Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Журнал «Вокруг Света» №03 за 2008 год - Вокруг Света на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Разумеется, многие на Западе признавали необходимость серьезного пересмотра миропорядка с учетом уроков войны и новой реальности. Однако благие пожелания слишком часто лишь прикрывали эгоизм и близорукое упование на силу. Сразу после Версаля ближайший советник президента Вильсона полковник Хаус отмечал: «По-моему, это не в духе новой эры, которую мы клялись создать». Впрочем, и сам Вильсон, один из главных «архитекторов» Лиги Наций и лауреат Нобелевской премии мира, оказался заложником прежней политической ментальности. Как и прочие убеленные сединами старцы — лидеры стран-победительниц, — он был склонен просто не замечать многого, что не вписывалось в привычную ему картину мира. В результате попытка уютно обустроить послевоенный мир, воздав каждому по заслугам и вновь утвердив гегемонию «цивилизованных стран» над «отсталыми и варварскими», полностью провалилась. Конечно, в лагере победителей находились и сторонники еще более жесткой линии в отношении побежденных. Их точка зрения не возобладала, и слава Богу. Можно с уверенностью утверждать: любые попытки установить в Германии оккупационный режим были бы чреваты для союзников большими политическими осложнениями. Они не только не предотвратили бы роста реваншизма, но, напротив, резко ускорили бы его. Кстати, одним из последствий такого подхода явилось временное сближение Германии и России, вычеркнутых союзниками из системы международных отношений. А в дальней перспективе торжество в обеих странах агрессивного изоляционизма, обострение в Европе в целом многочисленных социальных и национальных конфликтов и довели мир до новой, еще более страшной войны.

Колоссальны были, конечно, и иные последствия Первой мировой: демографические, экономические, культурные. Прямые потери наций, которые непосредственно участвовали в боевых действиях, составили, по разным оценкам, от 8 до 15,7 миллиона человек, косвенные (с учетом резкого падения рождаемости и роста смертности от голода и болезней) достигали 27 миллионов. Если приплюсовать к ним потери от Гражданской войны в России и вызванных ею голода и эпидемий, это число возрастет едва ли не вдвое. Довоенного уровня экономики Европа смогла вновь достичь лишь к 1926—1928 годам, да и то ненадолго: мировой кризис 1929-го капитально подкосил ее. Лишь для США война стала прибыльным предприятием. Что касается России (СССР), то экономическое развитие ее стало настолько аномальным, что адекватно судить о преодолении последствий войны здесь просто невозможно.

Ну, а миллионы «счастливо» вернувшихся с фронта так и не смогли полностью реабилитироваться морально и социально. «Потерянное поколение» еще долгие годы тщетно пыталось восстановить распавшуюся связь времен и обрести смысл жизни в новом мире. А отчаявшись в этом, отправило на новую бойню новое поколение — в 1939-м.

Игорь Христофоров

Солнце, воздух и вода

Фото автора

Бибендум. Так зовут резинового толстячка, будто состоящего из положенных друг на друга покрышек (впервые он появился в рекламе фирмы Michelin в 1898 году). С тех пор и почти до самого конца XX века эта компания мирно выпускала шины, пока в 1998-м, в свете общего интереса к экологии, не обратила внимание на принципиально новые решения, позволяющие если и не обойтись без нефти, то максимально уменьшить ее потребление. Международный форум, который так и назван — Bibendum Challenge, — теперь почти ежегодно проходит на разных континентах, собирая тысячи журналистов со всего мира, а просто любопытствующих и не сосчитать.

Bibendum Challenge-2007 состоялся в Шанхае — в стране, в значительной степени ответственной за беспрецедентный рост цен на нефть. Ведь к 2010 году по Китаю будут колесить 50 миллионов автомобилей, а к 2020-му их число, по прогнозам, достигнет 100 миллионов! И мало того, что в баке каждой машины плещется по 40—80 литров топлива, надо еще выплавить для них сталь, синтезировать пластик, сварить стекло и обеспечить энергией заводских роботов. Быть может, энергетическую нагрузку удастся уменьшить, если снизить долю авто, потребляющих нефть и газ, с сегодняшних 98%?

По выставке, конечно, нужно бродить пешком, останавливаясь возле интересных экспонатов, но на этом можно и нужно прокатиться. Смешная трехместная городская «карета» Venturi Eclectic и в самом деле эклектична: в ней есть и аккумуляторы под полом, и солнечные батареи на крыше, и при необходимости выдвигаемый ветряк на мачте. Эта «карета» может обойтись даже без электророзетки — лишь бы солнце светило да ветер дул «в паруса». Правда, для дальних поездок Eclectic не годится: полный заряд аккумуляторов дает ему запас лишь на 50 километров хода, а если говорить о солнце и ветре, то за день они вместе могут «насветить и надуть» лишь на 22 километра пробега. В общем, типичный городской автомобиль, больше ожидающий своего хозяина дома и возле офиса, чем катающий. Именно в категории Urban Vehicle он и состязался в ралли с другими автомобилями, принявшими вызов Бибендума. И победил в своей группе хотя бы потому, что был единственным экипажем с «вечным двигателем». Впрочем, Eclectic получил высший балл и в ходе отдельных тестов на эффективность, экологичность, шумность, маневренность (его длина-то всего 2 860 миллиметров) и даже — на динамику!

В это колесо XXI века встроены все главные автомобильные механизмы. Лишь рулевой привод (слева) пока не подключили — законы не позволяют. Фото автора 

Мотор в колесе

Достижения разработчиков фирмы-организатора форума хвалить обычно как-то не принято. Но в данном случае это констатация факта: более оригинальной концепции мне до сих пор ни видеть, ни испытывать не приходилось. Система Michelin Active Wheel предусматривает, что все необходимое для комфортной езды не разбросано по всему шасси, а сосредоточено… внутри колеса! В каждом из них непостижимым образом уместились тяговый электромотор, пружины подвески, дисковый тормоз, активный электроамортизатор и электрорулевой привод. Само же шасси стало просто тележкой с торчащими ступицами, ни мотора, ни валов, ничего — так обычно делают примитивные детские игрушки. Но три концепта Michelin (отличающиеся источниками энергии — литий-ионные батареи или топливные элементы на водороде) — что угодно, но только не примитив. Стоит хотя бы взглянуть на характеристики тягового моторчика (помещенного внутрь колеса, напомним) с водяным охлаждением: 30 кВт, 800 В, 20 000 об/мин, 8 килограммов. Впечатляют и общие характеристики концепт-кара: запас хода на водороде (Michelin Hy-Light-II) — 450 километров, на батареях (Michelin EV-Light) — 400. Максимальная скорость — 145 и 140 км/ч соответственно, разгон до сотни за 10 секунд.

На дороге эти машинки ведут себя совсем не так, как привычные автомобили. Активная электроподвеска полностью устраняет «клевки» кузова при разгоне и торможении, равно как и наклоны в самых крутых поворотах. Плюс бесплатный аттракцион от разработчиков: по их команде Michelin изменял дорожный просвет, приседал набок или на любое колесо, а мог и проходить повороты с крутым креном ВНУТРЬ (как мотоцикл, так машина гораздо устойчивее в движении). И что с того, если в салоне пока нет кожаной обивки!

Футуристический гибрид Citroen C-Metisse тоже имеет пару электромоторов по 20 л. с. — они крутят задние колеса. Фото автора 

Водород: с неба на землю

После катастрофы дирижабля «Гинденбург» водород долго не решались применить в каком-либо транспортном средстве. Дирижабли и по сию пору заправляют только дорогим инертным гелием, но ракеты на водороде все же летают, идут разговоры о водородных авиалайнерах, а в автомобилях его широкое применение пока сдерживают, кажется, лишь дороговизна топливных элементов и отсутствие сети заправок. Первую проблему, впрочем, легко обойти, если не превращать водород в ток, а просто сжигать в цилиндрах традиционного двигателя. Этим путем идет BMW, и, конечно, на форуме были представлены уже выпускаемые мелкими сериями «семерки», с криогенными баками-термосами, в которых плещется охлажденный до –253°С и сжиженный водород. Его хватает лишь на 200 километров экологически чистого пробега, но автомобиль может проехать еще 500 на бензине, для которого есть отдельный бак. Большой минус кроется в большой минусовой температуре, необходимой, чтобы хранить запас жидкого водорода. Стенки термоса все-таки пропускают немного тепла с улицы, и потому запас топлива потихоньку улетучивается (через специальный предохранительный клапан). Если ездить каждый день, это не страшно, а вот после двухнедельной стоянки можно обнаружить изрядно опустевший баллон. Да и создать АЗС для такого топлива очень непросто, с чем столкнулась фирма Linde, которая построила по всему миру около 60 заправок и привезла еще одну (а иначе как бы ездили эти «семерки»?) в Шанхай.

Гораздо интереснее водородомобили с топливными элементами и сжатым до 350 или 700 атмосфер газом. Во-первых, здесь нет никаких цилиндров, коленчатых валов и прочей механики, во-вторых, такие заправки можно организовать прямо на дому. Кстати, параллельно с Шанхайским форумом Honda объявила о начале продаж своих водородомобилей Clarity в США вкупе с домашними/офисными АЗС, которые, питаясь природным газом из бытовой сети, способны вырабатывать до трех кубометров водорода в час. Кстати, в случае перебоев с бытовым электричеством такая установка, используя водородный бак и встроенные топливные элементы, сможет обеспечить дом и электричеством, и теплом. На вызов Бибендума откликнулось множество фирм, представивших ходовые образцы своих водородных авто. И среди них не только такие гранды, как General Motors, Daimler, Ford, Nissan, но уже и корейская Hyundai, и китайские Chery, SAIC. Вот как раз за руль Chery START-Eastar я и устремился в первую очередь. Что ж, по характеристикам автомобиль, созданный в сотрудничестве с учеными Шанхайского университета, получился весьма «на уровне». Его 55-киловаттный топливный элемент плюс литийионная батарея, запасающая энергию при торможении, обеспечили машине неплохую динамику при полном отсутствии вредного выхлопа и почти полной бесшумности. Но что-то в системе управления тяговым двигателем пока недоработано: при разгоне случаются странные рывки, присущие обычно автоматическим коробкам передач, хотя никакой коробки передач в этом автомобиле нет. Что ж, все закономерно — китайцам еще предстоит догонять западный автопром и в этом направлении.

И водород уже не кажется гостем из будущего, особенно, если посмотреть на мотороллер Hydrofight, созданный фирмой Peugeot в кооперации с Эсслингенским техническим университетом. Да, этот скутер ездит на водороде, запасенном в двухлитровом баллонекартридже, который даже не нужно заправлять — просто обменять на полный, подобно баллончику от пневматического пистолета. Причем вместе с литий-ионной батареей, способной отдать еще 5 кВт, вес скутера получился не больше, чем был у него до переделки.

Берлинский Clever очень похож на амстердамский Carver — по форме, но не по содержанию: все агрегаты свои. Фото автора 

Если есть в розетке ток

Разумеется, не было недостатка и во вполне готовых к серийному производству электромобилях, заряжаемых от розетки. Причем не только на форуме, но и в шанхайских супермаркетах, а значит, и на улицах. Пока в продаже, правда, лишь двухколесные электровелосипеды, зато стоят они от 1 500 юаней (около 5 000 рублей) и могут проехать без кручения педалей до 70 километров! У полноценных электромобилей пробег, понятное дело, больше — на сегодня средний показатель достигает 200. А есть и оригинальные гибриды, вроде Ford Edge W/Hy Series Drive. Приглядевшись, на его боках можно увидеть два лючка: под одним — розетка, под другим — штуцер для заправки сжатым водородом. На батарейках он может пройти первые 40 километров, а потом еще 320 на топливных элементах.

Просто газ

Автомобили, работающие на сжиженном или сжатом газе, давно не редкость. Газ и дешевле, и экологичнее бензина. В Шанхае обратили на себя внимание мотороллеры, бегающие на пропан-бутане по городским улицам (неужто большая экономия?), и концептуальный городской авто… нет, мото… Судите, впрочем, сами, что это. Clever = Compact Low Emission VEhicle for uRban transport, созданный Берлинским университетом, BMW и еще целым рядом партнеров на деньги Еврокомиссии, работает на сжатом природном газе, и главное в нем не скорость, а экономичность, чистота выхлопа и маневренность. Одноцилиндровый моторчик разгоняет его до 60 км/ч за 7 секунд (а вообще на спидометре — 100 км/ч), при том, что выбросы СО2 всего 60 г/км. Сидеть внутри неудобно, особенно сзади, зато впечатления от валящегося набок горизонта в поворотах незабываемые. Говорят, стоить это трехколесное чудо будет около 10 000 евро. Описаний поразительных новинок, увиденных и испытанных на Bibendum Challenge 2007, хватило бы, пожалуй, на целый журнал. Пройдет всего год-другой, и эти новинки превратятся из концептов в серийные авто-вело-мото и многие читатели смогут сами их опробовать. Ждать, судя по всему, придется недолго.

Алексей Воробьев-Обухов

Почему мы доверяем науке?

К этому мы привыкаем с детства, со школы. Даже когда мы чего-то не понимаем, достаточно услышать фразу «ученые доказали» или «с научной достоверностью», и сомнения уходят. Доверие — ценный ресурс, которым многие хотели бы воспользоваться. Разнообразные сомнительные учения надевают маску наукоподобия, стремясь убедить публику в своей правоте. В результате само понятие науки размывается и где-то в глубине сознания зреет вопрос: а почему, собственно, мы ей доверяем? И тут появляются непризнанные «гении», которые с жаром осуждают «косную официальную науку», неспособную воспринять их идеи. Даже самим ученым порой становится трудно разобраться, «где правда, где обман». Встает ключевой вопрос: а почему наука вообще имеет столь привилегированное положение в нашем обществе? Почему в школе тратят время на нее, а не на мифы или эзотерические учения? Да и можно ли вообще отличить настоящую науку от поддельной? Фото вверху LEEMAGE/FOTOLINK

Вопросы доверия относятся к числу самых деликатных и в то же время самых важных в нашей жизни. Доверяете ли вы тормозам своей машины? А правительству своей страны? А своему работодателю, банку, врачу, жене, ребенку, собственным глазам, наконец? Источником доверия обычно служит прошлый опыт. Так, ежедневные восходы и заходы солнца убеждают нас в том, что чередование дня и ночи продолжится и в будущем. Если вам 30 лет, то самолично убедиться в надежности дневного светила вы могли всего около 10 тысяч раз. Это очень мало: если за последний год у вашей машины не отказывали тормоза, считайте, что они проверены в несколько раз лучше.

В повседневной жизни мы ежесекундно полагаемся на огромное множество других привычных явлений: горючесть газа в кухонной плите, растворимость сахара в чае, падение на землю брошенного камня, твердость кирпичей дома, прозрачность воздуха — список можно продолжать бесконечно, и все его пункты проверены нами примерно в той же степени, как смена дня и ночи. Если бы каждый из них «сбоил» всего раз в тысячу лет, мы ежедневно наблюдали бы чудеса, причем, как правило, неприятные. Удивительная надежность мирового порядка в целом заставляет нас искать в ней проявление относительно небольшого числа высоконадежных принципов. Именно эта идея лежит в основе науки. И поэтому многие бывают шокированы, узнав, что научные теории никогда не доказываются, никогда не опровергаются и вполне могут находиться в противоречии друг с другом и с экспериментом.

«Как же можно доверять такой науке?!» — вправе воскликнуть читатель. На этот вопрос можно дать краткий ответ: «Потому что наука приносит очевидные и полезные плоды и доверие, следовательно, эффективна», а можно — развернутый, раскрывающий внутренние механизмы научного метода, чем мы отчасти и займемся ниже. Хотя наука развивается уже две с лишним тысячи лет, ученые все еще продолжают избавляться от иллюзий относительно того, что представляет собой научное знание. Причем те, кто специально не интересуется философией науки, часто и в наши дни пребывают во власти заблуждений, вскрытых еще в начале прошлого века. Чтобы разобраться в этом, начнем, как говорится, от печки.

Человек-Зодиак — иллюстрирует астрологические представления о связи созвездий с органами тела. Гравюра из книги «Философская жемчужина», знаменитого компендиума средневековых знаний, составленного монахом-картезианцем Грегором Рейшем на рубеже XV и XVI веков .  Фото ALAMY/PHOTAS

Астрология

В древности не отделялась от астрономии и заключала в себе исследовательскую программу, предполагавшую наличие причинной связи между небесными и земными явлениями. Основанием для нее была очевидная связь ритмов жизни с годичным и суточным циклами. Стимулировала наблюдения, которые легли в основу сферической астрономии. К XVII—XVIII векам стало ясно, что предположение о причинной связи земных событий с движением планет не подтверждается опытом и несовместимо с новой ньютоновской исследовательской программой. Астрология перестала быть наукой и продолжает существовать, скорее, как психотерапевтическая практика.

Наивная философия познания

Естественные науки описывают окружающий мир и наблюдаемые в нем явления, стремясь объяснить уже случившиеся события и предсказать будущие. Объяснение вносит порядок в наши представления о мире, позволяя заменить множество разрозненных фактов небольшим числом общих правил, которые намного проще запомнить. А главное: чем больше фактов описывает правило, тем выше к нему доверие и тем более оно пригодно для предсказания будущего. Наиболее общие правила удостаиваются особого почетного статуса «законов природы».

В глубокой древности никто не искал их целенаправленно, но некоторые обобщенные правила закреплялись в культуре практикой. Например, знаменитый египетский треугольник со сторонами длиной 3, 4 и 5 единиц, который, независимо от размера и материала, обязательно будет иметь прямой угол. Или не менее известное правило, связывающее разливы Нила с появлением на небе Сириуса. Подобные правила передавались из поколения в поколение без объяснений и обобщений.

Впервые о поиске общих правил и их природе всерьез задумались в Древней Греции. Именно тогда была систематически разработана логика и сложилось представление о математическом доказательстве. Вершиной греческой науки стала аксиоматическая геометрия Евклида, которая и по сей день преподается в школе. Но доказательства, так замечательно работавшие для мысленных математических объектов, были далеко не столь надежны в повседневной жизни. Греческие философы хорошо понимали, что математическая окружность — это совсем не то же самое, что окружность, нарисованная на песке. Поэтому Платон разделил мир на идеальный и реальный. В первом содержатся безупречные общие правила и свойства, доступные нашему мысленному взору, второй же состоит из их грубых воплощений, которые лишь приблизительно следуют идеальным образцам. Познать общие правила можно только умозрительно, пытаясь подсмотреть их в идеальном мире. Попытки вывести их из опыта в несовершенном реальном мире противоречили самому духу античной философии (хотя допускалось, что остроумное наблюдение может навести на правильную мысль и помочь умозрительному познанию).

Не жаловало подлунный мир и пришедшее на смену античности христианство. Но, хотя источник законов в нем был иной, способ их познания по-прежнему не предполагал обращения к реальному миру. Не имея своей физики и космологии (за исключением весьма общих формулировок Книги Бытия), христианство заимствовало умозрительную античную науку и держалось за нее вплоть до начала революционных перемен эпохи Возрождения. Достоин удивления тот факт, что, например, геоцентрическая система Птолемея, не имея никаких подтверждений в Священном Писании, тем не менее воспринималась как неотъемлемая часть христианской картины мира. Так что даже Коперник рассматривал свою гелиоцентрическую систему мира не как теорию, отражающую реальный порядок вещей, а лишь как более простой и удобный способ астрономических расчетов.

Система Птолемея в виде небесной сферы, поддерживаемой титаном Атлантом. Понятие «небесная сфера» сохранилось и в современной астрономии, но теперь ее считают условной воображаемой поверхностью. Фото SPL/EAST NEWS 

Геоцентрическая система Птолемея

Описывала видимые движения планет кинематически, не пытаясь искать причины этого движения. Обнаруживаемые расхождения между расчетами и наблюдениями заставляли вводить новые поправки, усложняя систему. Гелиоцентрическая система Коперника упростила расчеты, но строилась на прежнем предположении о круговых движениях планет, и ее точность тоже была низкой. Кеплер, допустив некруговые (эллиптические) орбиты, значительно повысил точность. Позднее законы Кеплера были выведены из законов Ньютона, которые легли в основу небесной механики. В современных точных расчетах учитываются также поправки, связанные с теорией относительности.

Наука нового времени

Однако подхвативший идеи Коперника Галилей не был столь осторожным и стал проверять, а как же устроен мир на самом деле. Его обращение к эксперименту следует, по большому счету, признать моментом рождения науки, во всяком случае, в современном смысле этого слова. Фактически Галилей предложил новую методологию научного исследования: вместо умозрительного познания идеальных законов он поставил перед наукой амбициозную задачу — постичь замысел Творца, изучая созданный им реальный мир. В определенном смысле такая наука была куда более христианской, чем прежняя средневековая схоластика (представляющая собой синтез христианского богословия и аристотелевой логики), постоянно ссылающаяся на авторитет Аристотеля. В самом деле, раз мир создан Творцом, то его следует изучать столь же досконально, как Писание, стремясь найти в нем безупречную божественную гармонию.

Этот подход оказался поразительно эффективным. Выяснилось, что новые законы и закономерности едва ли не сами валятся вам на голову. Причем многим из них быстро нашлись удивительно полезные применения (маятниковые часы, хронометр с пружинным балансиром, паровые машины, термометры и т. п.). Наука стала двигателем технического прогресса, впечатляющие достижения которого, выраженные в конечном счете деньгами, оружием и отчасти комфортом (то есть всем тем, что в первую очередь интересует финансирующих науку), резко укрепили доверие к новой методологии познания. Суть ее сводилась к построению естественных наук по образцу математики: от «самоочевидных» аксиом к строго доказанным теоремам. Не случайно основополагающий труд Ньютона назывался «Математические начала натуральной философии».

Расхождения теории и практики, которые для греков были имманентной проблемой, теперь стали источником задач, многие из которых удавалось успешно решить. Оказалось, что огромное количество явлений можно объяснить, исходя из небольшого числа простых и красивых законов-аксиом, которые, как считалось, открываются умозрительно, благодаря интуиции исследователя, но подтверждаются и доказываются путем опытной проверки вытекающих из них следствий. Научные теории воспринимались как свойство самого реального мира, нужно было просто их распознать, «прочитать книгу Природы», и подтвердить несколькими примерами правильность прочтения. Этот подход позднее получил название джастификационизма (от англ. justify — «оправдывать», «обосновывать»). Джастификационистский фундамент, заложенный в XVII веке трудами Галилея и Ньютона, оказался настолько крепким, что на протяжении двух столетий определял развитие науки. Но тем серьезнее оказался кризис, когда стали появляться экспериментальные данные, несовместимые с ньютоновской физикой.

«Алхимик», раскрашенная гравюра Жака Луи Перье, выполненная с картины фламандского живописца XVII века Давида Тенирса-младшего.  фото LEEMAGE/EAST NEWS

Алхимия

Раньше других наук пошла по экспериментальному пути, наработав методом проб и ошибок много полезных рецептов. Свойства веществ объяснялись сочетанием в них первичных элементов-стихий, но предсказательный потенциал алхимии был очень низок, что отчасти маскировалось эзотерическим духом учения. Главное предсказание о существовании «философского камня», способного превращать металлы в золото и продлевать жизнь человека, завело алхимическую исследовательскую программу в тупик. С XVII—XVIII веков начинает развиваться химия, которая дает более последовательное объяснение свойств веществ и постепенно приходит к современной атомно-молекулярной теории.

Теорию нельзя доказать

А таких примеров к концу XIX века накопилось немало. Никак не удавалось объяснить небольшое несоответствие в движении Меркурия , открытое Леверье в 1859 году. Орбита планеты систематически «уходила» от расчетной. Отклонение было крошечным, всего 43 угловые секунды в столетие, но ведь доказательная теория, основанная на божественных законах, не может быть неточной. Другую проблему подбросила новорожденная электродинамика. Согласно уравнениям Максвелла (1864), электромагнитное взаимодействие всегда распространяется одинаково быстро — со скоростью света. Но это прямо противоречит принципу сложения скоростей в механике Ньютона: как может луч света иметь одинаковую скорость, скажем, относительно движущегося поезда и неподвижного перрона? Кроме того, не удавалось в рамках классической механики объяснить устойчивость атомов и закономерности теплового излучения.

Справиться со всеми этими проблемами позволили теория относительности и квантовая механика, которые показали, что теория Ньютона не является абсолютно точной. Даже хуже того, сами базовые принципы новых теорий оказались совершенно иными. Для концепции джастификационизма это был приговор. Ни о каких доказательствах естественно-научных теорий больше не могло быть и речи. «Открытие греками критического метода вначале породило ошибочную надежду на то, что с его помощью можно будет найти решения всех великих старых проблем, обосновать достоверность знания, доказать и оправдать наши теории. Однако эта надежда была порождена догматическим способом мышления, ибо на самом деле ничего нельзя оправдать или доказать (за пределами математики и логики)» — так резюмировал крах джастификационизма философ науки Карл Поппер в книге «Предположения и опровержения», изданной в 1963 году.

Осенью 2006 года в России стартовал первый в истории нашей страны «обезьяний процесс»: петербургская школьница Мария Шрайбер и ее отец Кирилл Шрайбер пытались в суде оспорить правомерность преподавания в школе теории эволюции. Среди аргументов, которыми истцы обосновывали свои претензии, было утверждение о том, что дарвиновская теория естественного отбора «не доказана» и является «не более чем гипотезой». Отклонив в итоге иск, суд никак не прокомментировал данное заявление, и эти слова как бы повисли в воздухе. Теперь их при каждом удобном случае повторяют противники теории эволюции. Между тем уже более сорока лет известно, что научные теории в принципе не могут быть доказаны, поскольку они содержат универсальные утверждения, а число экспериментов всегда конечно. Различие же между гипотезой и теорией состоит лишь в том, как их воспринимает научное сообщество. Широко признаваемую систему идей называют теорией, а частное предположение, нуждающееся в подтверждении (частным экспериментом или серией), — гипотезой. И в этом смысле эволюция безусловно теория.

Требование «предъявить доказательства» часто приходится слышать и в отношении других научных концепций: теории относительности, квантовой механики, термодинамики, космологии Большого взрыва. «Наука никогда ничего не доказывает», — этими словами начинает свою книгу «Разум и природа» знаменитый американский антрополог и философ Грегори Бейтсон (Gregory Bateson) . Причем данное утверждение помещено в главе с ироничным названием «Каждый школьник знает», намекающим, видимо, на уровень компетентности тех, кто с этим тезисом незнаком. (Тут, конечно, надо оговориться, что речь идет о естественных науках, изучающих реальный мир. Чистая математика — единственная область исследований, где возможны строгие доказательства, — к числу естественных наук не относится.)

В книге «Принципы современной психической самозащиты» Владимир Данченко выделяет три типа патогенных систем верований: народную (с представлениями о «дурном глазе» и «наведении порчи»), оккультную («астральные шнуры», «инвольтация») и биопольную («пучки энергии», «заряды отрицательной информации» и т. п.). Последней внешнее наукоподобие помогает находить приверженцев среди людей, доверяющих науке. Фото REX/RUSSIAN LOOK 

Витализм

Объяснение разницы между живым и неживым присутствием особой жизненной субстанции. Выделить и изучить эту субстанцию не удалось, а развитие биологии показало, что вопросы функционирования живой материи находят объяснение в рамках физики и химии. На данный момент витализм слился с эзотерическими восточными учениями и выражается в представлениях об ауре и биополе, существования которых наука не признает, поскольку объективными методами подобные явления не регистрируются.

Обратный ход маятника

Масштаб философских потерь после краха джастификационизма был таким, что ученые долгое время просто не хотели об этом говорить. Теории перестали быть частью реальности, частью божественного плана, открыть который стремилась наука нового времени. Стало ясно, что теории придумываются людьми, а не отыскиваются в природе, и нужно было заново находить основания для доверия к подобным изобретениям ума. Особую остроту этому вопросу придавали быстрые темпы появления новых научных дисциплин и, соответственно, новых теорий: от квантовой механики до психоанализа, от генетики до внегалактической астрономии. На этом фоне стал популярен позитивизм — концепция, предложенная в 1844 году французским философом Огюстом Контом, согласно которой только опыт является фундаментом научного знания, а теории лишь упорядочивают эмпирические факты.

Позитивизм окончательно отверг платоновский идеальный мир, а вместе с ним был снят с повестки дня вопрос о «сущности» или «природе» различных свойств и явлений. Для позитивиста есть только факты и различные способы их взаимоувязки. «Согласно этому образу мысли научная теория — это математическая модель, которая описывает и систематизирует производимые нами наблюдения. Хорошая теория описывает широкий круг явлений на базе нескольких простых постулатов и дает ясные предсказания, которые можно проверить», — пишет знаменитый астрофизик Стивен Хокинг в недавно изданной на русском языке книге «Мир в ореховой скорлупке». Этот подход сыграл огромную роль в очищении науки от надуманных метафизических принципов, доставшихся ей в наследство от прежних веков.

Тем не менее до сих пор многие люди не могут смириться с тем, что наука не отвечает на вопросы «Что такое пространство?», «В чем природа времени?», «Какова сущность гравитации?» Позитивист считает, что эти вопросы ненаучны и должны быть переформулированы, например, так: «Как измерить расстояние?», «Существуют ли обратимые процессы?», «Каким уравнением описывается тяготение?»

Естественным развитием идей позитивизма стало представление о том, что все научные теории заведомо ошибочны, поскольку не могут учитывать всего разнообразия реального мира. Они рождаются лишь для того, чтобы умереть под ударами все более тонких и точных экспериментов. И тогда им на смену приходят новые, более совершенные, но по-прежнему временные теории. Этот взгляд, детально разработанный Чарлзом Пирсом, получил название фаллибилизма (от англ. fallible — «подверженный ошибкам»). Может показаться, что эта точка зрения, будучи зеркально противоположной джастификационизму, роняет ценность науки едва ли не до нуля. Как доверять теории, если мы заранее убеждены, что она ошибочна? Но на самом деле фаллибилизм просто описывает процесс постоянного совершенствования науки. Да, научное знание не может быть абсолютно достоверным. Но с каждым новым шагом степень его надежности увеличивается, и если мы получали пользу, доверяя старой теории, то тем более можем доверять новой, в которой исправлены обнаруженные ошибки. Так, последовательно избавляясь от ошибок, наука приближается к истине (что бы это ни было), хотя никогда не сможет ее достичь.

Шея у жирафа, по Ламарку, вытянулась от постоянных попыток дотянуться до высокорастущих ветвей. Результаты таких тренировок, по теории ученого, передавались по наследству. Фото NORTH FOTO/RUSSIAN LOOK 

Ламаркизм

Эволюционная теория Ламарка предполагала внутренне присущее всему живому стремление к совершенствованию и наследование приобретенных при этом признаков. Исследовательская программа Дарвина заменила метафизическое «стремление к совершенству» механизмами естественного и полового отбора, что обеспечило ей преимущество в объяснительной и предсказательной силе. В сочетании с генетикой дарвинизм дал начало современной синтетической теории эволюции. А наследование приобретенных признаков было скомпрометировано псевдонаучной деятельностью Лысенко. Сегодня идеи Ламарка находят ограниченное применение при моделировании эволюции в системах искусственного интеллекта и в некоторых исследованиях по иммунологии.

Почему бог не является гипотезой

Карл Поппер, развивая подходы позитивизма и фаллибилизма, пришел к еще более радикальному выводу: если теория не может быть опровергнута, ее вообще нельзя считать научной, даже если в остальном она согласуется с нашими знаниями. В самом деле, ведь такая теория не дает никаких проверяемых предсказаний, а значит, ее научная ценность равна нулю. Этот свой критерий научности он назвал принципом фальсифицируемости и поставил в один ряд с требованиями внутренней непротиворечивости и соответствия теории известным экспериментальным данным. Именно критерий Поппера говорит о ненаучности креационизма — учения о божественном сотворения Земли, жизни и человека. Ведь эксперимент, который мог бы противоречить идее сотворения мира, принципиально невозможен. И, кстати, по той же причине не является научной и гипотеза о существовании где-то в космосе братьев по разуму — чтобы ее опровергнуть, пришлось бы обследовать весь бесконечный объем Вселенной. Более интересно, что, как отмечает Поппер, «существует громадное количество других теорий этого донаучного или псевдонаучного характера: например, расистская интерпретация истории — еще одна из тех впечатляющих и всеобъясняющих теорий, которые действуют на слабые умы подобно откровению».

Принцип фальсифицируемости снимает также противоречие между наукой и религиозной верой. Вера — если, конечно, она подлинная — не может быть опровергнута опытом. А научные теории не должны оглядываться на веру, поскольку единственная их задача — упорядочивать этот самый опыт. Конфликт между наукой и религией может возникнуть только по недоразумению, если религиозные деятели станут диктовать, каким должен быть опыт, или ученые попытаются делать утверждения о сверхъестественных сущностях на основании своих теорий физического мира. Обе эти ситуации говорят о философской некомпетентности сторон. Вера не может зависеть от опыта, поскольку нельзя веровать в проверяемые гипотезы. А наука ничего не может сказать о Боге, поскольку принцип фальсифицируемости не допускает его рассмотрения с научной точки зрения — Бог не может превращаться в естественно-научную гипотезу. Все это стало понятно философам еще в первой половине XX века, но до общественного сознания доходит очень медленно. До сих пор многие священники с религиозных позиций выступают против чисто научной теории эволюции, а ученые с жаром убеждают, что наука познает истину и доказывает, что Бога нет. Правда, иногда может показаться, будто религиозные доктрины и научные данные явно не согласуются (например, в вопросе о сотворении мира). В таких случаях всегда надо помнить, что речь идет о продуктах совершенно разных методологий познания, которые вообще не могут друг другу противоречить.

Не стоит, однако, думать, что принцип фальсификации избавил философию науки от всех проблем. Позитивизм, будучи прямой противоположностью умозрительного познания, тоже столкнулся с серьезными трудностями. Подвело само понятие научного факта. Оказалось, что эксперименты, наблюдения и измерения не могут существовать сами по себе. Они всегда основываются на какой-то теории; как принято говорить, «нагружены теорией». При обычном взвешивании колбасы в магазине мы полагаемся на закон сохранения массы, пропорциональность веса количеству вещества и закон рычага. И даже когда мы непосредственно наблюдаем какое-то явление, мы исходим из того, что состояние атмосферы, оптика нашего глаза и процессы обработки изображения в мозгу нас не обманывают (хотя многочисленные сообщения об НЛО заставляют в этом сомневаться). Ну а при использовании сложных приборов требуется порой многолетняя работа, чтобы учесть все вовлеченные в акт измерения теории. Выходит, однозначно отделить факты от теорий невозможно, и в любом опыте сопоставление идет не с фактами, как таковыми, а с их интерпретациями на базе других теорий, задача же ученого — сделать так, чтобы теории, «играющие» на стороне фактов, по возможности не вызывали сомнений.

Искривление пространства-времени — это лишь наглядный образ, отражающий тот факт, что измеряемые расстояния и интервалы времени зависят от количества и движения вещества. Фото SPL/EAST NEWS 

Теория эфира

Выдвинута для объяснения электромагнитных волн в рамках ньютоновской механики. Свет считался колебаниями эфира — гипотетической среды с очень странными свойствами: твердый, но практически невесомый, всепроникающий, но при этом увлекаемый за собой движущимися телами. Механическая модель эфира получалась крайне неестественной. Специальная теория относительности избавилась от эфира, внеся изменения в ньютоновскую модель пространства и времени. Она резко упростила описание электромагнитных явлений и дала целую серию новых предсказаний, самое известное из которых — лежащая в основе ядерной энергетики эквивалентность массы и энергии E = mc2.

И опровергнуть теорию тоже нельзя

Проанализировав эту проблему и изучив реальное поведение ученых, философ науки Имре Лакатос пришел к выводу, что экспериментально теорию нельзя не только доказать, но и опровергнуть. Если хорошо зарекомендовавшая себя теория споткнулась на новом эксперименте, ученые вовсе не спешат от нее отказываться, ведь доверие к ней опирается на огромный массив прежних подкрепляющих данных. Так что единичный негативный эксперимент и его интерпретацию, скорее всего, поставят под сомнение и будут неоднократно перепроверять. Но даже если противоречие подтвердится, можно дополнить теорию новой гипотезой, которая объясняет обнаруженную аномалию. Таким способом теорию можно защищать неограниченно долго, поскольку число экспериментов всегда конечно. Постепенно может вырасти целый пояс защитных гипотез, которые окружают так называемое твердое ядро теории и обеспечивают ее работоспособность, несмотря на все трудности.

Отказ от теории происходит не раньше, чем появится достаточно хорошая альтернативная теория. От нее, конечно, ждут объяснения большинства известных фактов без обращения к искусственным защитным гипотезам, но самое главное — она должна указывать новые направления исследований, то есть позволять строить принципиально новые проверяемые экспериментом гипотезы. Такие теории Лакатос называет исследовательскими программами и видит в их конкуренции процесс развития науки. Старые исчерпавшие свой ресурс исследовательские программы теряют приверженцев, новые — обретают.

«Я математически доказал, что теория относительности ошибочна», — подобные письма регулярно приходят в редакцию «Вокруг света». Их авторы искренне заблуждаются, считая, что научные теории можно доказать или опровергнуть. Им в утешение можно только сказать, что до начала XX века большинство ученых пребывали в таком же заблуждении. «Но почему, почему вы так убеждены, что общепринятая теория верна?!» — возмущаются отказом горе-новаторы. Многие из них даже считают, что в «официальной науке» сложился заговор консерваторов, которые не дают хода смелым идеям, чтобы сохранить свое «теплое местечко». Переубедить в этом, увы, невозможно, даже указав на явные ошибки в математических выкладках.

При сжатии газопылевого облака под действием самогравитации выделяется энергия, которая идет на разогрев вещества будущей звезды.  Фото SPL/EAST NEWS

Кельвиновское сжатие

Объясняло энергетику Солнца его гравитационным сжатием. Предложено в конце XIX века лордом Кельвином, когда стало ясно, что химическое горение не обеспечивает достаточной мощности и длительности излучения. Кельвиновский механизм «давал» Солнцу 30 миллионов лет жизни. Сторонники Кельвина не верили в геологические данные о куда большем возрасте Земли, считая это проблемой геологии. В 1930-х годах теория термоядерного синтеза предложила новый источник энергии звезд, а радиоизотопный метод в 1940-х определил возраст Земли в более чем 3 миллиарда лет. Теория Кельвина ныне объясняет первичный разогрев протозвезд до начала в них ядерного горения водорода.

Продам парадигму, недорого

В обоснование своих идей новаторы обычно говорят о «кризисе науки», «смене парадигмы» и грядущей «научной революции». Вся эта терминология заимствована из знаменитой книги Томаса Куна «Структура научных революций». «Под парадигмами я подразумеваю признанные всеми научные достижения, которые в течение определенного времени дают научному сообществу модель постановки проблем и их решений», — пишет Кун в предисловии к своей книге. Все это очень похоже на борьбу исследовательских программ Лакатоса, и различия между двумя концепциями так бы и остались темой для узкопрофессиональных дискуссий, если бы теория Куна не была воспринята, особенно в России , как руководство к действию.

Кун под впечатлением кризиса физики начала XX века пришел к выводу о чередовании спокойных периодов «нормальной науки», когда среди ученых есть консенсус относительно научной парадигмы, и «научных революций», когда накопившиеся нерешенные проблемы (аномалии) сметают старую парадигму и открывают дорогу новой. Но вот откуда эта новая парадигма появляется, Кун не объяснил, а большинство читателей поняло так, что ее источник — творческий импульс отдельного гениального ученого. Это стало огромным соблазном для многих ученых и даже инженеров, лишь косвенно связанных с фундаментальной наукой. Шутка ли — всего лишь придумай удачную парадигму и сможешь стать новым Коперником, Ньютоном или Эйнштейном .

В итоге образовался целый рынок «новых парадигм». Некоторые авторы берут относительно солидную основу: ноосферу Вернадского, синергетику Пригожина, фракталы Мандельброта, общую теорию систем Людвига фон Берталанфио. Но пока все попытки выстроить на базе таких общих концепций ясную исследовательскую программу остаются не слишком успешными, поскольку они практически лишены предсказательной силы — из них не следуют проверяемые гипотезы. Другие стремятся «обобщить» науку, включив в нее религиозно-мистические представления. Но ведь именно избавившись от этих иррациональных идей, наука достигла современной надежности и эффективности. На сегодня объединение науки с мистикой — это все равно, что попытка взять телегу на борт самолета в надежде на увеличение совместного КПД. Наконец, есть немало «скромных опровергателей», которые не претендуют на создание новой парадигмы, а лишь пытаются разрушить старую, скажем, теорию относительности, квантовую механику или теорию эволюции. Они просто не в курсе, что исследовательскую программу нельзя опровергнуть, а можно только победить в конкурентной борьбе, добившись большей эффективности и предсказательной силы.

Но самое главное, что обрекает все эти попытки на неудачу, — это непонимание того, что концепция научных революций и смены парадигм годится только для ретроспективного анализа развития науки. Так красиво и стройно процесс становления новых научных взглядов выглядит лишь с расстояния в десятки и сотни лет, сквозь призму написанных победителями учебников. А вблизи даже самые выдающиеся ученые часто не могут распознать, какая из соперничающих исследовательских программ в итоге окажется наиболее эффективной.

Бум доморощенных псевдотеорий (часть из них предлагается совершенно бескорыстно, другая — с целью приобрести научный статус и воспользоваться его преимуществами) создает сегодня реальную угрозу для существования науки в России. С одной стороны, такие теории отвлекают на себя общественные ресурсы (деньги и внимание), предназначенные для науки, с другой — снижают доверие к науке в целом, поскольку шума много, полезного же выхода нет, а иногда (как при рекламе чудодейственных медицинских средств) людям может наноситься и реальный ущерб.

И вот, после всего, что мы узнали о внутренней кухне науки, мы вновь возвращаемся к вопросу: заслуживает ли она того особого доверия, которое ей выказывает общество? Наш мир, как мы сегодня знаем, устроен довольно сложно, а человечество изучает его уже давно. Поэтому узнать нечто новое и стоящее может только тот, кто целенаправленно к этому стремится, опираясь на огромный массив уже накопленного знания. Можно сказать, что свою коллективную познавательную активность человечество вынуждено препоручить касте профессиональных ученых, которые постоянно совершенствуют свою методологию. В последние столетия полученные этим способом знания позволили радикально изменить жизнь к лучшему (например, средний срок жизни почти удвоился). Это, по-видимому, достаточное основание доверять науке как социальному институту, реализующему эффективный метод. Но очень важно понимать, где лежат границы науки: не стоит ждать от нее того, чего она дать не может (окончательной истины, например), и уметь разоблачать (хотя бы для себя) тех, кто в силу личных интересов лишь прикрывается добрым именем науки, занимаясь на самом деле чем-то совершенно другим.

Научная контрреволюция ХХ века

Если вы задаетесь вопросом, почему наука, на протяжении стольких лет пользовавшаяся высшим доверием даже далеких от нее людей, вдруг в относительно короткие сроки этого доверия лишилась, вполне естественно обратиться к философии и истории. Ответы, даваемые философами, представляются вполне весомыми, чтобы такой поворот общественного мнения объяснить. Научные теории, говорят они, не могут претендовать на истинность; более того: само понятие истины является «трансцендентальным монстром», от которого следует избавлять всякое теоретическое рассуждение. Доподлинно известны лишь экспериментальные факты, а ценность теории — исключительно в том, чтобы экономно объяснить наибольшее количество фактов. Теории при этом сравниваются с футбольными командами, которые должны состязаться друг с другом в честном поединке, объясняя одни и те же факты, а проигрыш в матче отнюдь не подразумевает непригодности теории — ей надлежит совершенствовать свою технику и улучшать свой объяснительный потенциал. Мало кому из ученых, однако, нравились советы философов, и в большинстве своем они старались уклониться от бурных философских дискуссий середины ХХ века о том, что такое наука и какие критерии определяют статус научной теории. Но эти дискуссии и сами со временем утихли, и место Куна с Лакатосом заняли представители нового поколения социологов, которые обратили внимание на то, что и в стенах лаборатории «экспериментальный факт», скорее, «конструируется», чем обнаруживается. Одни и те же слова в разных исследовательских коллективах могут означать совершенно различные вещи, более того: одни и те же слова в рамках одной и той же лаборатории могут означать что-то одно, когда применяются в отношении самой этой лаборатории, и нечто иное, как только речь заходит о конкурентах. Правильное отношение к научным коллективам такое же, как к туземным племенам на тихоокеанских островах: аборигены могут делать что-то полезное, но понять, о чем они лопочут, практически невозможно. Общение с ними должно ограничиваться «зоной обмена», куда мы со своей стороны приносим рулоны ситца и всякие нехитрые безделушки и смотрим, что нам предложат взамен. Даже интеллигентному человеку, воспитанному на идеалах «свободного рынка», уже непонятно, о чем толковали в середине ХХ века философы науки, но по большому счету он с ними согласен: наука мало чем может ему помочь в смысле мировоззрения, зато разнообразные ее приложения приносят плоды чрезвычайно полезные, приятные и удобные. Нельзя сказать, чтобы эти теории понравились ученым больше философских, однако они вполне адекватно отражают эволюцию общественного сознания. Складывающаяся ситуация прямо противоположна той, которую мы привыкли обозначать словами «Научная революция XVII века». На протяжении XVI—XVII веков индуктивно-дедуктивный метод познания, созданный на заре нового времени крупнейшими мыслителями эпохи (Галилеем, Декартом, Бэконом, Ньютоном), постепенно превращался в основу мировоззренческого инструментария любого образованного человека. В новом естествознании, соединившем в себе наглядность эксперимента со строгостью евклидовой геометрии, виделся не свод полезных сведений, а определенный взгляд на жизнь, природу и общество, способствующий и целям познания истины, и улучшению условий человеческого существования. До начала ХХ века естествоиспытатель и философ объединялись, как правило, в одном лице. Расставание культуры с наукой началось с развода естествознания с философией. О нем можно судить хотя бы по словам нобелевского лауреата, одного из самых авторитетных физиков современности Стивена Вайнберга. В его книге «Мечты об окончательной теории» одна из глав так и называется — «Против философии». «Мне неизвестен ни один ученый, сделавший заметный вклад в развитие физики в послевоенный период, работе которого существенно помогали бы труды философов», — пишет он там. И напомнив о замечании Ойгена Вигнера по поводу «непостижимой эффективности математики в естественных науках», добавляет: «Я хочу указать на другое в равной степени удивительное явление — непостижимую неэффективность философии». И это еще мягко сказано: некоторые его коллеги прямо обвиняли Куна во вредительстве, так как им не нравился его тезис о том, что наука не должна претендовать на стремление к истине, а теории нельзя ни доказывать, ни опровергать. Но обвинять философов во вредительстве так же малопродуктивно, как и перевоспитывать общественное мнение. Человек от природы стремится к истине, и ищет ее там, где ему ее пообещают. Дмитрий Баюк, кандидат ф.-м. н., член Американского общества историков науки

Александр Сергеев

Рыцари в круглых латах



Поделиться книгой:

На главную
Назад