Эта неторопливая охота ведется буквально вслепую, так как его глаза расположены на верхней стороне тела, посмотреть вниз он никак не может. Зато на нижней стороне расположены ноздри, не имеющие никакого отношения к дыханию и работающие только как орган обоняния, а также электрорецепторы, улавливающие возмущения электрического поля, вызываемые живыми существами. Разумеется, как бы ни были чувствительны эти органы, с их помощью можно поймать только медленно плавующую живность. Обычная добыча скатов — ракообразные, моллюски, иглокожие. Многие из них защищены крепким панцирем или раковиной, но охотника это не смущает: его пластинообразные зубы способны разгрызть практически любую броню.
Когда скат не занят поисками пищи, он подолгу просто лежит на дне, иногда еще и зарывшись в песок. Такое времяпрепровождение плохо совместимо с акульим способом дыхания, при котором вода нагнетается в жабры через пасть. Рот ската прижат к грунту — у него иная схема движения воды: она поступает в глотку через специальные отверстия — брызгальца, расположенные на верхней стороне тела. Это позволяет животному дышать без риска забить жабры песком. Конечно, мощность потока воды при такой схеме невелика, но скату много кислорода и не нужно: его образ жизни не предполагает долгого и интенсивного напряжения мышц.
Медлительное существо с нежной кожей и бескостным телом — слишком большой соблазн для морских хищников, которых хватает даже на мелководье. Одной только маскировки для выживания тут явно недостаточно, поэтому разные группы скатов избрали различные средства самозащиты. Сильнее всего воображение людей поражают электрические скаты, в теле которых часть мышц превратилась в настоящие электрические батареи, способные давать разряд напряжением свыше 200 вольт. Оружие хвостоколов — длинный, тонкий и гибкий шпага-хвост, оснащенный острым шипом (у большинства видов одним, у некоторых — двумя и даже четырьмя). Этот шип, представляющий собой видоизмененную плакоид ную чешуйку, — единственное свидетельство того, что у предков ската некогда была чешуя. Он очень тверд и прочен, поверхность его покрыта направленными назад зазубринами, а по нижней стороне идут два желобка, соединенных с ядовитой железой. Впрочем, используют свой отравленный кинжал скаты-хвостоколы только для самообороны. Атакованный или потревоженный скат наносит стремительный и точный удар хвостом в сторону предполагаемой угрозы. Хвост обвивается вокруг нападающего, подобно ремню кнута, при этом шип мгновенно выходит из «ножен» — складок кожи, прикрывающих его в спокойном состоянии, — и вонзается в тело врага.
Плиний Старший писал, будто шип хвостокола пронзает даже дерево и броню. Это, конечно, преувеличение, но сила удара хвоста крупного ската достаточна, чтобы шип пробил ткань гидрокостюма или кожаную обувь. Укол шипа чрезвычайно болезнен, вызывает падение артериального давления, слабость, нарушение сердечной деятельности. Если удар пришелся в руку или ногу (как чаще всего и бывает), конечность оказывается на несколько дней парализованной. Смертельный исход чрезвычайно редок, но возможен. Именно так погиб «охотник на крокодилов» — знаменитый австралийский телеведущий Стив Ирвин. 4 сентября 2006 года во время съемок фильма «Самые опасные обитатели океана» он был ужален скатом-хвостоколом. Удар шипа пришелся в грудь, и сердце Ирвина остановилось прежде, чем ему успели оказать помощь.
Это, конечно, исключительный случай, но вообще столкновения хвостоколов с людьми нередки. Только на побережье Северной Америки скаты ранят около 750 человек в год, общее же ежегодное число пострадавших в мире, вероятно, измеряется тысячами. Большее количество этих инцидентов происходит по недоразумению: купальщик, бредя по дну, наступает на лежащего, сливающегося с грунтом ската. Но свою лепту в число ужаленных вносят и рыбаки: в некоторых странах скаты считаются ценной промысловой рыбой. Например, в Корее мясо хвостоколов ценится выше, чем других скатов. Удары отравленными стилетами получают не только люди: зоологи находили шипы скатов в легких, грудной полости, печени и поджелудочной железе атлантических дельфинов-афалин. При этом останков скатов в дельфиньих желудках не находили и никто никогда не видел, чтобы дельфины охотились на скатов. Видимо, любопытный дельфин случайно натыкался на замаскированного ската и получал болезненный укол.
В принципе же хвостоколы настолько любопытны и неагрессивны, что их можно приручить прямо в море. Сотни людей специально приезжают на отмели Стингрей-Сити, чтобы пообщаться со скатами. Те берут у них из рук кусочки рыбы, позволяют гладить свои нежные, как шелк, животы или устраивают себе нечто вроде спа, плывя над аквалангистом и купаясь в пузырьках выдыхаемого им воздуха. Несмотря на обилие скатов и их тесный контакт с людьми, дело здесь обходится без травм. Правда, тут рыбы держатся на глубине в несколько метров, так что даже самому неосторожному туристу наступить на них сложно.
Особая глава в жизни скатов — это размножение. У них (как и вообще у всех хрящевых рыб) оплодотворение внутреннее. Ему предшествует довольно долгое ухаживание: самец сначала следует за самкой, затем прихватывает пастью край ее тела возле головы, и она в буквальном смысле увлекает его. В кульминационный момент он подворачивает свое брюхо под брюхо самки и плотно приникает к ней. При этом партнеры не видят друг друга, ведь, как мы помним, глаза у скатов расположены со спинной стороны.
Многие скаты откладывают яйца — как-то странно называть «икрой» эти крупные четырехугольные кожистые капсулы с лентами-ре мешками по углам. Многие, но не хвостоколы. У этой группы скатов зародыши развиваются внутри тела самки, внутри особого органа, аналогичного матке млекопитающих. Каждый зародыш сначала находится в яйце, но с ростом покидает его. В этот момент заканчивается и питание маленького ската за счет желточного мешка, а выходить в мир ему еще рано. На этом этапе стенки матки образуют специальные выросты — трофонемы, проникающие в брызгальца зародыша и через них в пищеварительный тракт. Там они выделяют особый питательный секрет (аналог молока), на котором будущий скат и растет до рождения. Можно сказать, что этот детеныш питается материнским молоком прямо в утробе.
Беременность у хвостоколов длится около года (11—15 месяцев в зависимости от вида) и кончается рождением всего нескольких крупных детенышей. Сразу после рождения скат расправляет свои сложенные, как у новорожденной бабочки, «крылья» и опускается на дно. Он уже знает все необходимое для самостоятельной жизни: какие существа съедобны, как нужно реагировать на приближение врага и т. д. Отныне он всегда будет полагаться только на себя.
Лента жизни
Имя этому изобретению, отметившему недавно свой золотой юбилей, — трехточечный ремень безопасности. Правда, еще задолго до его появления в серийных автомобилях «спасательные ленты» были известны пилотам-автогонщикам. Пожалуй, они были даже более совершенными, но представить себе рядового автолюбителя, долго и нудно опоясывающего себя ремнями вдоль и поперек, решительно невозможно. Даже сегодня, когда пристегнуться можно одним движением, многие пытаются схитрить и либо просто накидывают ремень, не застегивая, либо пропускают его за спинкой сиденья, чтобы не пищал нудный сигнал и не горела тревожная красная лампочка на панели приборов. Но кого мы обманываем? Инспектора ГИБДД? Или судьбу?
Ничего личного, только физика…
Как вы думаете, читатель, какую перегрузку испытывает человек, если его автомобиль на скорости всего 50 км/ч врезается в бетонный куб? Все зависит от прочности машинного передка. Если речь о бронированном танке, то ускорение (вернее, замедление) будет очень большим, и никакой ремень, и никакая подушка, возможно, не спасут от летального исхода. А вот если, как в анекдоте, тормозить сначала номером, потом бампером, потом радиатором и, наконец, двигателем, и при этом передок авто сплющится хотя бы на полметра, то перегрузка составит примерно 20g. В течение тех немногих миллисекунд, что длится такое экстренное торможение, организм может его выдержать. Правда, человека массой 100 килограммов бросит вперед с силой около двух тонн. Ясно, что, как ни упирайся ногами в пол, а руками в руль, такому рывку противостоять не удастся. И печальный конец наступит не от перегрузки, а от страшного удара о лобовое стекло (не зря оно так названо), баранку и что там еще окажется впереди. Не выдержит и раскрывшаяся подушка безопасности, она создана лишь для того, чтобы спасти от случайных синяков и шишек пристегнутого седока.
А вот ремень рассчитан как раз на нагрузку 2000 килограммов, как и его крепления, и пряжка с замком. Кстати, знайте на всякий случай, что болты для ремня безопасности имеют особую, нигде больше в автомобиле не встречающуюся резьбу, дабы не было возможности поставить какой-то другой, не сертифицированный, крепеж!
Швед, который спас город
Жил-был на свете один очень изобретательный человек Нильс Болин. Он и в самом деле сделал много изобретений (например, в области катапультируемых авиакресел), но именно придуманный в 1959 году трехточечный ремень безопасности обессмертил его имя. Ведь миллион спасенных жизней — это целый город. До этого в некоторых автомобилях ставили двухточечные поясные ремни, но они не мешали при столкновении «клюнуть» носом вперед, так что, по сути, выполняли единственную роль: тело не нужно было искать где-то на дороге, оно оставалось на сиденье.
Диагональная ветвь ремня (та, что идет сверху вниз и придерживает человека за грудь), которую, собственно, и придумал Болин, решила задачу надежной фиксации человека при столкновении и одновременно позволила отныне пристегиваться одним движением и в один щелчок замка. Именно такой ремень впервые появился 13 августа 1959 года на автомобиле Volvo PV544, а Нильс Болин работал как раз в этой шведской фирме. Но лишь восемь лет спустя трехточечные ремни спереди и сзади стали стандартным оснащением всех Volvo.
Лучшее — враг хорошего
За прошедшие полвека сам ремень не сильно изменился: это все та же прочная и тонкая лента. Однако теперь она «обросла» дополнительными механизмами, повышающими и удобство, и ее защитные характеристики. Первым (в 1969 году) из таких механизмов стала катушка, на которую встроенная пружина наматывала излишки ремня. Теперь отпала необходимость индивидуальной подгонки длины в зависимости от комплекции седока и положения сиденья, ремень не свисал наружу из-под закрытой двери. И при этом всегда плотно, без зазора, прилегал к телу, так что при ударе смещение вперед было минимальным. Для этого, правда, пришлось снабдить катушку храповиком и качающимся маятником, который при резком замедлении моментально ее блокировал. Отсюда и название — инерционный ремень. Сегодня такие стоят практически на всех автомобилях, по крайней мере впереди.
Как ни хорош трехточечный ремень, но в ряде случаев и он не позволяет выйти из ДТП без синяков и переломов. На помощь ему пришли надувные подушки безопасности, эйрбеги (от англ. airbag). Вскоре, правда, выяснилось, что о них можно сломать нос почти с тем же успехом, что и о руль, если человек неплотно притянут ремнем к спинке сиденья. Инерционного механизма оказалось недостаточно, и в 1992 году пряжку ремня снабдили пороховым преднатяжителем. Его пиропатрон срабатывает вместе с эйрбегом и смещает пряжку назад, с силой прижимая седока к спинке сиденья. Иногда, впрочем, с такой силой, что у того ребра не выдерживают. Поэтому в 1996 году в катушку пришлось вмонтировать ограничитель натяжения, проскальзывающий при определенной нагрузке.
Эти два устройства, как и эйрбег, однократного действия. После аварии их придется менять. Это сложная, требующая специально обученного персонала и, увы, весьма недешевая операция.
В союзе с электроникой
Технический прогресс в XXI веке дошел до того, что автомобиль научился если не избегать столкновения, то хотя бы предвидеть его вероятность. Видеокамеры и радары сканируют пространство вокруг, мгновенно вычисляют расстояние до препятствия и скорость сближения с ним, делая выводы о ближайшей перспективе. Теперь появилась возможность не торопясь (то есть не за десяток, а за сотню миллисекунд) натянуть ремень безопасности без стрельбы в преднатяжителе. С этим может справиться электропривод. А после удара (и даже в случе если он не произошел) натяжение снова будет ослаблено. Это выгодно, кстати, и для утилизации автомобилей: не нужно приглашать «саперов» для «разминирования» всех взрывных устройств перед разборкой машины.
Но и этот новейший преднатяжитель уже перестал быть последним словом техники безопасности. Фирма Autoliv предложила свое, пневматическое, решение. В нем ремень натягивается сжатым воздухом, накачанным в ресивер специальным компрессором. Процесс длится около 0,36 с, причем для его запуска не нужны ни суперкомпьютер, ни радары, ни видеокамеры. Только высокочувствительный датчик удара. Но ведь с начала «торможения двигателем» в запасе у систем пассивной безопасности считанные миллисекунды, а никак не их сотни! Все верно. Только разработчики взяли на вооружение всезнающую статистику, она-то и рассказала, что в 75% случаев ДТП развивается по следующему сценарию. Сначала происходит легкий касательный удар, от которого эйрбеги не срабатывают, но автомобиль теряет управление и вылетает на встречную полосу или на обочину, где его уже, известное дело, поджидают КамАЗ или столб. Между этими событиями проходят целые доли секунды, и пневматический преднатяжитель успевает выполнить свою работу. А если второго страшного удара не будет, воздух просто стравится и натяжение ремня вновь ослабнет.
Автор этой статьи, к сожалению, не может похвастаться столь же значительным изобретением, как Нильс Болин, но тоже рассчитывает спасти если не миллион, то хотя бы около 200 000 жизней. Ибо примерно таков тираж «Вокруг света». И если каждый читатель начнет с уважением относиться к тонкой черной ленте с блестящей пряжкой, то игроков в русскую рулетку на наших дорогах заметно поубавится. Берегите себя и своих близких! И в этом призыве нет ничего личного. Только физика.
Летящие над волнами
Подавляющее большинство американских экспертов усомнились в «русском чуде», приняв его за удачно проведенную мистификацию, целью которой было заставить Вашингтон понервничать и направить исследования в военной области в ненужном направлении. И если даже это не мистификация, то в любом случае, посчитали американские специалисты, такой большой корабль-самолет не может быть эффективным боевым средством, да и сама идея построения подобных аппаратов для военных целей, будь то транспортный экраноплан или же его вооруженный вариант, не имеет якобы никаких перспектив в обозримом будущем. Правда, были за рубежом отдельные инженеры, которые поверили в реальность «Каспийского монстра» и большое будущее экранопланов.
Морское судно или самолет?
В самой идее корабля-самолета не было ничего нового. Явление, получившее название экранного эффекта, было экспериментально выявлено еще в начале ХХ века — с приближением к экрану (поверхность воды или земли) аэродинамическая сила на крыле летательного аппарата увеличивалась. Авиаторы обнаружили: при заходе на посадку, в непосредственной близости от земли, пилотирование аэроплана зачастую серьезно усложнялось, казалось, что он как бы садится на невидимую подушку, не дающую ему коснуться твердой поверхности.
Естественно, что летчикам и авиаконструкторам такой эффект был вовсе не нужен, но нашлись и те, кто сумел рассмотреть за ним нечто большее — базу для нового направления в конструировании транспортной техники. Так и возникла в первом приближении идея создать летательный аппарат нового типа, экраноплан — от французских слов écran (экран, щит) и planer (парить, планировать).
Если же говорить научно-техническим языком, то экранопланы — это летательные аппараты, использующие при своем движении эффект увеличения аэродинамического качества ЛА (отношения коэффициента его аэродинамической подъемной силы к коэффициенту лобового сопротивления) за счет близости экрана (поверхности земли, воды и т. д.), обусловленный тем, что с приближением к экрану увеличивается аэродинамическая подъемная сила на крыле.
При этом Международная морская организация (IMO) относит сегодня экранопланы к морским судам, а их дальнейшим развитием стал экранолет, способный не только следовать на экране, но и оторваться от него и лететь на больших высотах, как обычный самолет.
Эффект экрана для «чайников»
Опытный экраноплан — пилотируемая самоходная модель СМ-6, на которой отрабатывались технические идеи, ставшие базой для первого серийного экраноплана «Орленок». СМ-6 имел один маршевый двигатель, установленный на киле, и два стартовых, «поддувных», двигателя, Экраноплан СМ-2 был по строен по новой аэрогидродинамической компоновочной схеме — с низкорасположенным расположенных в носовой части корпуса «елочкой». Конструкция экраноплана — цельнометаллическая, клепаносварная
Первые опыты
В свое время использовать экранный эффект (еще неоткрытый тогда) попытался французский изобретатель Клеман Адер, в 1890 году построивший и испытавший катер «Эол», имевший большое складывающееся крыло и хвостовой горизонтальный стабилизатор, которые позволяли частично разгрузить водоизмещающее судно. Под крылом машины были сделаны особые каналы, по которым за счет скоростного напора и подавался поднимающий катер воздух. В дальнейшем Адер построил катер, у которого воздух под крыло подавался с помощью компрессора.
Основные работы над новыми аппаратами, использующими при своем движении экранный эффект, относятся к началу 1930-х годов, хотя теоретические труды по данной теме стали публиковать намного раньше. Так, например, в 1922 году в СССР вышла статья специалиста-аэродинамика Бориса Николаевича Юрьева «Влияние Земли на аэродинамические свойства крыла». В ней изобретатель автомата перекоса (устройство для управления лопастями несущего винта), будущий действительный член Академии наук СССР и генерал-лейтенант инженерно-технической службы, фактически дал зеленый свет созданию экранопланов, теоретически обосновав возможность практического использования экранного эффекта.
В целом вклад отечественных ученых и инженеров в экранопланостроение огромный, если не решающий. Специалистам хорошо известна, вероятно, первая в данной области практическая разработка — проект экранолета-амфибии, предложенный советским авиационным инженером Павлом Игнатьевичем Гроховским. «Мне пришла мысль использовать «воздушную подушку», то есть образующийся под крыльями сжатый воздух от скорости полета. Корабль-амфибия может лететь-скользить не только над землей, над морем и рекой, — писал П.И. Гроховский в начале 1930-х годов. — Полеты над рекой еще целесообразнее, чем над землей, ведь река — это длинная, гладкая дорога, без бугров, холмов и кочек… Корабль-амфибия позволяет круглый год перебрасывать грузы и людей со скоростью 200—300 км/ч, летом на поплавках, зимой на лыжах».
Американский военнотранспортный корабль «Колумбия», спроектированный в 1962 году. Проект остался нереализованным
И уже в 1932 году Гроховский с соратниками сконструировал полномасштабную модель нового морского летательного аппарата-катамарана, который имел центроплан с большой хордой, концевые элементы в виде фюзеляжей-поплавков и размещенные в носовых частях последних два перспективных двигателя М-25 мощностью около 700 л. с., а также поворотный закрылок, позволявший увеличить подъемную силу при взлете и посадке. Этот «протоэкраноплан» мог скользить на небольшой высоте над любой ровной поверхностью. Причем аэродинамическая компоновка довольно-таки большой по тогдашним меркам машины характерна и для ряда современных аппаратов данного класса.
Зимой того же года финский инженер Тоомас Каарио, которого на Западе считают «первым создателем настоящего экраноплана», приступил к испытаниям сконструированного им летательного аппарата, использующего эффект экрана и построенного по схеме «летающее крыло». Опыты проводились на льду замерзшего озера: экраноплан был несамоходным и буксировался аэросанями. И только в 1935—1936 годах Тоомас Каарио сумел построить экраноплан, оснащенный одним 16-сильным двигателем и воздушным винтом, но его корабль-самолет пролетел всего несколько метров и развалился. После Второй мировой войны он продолжил работы в этой области и создал еще несколько опытных аппаратов, но в серию ни один из них не пошел.
В 1940 году американский инженер Д. Уорнер создал диковинный аппарат, названный им компрессорным самолетом. Он представлял собой фактически оснащенный системой крыльев катер, державшийся на воде, но не на воздушной подушке, как современные КВП, а на воздушном потоке, создаваемом расположенными в носу двумя мощными вентиляторами и нагнетаемом под днище судна. Крейсерский режим «плавания» обеспечивали два авиадвигателя с воздушными винтами, расположенные на основном несущем крыле. Таким образом, американец впервые предложил разделить стартовую (поддувную) и маршевую силовые установки.
Интерес на бумаге
Лишь через несколько лет после окончания Второй мировой войны интерес к экранопланной тематике возобновился. Пальму первенства здесь попытались перехватить Соединенные Штаты — уже в 1948 году шестиместный аппарат создал инженер Х. Зундштедт. А конструктор Уильям Бертельсон в 1958—1963 годах поднял в воздух сразу несколько экранопланов с двигателями мощностью до 200 л. с. и сделал несколько важных докладов по данной теме на различных научных симпозиумах и конгрессах. В том же 1963-м инженер Н. Дискинсон также построил экраноплан, в следующем году швейцарец Х. Вейланд создал в США свой экраноплан, который, впрочем, разбился в ходе испытаний в Калифорнии.
Наконец, на научной конференции «Суда на подводных крыльях и воздушной подушке», проводившейся 17—18 сентября 1962 года в Нью-Йорке американским Институтом аэрокосмических исследований, президент Vehicle Research Corporation Скотт Ретхорст представил разработанный при его личном участии и при поддержке Морской администрации США проект 100-тонного экраноплана «Колумбия», созданного по схеме «летающее крыло» и способного развивать скорость до 100 узлов. Не желающие отставать британцы тогда же обнародовали предложенный конструктором А. Педриком проект экраноплана-авианосца — на него предполагалось базировать до 20—30 самолетов.
В 1964 году Ретхорст приступил к постройке модели своего «чудо-корабля». На основе полученных результатов собственной работы Ретхорст в 1966 году патентует «Корабль, использующий экранный эффект» (патент № 19104), но дальше этого дело не идет, и вскоре проект сворачивается. Причем в том же 1966-м специалисты компании Grumman предложили не менее грандиозный проект 300-тонного экраноплана, способного нести управляемые ракеты.
Наибольшего успеха на Западе добился известный немецкий авиаконструктор Александр Липпиш, ставший в годы Второй мировой войны идейным вдохновителем проекта реактивного истребителя Ме-163 «Комета», а после крушения Третьего рейха обосновавшийся в США.
Работая с 1950 по 1964 год в авиационном подразделении компании Collins Radio Company, Александр Липпиш руководил разработкой базовой аэродинамической схемы экраноплана (одной из трех существующих сегодня, причем очень удачной), названной схемой Липпиша. Она отличается шатрообразным крылом, хорошо удерживающим давление воздуха между крылом и экраном и обладающим наименьшим индуктивным сопротивлением. Оперение расположено высоко над крылом по Т-образной схеме, а для его старта с воды используются поплавки на концах крыла и глиссирующий корпус-лодка.
К несчастью, в 1964 году Липпиш заболел и ему пришлось покинуть компанию, но он успел предложить проект экраноплана Х-112. Оправившись после болезни, в 1966 году он создал собственную фирму Lippisch Research Corporation и через четыре года предложил новый образец Х-113, а еще через четыре года — свой последний проект экраноплана Х-114, который в пятиместном патрульном варианте по заказу Министерства обороны ФРГ был построен и принят на вооружение.
«От пристани, медленно набирая скорость, двинулась небольшая моторка, оснащенная мощным двигателем, и странного вида аппарат, напоминавший короткокрылый гидросамолет. Развив скорость около 80 км/ч, «гидро» оторвался от поверхности и, не набирая, как положено, высоты, заскользил над озером, оставив далеко за кормой моторку», — а это уже об испытании над Рейном в 1974 году первого корабля-самолета, построенного Гюнтером Йоргом, учеником Липпиша и изобретателем третьей схемы экраноплана. В схеме «тандем» два примерно одинаковых крыла расположены друг за другом, она обладает продольной устойчивостью, но в ограниченном диапазоне углов тангажа и высот полета.
Правда, все эти проекты и разработки не шли дальше бумаги, небольших моделей или опытных машин. Вот почему, когда в 1966—1967 годах американцы узнали о том, что над волнами Каспия носится 500-тонная махина, они испытали удивление, смешанное с недоверием.
Экранопланы типа «Орленок» строились с 1974 по 1983 год
Итальянский аристократ
Советские конструкторы вновь опередили своих зарубежных конкурентов — по большому счету только советская командно-административная экономика и подчиненная властям наука и промышленность смогли справиться с такой грандиозной и сложной задачей, как создание больших, а не малых (в однудве тонны) экранопланов и экранолетов.
Так, например, еще в 1963 году ничего не знавшие о секретных работах советского ВПК студенты Одесского института инженеров морского флота под руководством Ю.А. Будницкого разработали оснащенный 18-сильным двигателем Иж-60К одноместный экраноплан ОИИМФ-1. К 1966 году студенты построили уже третью модель — ОИИМФ-3 (по схеме «летающее крыло»). Но это были лишь «любители», для развития экранопланостроения требовались профессионалы. Одним из них стал советский конструктор Роберт Людвигович Бартини (он же итальянский аристократ Роберто Орос ди Бартини), покинувший родину в 1920-е годы и писавший потом в своих анкетных данных в графе «национальность» — «русский», объяснив свое решение весьма оригинально: «Каждые 10—15 лет клетки человеческого организма полностью обновляются, и поскольку я прожил в России более 40 лет, во мне не осталось ни одной итальянской молекулы».
Именно Бартини разработал «Теорию межконтинентального транспорта земли», где дал оценку производительности различных типов транспортных средств — судов, самолетов и вертолетов — и определил, что наиболее эффективным для межконтинентальных маршрутов является амфибийный аппарат с вертикальным взлетом и посадкой или использующий воздушную подушку. Только в этом случае можно было бы удачно совместить большую грузоподъемность судов, высокую скорость и маневренные возможности самолетов.
Бартини приступил к работам над проектом экраноплана с подводными крыльями, из которого впоследствии выходит экранолет СВВП-2500 взлетной массой 2500 тонн, имеющий вид «летающего крыла» с квадратным центропланом и консолями и оснащенный силовой установкой из подъемных и маршевых двигателей. Результаты испытаний моделей в 1963 году в ЦАГИ оказались многообещающими. Спустя какое-то время Бартини принял решение доработать первую опытную машину «1М» в экранолет, с поддувом воздуха от дополнительных двигателей под центроплан. Но ему не суждено было увидеть полет своего 14М1П — в декабре 1974 года Бартини ушел из жизни. Экранолет взмыл в небо, но уже в 1976 году проект ВВА-14М1П (высокорасположенное крыло и несущий корпус, расчетная максимальная скорость 760 км/ч и практический потолок 8000—10 000 метров) закрыли.
Следующий стратегический рывок в области проектирования кораблей-самолетов произошел в Горьком: автором нового проекта стал Ростислав Алексеев.
Самым «свежим» продуктом творчества американских специалистов в области экранопланостроения стал проект тяжелого военно-транспортного экранолета «Пеликан», способного, согласно расчетам, брать на борт до 680 т груза и перебрасывать его на трансокеанские расстояния — до 18 500 км
Рождение «дракона»
Первый отечественный пилотируемый реактивный экраноплан СМ-1 взлетной массой 2380 килограммов сделали в ЦКБ по судам на подводных крыльях при непосредственном участии Алексеева в 1960—1961 годах. В его основе — схема «тандем», или «двухточечная схема». В первом полете его пилотирует сам «главный», а поздней осенью 1961-го Алексеев «покатал» на аппарате всесильного Дмитрия Устинова, тогда еще зампреда Совмина СССР, и председателя Госкомитета по судостроению Бориса Бутому. С последним, правда, вышла незадача — на первом же галсе закончилось топливо. Пока пришел катер-буксир, чиновник продрог до костей и после этого, как говорят современники, буквально возненавидел «чуждые» судпрому «летающие корабли», да и самого Алексеева тоже. Известны его слова, высказанные по поводу экранолета: «Тем, что летает выше телеграфного столба, судпром не занимается!» Если бы не Дмитрий Устинов и главком ВМФ Сергей Горшков, пришлось бы рассказывать в этой статье лишь о немецких и американских экранопланах.
В начале 1960-х годов темой экранопланов активно заинтересовался советский флот, заказав разработку трех типов: транспортно-десантного, ударного и противолодочного. Но схема «тандем» для них не годилась, поэтому Алексеев разработал новую, по которой и строится второй экраноплан — СМ-2. У этого аппарата впервые воздушная струя от двигателя направлялась под крыло (поддув), создавая принудительную динамическую воздушную подушку.
Отныне компоновка экраноплана такова: широкое низко расположенное крыло малого удлинения; концевые шайбы на крыле, улучшающие околоэкранную аэродинамику и уменьшающие индуктивное сопротивление крыла; развитое Т-образное оперение, высокий киль и высоко закрепленный на нем горизонтальный стабилизатор с рулем высоты; аэродинамически совершенный корпус с реданированным днищем; определенное размещение двигателей и организация поддува под крыло. Старт с воды и выход на берег обеспечиваются воздушной подушкой проточной схемы — двигатели отклоняют воздушные струи под крыло. Такая схема требовала большей работы по стабилизации, но зато позволяла достичь более высоких скоростей и грузоподъемности.
1964 год стал трагическим — СМ-5 на испытаниях попал в мощный встречный воздушный поток, его резко качнуло и приподняло, пилоты включили форсаж для набора высоты, но аппарат оторвался от экрана и потерял устойчивость, экипаж погиб. Пришлось срочно строить новый образец — СМ-8.
Наконец, в 1966 году на испытания выходит созданный в рамках проекта «Дракон» гигантский экраноплан КМ («корабль-макет»), работы над которым Алексеев начал еще в 1962 году. На стапеле корабль заложили 23 апреля 1963 года — он строился как боевой экраноплан для ВМФ и должен был летать на высоте несколько метров. Еще два года спустя началась работа над проектом военно-транспортного экранолета Т-1 для ВДВ, который должен был подниматься до высоты 7500 метров. Грузоподъемность у него была бы до 40 тонн, что обеспечивало переброску на дальность до 4000 километров среднего танка и взвода пехоты с оружием и снаряжением или же 150 десантников со снаряжением (вблизи экрана), либо же на дальность 2000 километров (на высоте 4000 метров).
22 июня 1966 года КМ спустили на воду и отправили на специальную испытательную базу на Каспийском море, под город Каспийск. Почти месяц его, полупритопленного, с отстыкованным крылом и накрытого масксетью, по ночам в условиях строжайшей секретности тащили по Волге. Кстати, о секретности: современники вспоминали, что именно в день спуска КМ на воду радиостанция «Голос Америки» сообщила, что на этом заводе построен корабль с новым принципом движения!
Когда КМ прибыл на базу, чиновники потребовали «незамедлительного полета», и Алексеев организовал им «полет в доке». Заработали все 10 двигателей, тросы, удерживающие аппарат, натянулись, словно струны, на берегу начал ломаться попавший под выхлопы моторов деревянный забор, и при тяге в 40% от номинальной док с пришвартованным в нем экранопланом КМ, срывая якоря, тронулся с места. Затем машина вышла в море — тяжелый гигант показал феноменальные качества, устойчиво следуя над экраном на высоте 3—4 метров на крейсерской скорости 400—450 км/ч. При этом аппарат был настолько устойчив в полете, что «главный» иногда на показ переставал управлять аппаратом и даже выключал в полете двигатели.
В ходе работы над КМ возникло множество вопросов, которые необходимо было разрешить в кратчайшие сроки. Так, например, выяснилось, что стандартный судостроительный сплав АМГ-61, использованный для основного корпуса, и авиационный сплав Д-16, примененный в надстройке «монстра», не позволяют обеспечить требуемую весовую отдачу. Пришлось советским металлургам изобретать новые, более прочные и легкие сплавы, чрезвычайно стойкие к тому же к коррозии.
Испытания «Каспийского монстра» велись на море полтора десятка лет, но закончились весьма печально: 9 февраля 1980 года умер Ростислав Алексеев. И в том же году гибнет КМ — пилот слишком резко задрал при взлете нос машины, она быстро и почти вертикально пошла вверх, растерявшийся же летчик резко сбросил тягу и не по инструкции сработал рулем высоты — корабль завалился на левое крыло и, ударившись о воду, затонул. Уникальный гигант не смог пережить своего создателя.
Полное водоизмещение «Орленка» 140 т, длина 58,1 м, ши рина 31,5 м, скорость до 400 км/ч (может всего за час пересечь Каспийское море), взлет с волны до 1,5 м и при волнении моря до 4 баллов, экипаж 9 чел., грузоподъемность 20 т (рота морских пехотинцев с полным вооружением или два БТР или БМП)
«Орленок» учится летать
В 1970-х работа в этой области буквально кипела. Не успел Алексеев реализовать «большой скачок», перейдя от 5-тонных моделей сразу к 500-тонному КМ, как в 1968 году ВМФ выдает задание на десантно-транспортный экранолет проекта 904 «Орленок». И вот уже новый успех — в 1972 году появляется экспериментальный СМ-6. Основные требования — высокие грузоподъемность и скорость, а также способность преодолевать противодесантные заграждения и минные поля (при захвате плацдармов на защищенном побережье противника).
За основу был взят проект Т-1, схема — нормальная самолетная, трехдвигательный низкоплан с Т-образным хвостовым оперением и корпусом-лодкой. Экипаж — командир, второй пилот, механик, штурман, радист и стрелок. При перевозке десанта в состав экипажа дополнительно включались два техника.
Корпус Т-1 выполнен заодно с центропланом и состоял из трех частей — носовой поворотной (поворачивалась на 90 градусов), средней (грузо-пассажирский отсек) и кормовой. В носовой части располагались кабина экипажа, пулеметная установка, каюта отдыха и отсеки для различного оборудования. Адмиралы, увлеченные в те годы созданием мощного океанского ракетно-ядерного флота, намеревались закупить до 100 «орлят», что потребовало бы постройки новых заводов, на которых предполагалось организовать блочно-агрегатный метод сборки. Затем, правда, заказ скорректировали до 24.
3 ноября 1979 года на десантном экранолете МДЭ-150 типа «Орленок» был поднят военно-морской флаг и корабль включили в состав Каспийской флотилии. Второй аппарат вошел в состав ВМФ уже после смерти «главного», в октябре 1981 года. Оба корабля принимали участие в учениях Закавказского военного округа — корабль мог брать на борт для высадки на берег до 200 морских пехотинцев или два плавающих танка, БТР или БМП. А в 1983 году флот принял третий экранолет, МДЭ-160. Сегодня же у нас остался только один «чудо-корабль» этого типа — тот, что стоит в Москве.
В 1988 году было решено раскрыть тактические возможности «Орленка» более полно. Задачу сформулировали так: перебросить десант из района Баку в район Красноводска. К ее решению привлекли для сравнения обычные корабли, корабли на воздушной подушке и экранолет. Первые вышли в море за сутки до часа икс, вторые — за шесть часов, а «Орленок» вышел за два часа, обогнал по дороге всех и первым высадил десант!