и в этом контексте он употреблял термин «телепатия»[27].

Эйнштейн исходил из привычных представлений, и ему казалось правильным считать, что, если две системы A и B пространственно разделены, тогда при полном описании физической реальности действия, выполненные над системой А, не должны изменять свойства системы В. Этот принцип часто называют принципом локальности Эйнштейна.

В том, что для двух удаленных коррелированных частиц измерение проекции одного спина[28] (вверх) заведомо определяет проекцию другого спина (вниз), нет пока ничего удивительного, квантового. В классической ситуации могут существовать аналогичные корреляции между результатами измерения. Например, если у нас было два детских кубика разного цвета — красный и синий, которые затерялись в комнате, то, найдя кубик красного цвета, можно без измерения второго кубика утверждать, что, когда мы его найдем, увидим синий кубик. Квантовая специфика оказывается более сложной и интересной. Анализ показывает, что спин, как внутренняя характеристика частицы, для некоторого типа состояний в качестве локального элемента реальности может не существовать вовсе до тех пор, пока его не измерят. Это как в нашем примере с кубиками — пока мы не возьмем в руки первый кубик, они вообще не имеют своего цвета в качестве индивидуальной локальной характеристики. Кубики «бесцветны», но, как только мы берем в руки один кубик, он тут же «окрашивается» в синий или красный цвет с равной вероятностью, и после этого второй кубик, который мы не видим, тоже приобретает свой цвет. До измерения «цвет» находится в нелокальном суперпозиционном состоянии, его нельзя распределить на два локальных объекта. Лишь при измерении в процессе декогеренции «цвета» локализуются, разделяются на независимые части.

Примерно то же самое происходит со спином. Результаты квантовомеханических расчетов показывают, что если система находится в состоянии типа ЭПР-пары, то в этом случае оказывается несправедливым наше интуитивное предположение о том, что спин до измерения существует как реальная и объективная физическая характеристика частицы. В квантовой теории делается и более общий вывод: если система исходно находилась в нелокальном суперпозиционном состоянии, то ее составные части, как локальные классические объекты, не существуют до тех пор, пока не произойдет декогеренция.

Здесь только нужно учитывать, что у сложной макроскопической системы обычно очень много степеней свободы, и по одним из степеней она может быть локальна, сепарабельна (разделима на независимые части), а по другим — несепарабельна, неразделима на части. Это легко пояснить на примере частиц, которые могут находиться в разных местах, то есть будут разделены по пространственным координатам, но в то же время по спиновым степеням свободы составлять единое целое.

Своим примером с ЭПР-парой Эйнштейн пытался доказать, что квантовая механика неполна и не способна однозначно описать реальность в принципе. Отсюда возникло предположение о скрытых параметрах, которые в состоянии спасти ситуацию и помогут вернуться к привычному, локальному описанию объектов. Однако конечный результат исследования этой проблемы оказался противоположным.

В итоге выяснилось, что более правильным является именно квантовомеханический подход. И результат такого подхода несовместим с предположением, что наблюдаемые свойства объекта (в общем случае) существуют до наблюдения как объективная самостоятельная внутренняя характеристика.

Первый реальный шаг к такому выводу сделал Белл в 1964 году, когда он, анализируя ситуацию со скрытыми параметрами, сформулировал свои знаменитые неравенства[29].

Он ввел понятие «объективной локальной теории», которой придерживались Эйнштейн и сторонники скрытых параметров. В этой теории предполагается, что

● физические свойства системы существуют сами по себе, они объективны и не зависят от измерения;

● измерение одной системы не влияет на результат измерения другой системы;

● поведение не взаимодействующей с окружением системы зависит лишь от условий в более ранние моменты времени.

Это привычные для всех нас представления об окружающей реальности.

Теорема Белла утверждает, что «объективная локальная теория» и квантовая механика дают разные предсказания для результатов измерения. Естественно, возник вопрос, каким же на самом деле является реальный мир, и неравенства Белла помогли ответить на него непосредственно — на основании анализа результатов экспериментов. Такие эксперименты были проведены А. Аспектом[30] и впоследствии многими другими исследователями. Их результаты показали, что окружающая нас реальность является квантовой в своей основе, и все вышеперечисленные предположения «объективной локальной теории» в общем случае несправедливы.

Физических экспериментов по проверке локального реализма было проведено очень много[31], и все они опровергают положения «объективной локальной теории», свидетельствуя в пользу нелокальности окружающей нас реальности.

Я остановлюсь лишь на одном, наиболее ярком эксперименте, который не оставляет практически никаких шансов «локальным реалистам».

Результаты этого эксперимента были опубликованы в Nature в 2000 году[32].

В этом эксперименте[33] исследовались трехчастичные запутанные состояния (так называемые ГХЦ-состояния — Гринбергера, Хорна, Цайлингера), которые позволяют дать достоверный, а не статистический результат по проверке локального реализма.

Гринбергер, Хорн и Цайлингер показали, что квантовомеханические предсказания некоторых результатов измерений трех запутанных частиц противоречат локальному реализму в случаях, когда квантовая теория дает достоверные, то есть нестатистические предсказания. В этом — отличие от экспериментов типа Эйнштейна-Подольского-Розена с двумя перепутанными частицами по проверке неравенства Белла, где противоречие с локальным реализмом возникает только для статистических предсказаний.

Применение эйнштейновского понятия локальности означает, что скорость распространения информация не может превышать скорость света. Соответственно результат измерения одного фотона не должен зависеть от того, проведено ли одновременно измерение двух других фотонов, а также от исхода этих измерений. Но как с точки зрения локального реализма объяснить полные корреляции между фотонами? Единственный способ — предположить, что значение величины меняется не в результате измерения, а просто вследствие ее стохастического (случайного) поведения. То есть она может принимать различные значения потому, что это особенность ее поведения — быть изменчивой без всяких причин. Например, как в рассматриваемом эксперименте: каждый фотон якобы содержит заранее все возможные результаты измерения в виде случайного набора, но все они не зависят от измерения других фотонов.

В этом эксперименте в качестве элементов реальности рассматривались циркулярные поляризации фотонов. Предположим, что элементы реальности существуют до того, как проведено измерение. Значит, мы можем определить все возможные исходы (в данном случае — четыре). Это конкретные математические выражения, полученные как следствие сделанного предположения. То есть «локальный реалист» утверждает, что в эксперименте будут получены именно эти результаты, один из четырех в каждом частном случае.

С другой стороны, можно записать аналогичные формулы для возможных исходов эксперимента, предсказанных квантовой теорией. И самое интересное, что последние прямо противоположны первым! Тут уж экспериментаторам трудно ошибиться. Всякий раз, когда локальный реализм предсказывает достоверный специфический результат измерения одного фотона (при данном результате измерения двух других), квантовая физика достоверно предсказывает прямо противоположный результат. Если в случае неравенства Белла для двух фотонов разница между локальным реализмом и квантовой физикой состоит в статистических предсказаниях теории, то здесь любая статистика возникает только благодаря неизбежным ошибкам в измерениях, свойственным и классической, и квантовой физике. Поэтому трехфотонные состояния ГХЦ находятся в большем противоречии с локальным реализмом, чем двухфотонные состояния, и это противоречие легче зафиксировать в физических экспериментах.

Эксперименты подтверждают, что поляризацию фотонов для ГХЦ-состояний нельзя разделить на части и сопоставить с отдельными элементами реальности. По спиновым степеням свободы система составляет единое целое. Утверждения локальной объективной теории оказываются несправедливыми. Выходит, что реальность является более сложной, чем это представляется локальным реалистам.

Эксперименты по квантовой нелокальности были проведены не только с состояниями, запутанными по поляризации, но также и по времени, по импульсам и т. д., и все они подтвердили наличие нелокальности на фундаментальном уровне реальности.

После того как Белл сформулировал свою теорему, стало очевидным, что квантовая механика несовместима с локальным реализмом. В настоящее время нарушение неравенства Белла (или его аналогов) считается одним из основных факторов, свидетельствующих о наличии значительных квантовых корреляций в системе и, как следствие, невозможности описания такой системы в рамках классического подхода. Наличие запутанности в системе является необходимым условием для нарушения неравенства Белла.

Параллельно с проведением экспериментов по проверке локального реализма большая работа проводилась и физиками-теоретиками. В том числе их внимание было направлено на теоретическое изучение различных типов запутанных состояний в плане их нарушения неравенств Белла, а также на их систематизацию и классификацию. Для тех, кто хочет более подробно ознакомиться с этой информацией, я перечислю некоторые основные работы в этом направлении.

В 1991–1992 годах Н. Гизин и A. Перес[34] показали, что любая двусоставная система, находящаяся в чистом запутанном состоянии, нарушает неравенство Белла.

Почти сразу же этот результат был обобщен С. Попеску и Д. Рорлихом[35] и распространен на многосоставные системы, состоящие из произвольного числа подсистем. Таким образом, для чистого запутанного состояния вопрос был в основном решен: любое чистое запутанное состояние нарушает неравенство Белла, и описание такой системы невозможно в рамках локального реализма.

Со смешанными запутанными состояниями ситуация более сложная, хотя на практике, из-за декогеренции, приходится иметь дело именно с ними.

С точки зрения практического применения нелокальных свойств запутанных состояний наиболее эффективны чистые запутанные состояния, как обладающие максимальным нелокальным ресурсом. В связи с чем возникает вопрос, можно ли перевести систему из смешанного запутанного состояния в чистое? Первый шаг в этом направлении сделал Ч. Беннетт (с соавторами)[36] в 1996 году. Ими была описана процедура дистилляции запутанности к полезной форме синглета, то есть к максимально запутанному состоянию типа ЭПР-пары.

Впоследствии было показано[37], что любое несепарабельное (запутанное) смешанное состояние двусоставной системы в двухмерном гильбертовом пространстве (система 2 × 2), имеющее сколь угодно малые квантовые корреляции, может быть дистиллировано к синглетной форме.

Поначалу предполагалось, что такая процедура возможна и для больших систем. Однако вскоре выяснилось[38], что, начиная с 2 × 3 систем, квантовая механика подразумевает существование двух качественно различных видов смешанной запутанности. И кроме «свободной» запутанности, которая может быть всегда дистиллирована, существует «связанная» запутанность (bound entanglement), которую невозможно привести к синглетной форме.

Оказалось, что нарушение неравенства Белла, то есть несепарабельность (наличие запутанности) не является достаточным условием для дистиллируемости. Встал также вопрос, нарушают ли связанные запутанные состояния локальный реализм. В связи с этим особенный интерес представляют многосоставные системы, и вопросы здесь остаются, хотя уже много сделано и в этом направлении. Так, Ч. Беннетт (с соавторами)[39] показали, что трехсоставная 2 × 2 × 2 система, находящаяся в смешанном запутанном состоянии, не является запутанной, если рассматривать ее как двусоставную (три варианта) 2 × 4 систему.

В последние годы внимание теоретиков к нарушению неравенства Белла различными типами запутанных состояний несколько ослабло. Ситуация стала более-менее понятной, да и прошел бум экспериментальных исследований в этой области. В настоящее время считается, что вопрос проверки локального реализма окончательно решен в пользу квантовой теории, и фундаментальный вывод о нелокальности окружающей реальности полностью подтвержден физическими экспериментами.

Сейчас акценты, как экспериментаторов, так и теоретиков, сместились в сторону прикладных исследований и технического применения нелокальных квантовых корреляций. Значительные усилия в последнее время были направлены на то, чтобы понять роль запутанных состояний в природе, на возможность их практического применения в качестве принципиально нового нелокального ресурса в технических устройствах.

Экспериментаторы работают сейчас над созданием квантового компьютера, квантово-криптографических систем и других квантово-когерентных устройств. А теоретики, основываясь на этих экспериментах, ищут наиболее удобные способы количественного описания квантовой запутанности и процессов декогеренции/рекогеренции. В частности, идет интенсивный поиск наиболее удобной в практическом применении меры квантовой запутанности, и к этому вопросу мы еще вернемся, когда будем говорить о матрице плотности.

1.6. Может ли скорость обмена информацией превышать скорость света?

Довольно часто приходится слышать, что эксперименты по проверке неравенств Белла, опровергающие локальный реализм, подтверждают наличие сверхсветовых сигналов. Это говорит о том, что информация способна мгновенно передаваться от одного объекта к другому, удаленному даже на большое расстояние. Невозможность сверхсветовой передачи информации обычно связывают с эйнштейновской локальностью. И, казалось бы, вполне логично заключить, что если локальности нет (что подтверждается экспериментами), то скорость распространения информации может превышать скорость света.

Однако здесь есть некоторые тонкости. Полагаю, что сами термины «передача сигнала» или «передача информации» в данном случае не очень удачны — ничто никуда здесь не передается и не перемещается из одного места в другое. Более правильным является представление, что система по одним степеням свободы может быть сепарабельна (например, по пространственным координатам) и разделена на части, находящиеся в разных пространственных областях, а по другим (спиновым) — нет. В последнем случае система будет составлять единое целое, и спины станут изменяться согласованно. При этом никакие сигналы никуда не передаются. Спины частиц в случае запутанного состояния не разнесены в пространстве и не существуют самостоятельно в качестве отдельных элементов реальности, они как бы находятся в одном месте. Поэтому о каком-либо перемещении информации говорить бессмысленно. Недоразумения здесь возникают в силу наших укоренившихся предубеждений, когда мы по привычке начинаем рассуждать, как «локальные реалисты», о том, что если два объекта отделены друг от друга, то каждый из них несет в себе все свои внутренние характеристики. На самом деле это далеко не так. В какой-то своей части, по отдельным степеням свободы, объекты могут оставаться неразделенными, что со всей убедительностью подтверждается физическими экспериментами.

Сигналы, связанные с классическими носителями информации (частицами, волнами и т. д.), не могут распространяться быстрее света. Однако полагаю, что есть и другое решение вопроса сверхсветовых перемещений. Например, я не вижу принципиальных теоретических запретов на возможность перевести объект в нелокальное суперпозиционное состояние по всем его внутренним степеням свободы, то есть полностью «растворить» в бесконечности. А после этого вновь декогерировать и перевести в локальное состояние в другом месте (полная телепортация). Иными словами: объект исчезает в одном месте и появляется в другом. С формальной точки зрения, такое «перемещение» объекта можно рассматривать как сверхсветовое «распространение сигнала», но оно не будет связано с непосредственным движением объекта (носителя сигнала) в нашем пространственно-временном континууме.

Часто во многих публикациях по квантовой механике встречается утверждение, что, используя одни только квантовые корреляции, вообще невозможно передать информацию: нужен как минимум еще классический канал связи.

Как я понимаю, противоречие здесь скрывается в самой постановке вопроса, например, когда речь идет о передаче информации при помощи квантовых корреляций. Квантовые корреляции — это те степени свободы, которые являются общими для всей системы. Это та часть системы, которая объединят ее, те степени свободы, которые меняются как одно целое. Поэтому говорить о передаче информации при помощи квантовых корреляций, на мой взгляд, не совсем корректно: никакой «передачи», по сути дела, здесь нет, поскольку квантовые корреляции не разделены на отдельно отстоящие части.

Попытаюсь пояснить. Давайте зададимся сходным, но более простым вопросом: с какой скоростью обмениваются между собой информацией кубиты в квантовом компьютере, и нужен ли для такого обмена классический канал связи? Очевидно, что классический канал не нужен — он только нарушит корреляции. Очевидно и то, что скорость обмена информацией бесконечна и так называемая «передача информации» между кубитами совершается мгновенно, поскольку все они ведут себя как единое целое. Изменяя состояние одного кубита, мы меняем сразу всю систему целиком. Лучше сказать, что ни передачи, ни обмена информацией между кубитами нет, а есть лишь их согласованное поведение. Замечу, что кубиты могут быть разнесены в пространстве. Неважно, на каком расстоянии друг от друга они находятся — необходимо только, чтобы между ними сохранялись корреляции по спиновым степеням свободы (если на них работает квантовый компьютер). Но в соответствии с нашими привычными представлениями — особенно когда кубиты разнесены в пространстве — можно, конечно, говорить и о передаче, об обмене информацией между кубитами, поскольку изменение состояния одного из них мгновенно передается другим, а работа квантового компьютера как раз и заключается в обмене информацией между ними, в их согласованном поведении.

Поэтому нельзя сказать, что сверхсветовая передача информации невозможна. По моему мнению, проблемы и «логические парадоксы» возникают здесь из-за некорректных формулировок. Например, когда мы говорим о телепатии, то есть о передаче информации от одного человека к другому по квантовому каналу связи, то подразумеваем использование эзотерических практик восприятия на тонких уровнях реальности. На этих уровнях высока мера запутанности, и при этом внешние объекты едины с нашим энергетическим телом, связаны с ним нелокальными квантовыми корреляциями. Поэтому сознание имеет принципиальную возможность прямого доступа (по квантовому каналу связи) к внешним объектам как к части, к внешнему «продолжению» своего собственного энергетического тела. Однако для осознанного восприятия этих корреляций наше сознание должно обладать практическим навыком индивидуальной активности на тонких уровнях реальности.

А вот если рассматривать технические решения с квантовым каналом связи, то есть с передающим устройством, приемником и т. п., то тут и возникают различные проблемы и парадоксы. Квантовый канал связи, по сути, лишь объединяет источник и приемник информации в единое целое по отдельным степеням свободы. Опять-таки — о передаче информации между ними можно говорить лишь условно. А объединить две человеческие головы, которые должны обменяться информацией, в единое целое (как при эзотерической практике) технические квантовые каналы, которые сейчас обычно предлагаются, пока не в состоянии. Поэтому люди вынуждены дополнительно использовать классические каналы связи.

Предположим, что «наблюдатель 1» и «наблюдатель 2» разделены между собой пространством-временем на отдельные части, при этом оба они способны влиять на состояние единой квантовой системы (по квантовому каналу) и наблюдать результаты этого влияния. Почему же тогда квантовая система не может являться для обыденного сознания наблюдателей информационным мостом между ними? На этот вопрос я бы ответил так: необходимо, чтобы наблюдатели могли видеть и изменять результаты этого влияния в той части, которая их объединяет, а не разделяет. Обыденное сознание направлено на разделяющую часть, а она не имеет дела напрямую с квантовым каналом. Чтобы воспользоваться квантовым каналом связи, сознание наблюдателей должно непосредственно отслеживать процессы, происходящие со степенями свободы, которые реализуют квантовый канал. Одно из прямых решений, используемое в эзотерической практике, — смена состояния сознания и расширенное восприятие реальности, непосредственное «общение» на уровне квантовых ореолов. Думаю, что этого можно достигнуть при помощи технических средств.

Физики обычно осторожны в высказываниях о том, что может быть реализовано, а что нет. В данный момент ведутся эксперименты по плотной кодировке информации, в которых при помощи квантового канала связи удается передать два бита информации, используя одну частицу (в классическом случае она несет один бит). Пока что для реализации этих экспериментов необходим классический канал связи. Тем не менее я считаю: нельзя делать вывод о том, что наличие классического канала связи необходимо в любом случае.



Поделиться книгой:

На главную
Назад