Фабрика жизни
Прорастание семени мака — первый шаг от выживания к жизни. Шов на семенной оболочке треснул, корешок пробился наружу и потянулся к почве. Фото: SPL/EAST NEWS
Семя — это многоклеточное образование с зародышем и запасом питательных веществ. Оно способно выживать в неблагоприятные сезоны, и в этом было его изначальное предназначение. Но, как нередко случается в эволюции , структура, возникшая для одних целей, оказывается полезной и для других. Так, семя стало решать еще две важнейшие задачи на пути к сохранению вида: расселение и размножение.
В отличие от споры — одной-единственной клетки, которой для превращения в жизнеспособный организм нужны время и питательная среда, семя ко всему подготовлено заранее. Еще до того как оно покинет материнское растение, у находящегося в нем зародыша формируются все основные органы: зародышевый корешок, готовый по первому требованию взломать семенной шов, чтобы нащупать почву и дотянуться до почвенных растворов, зачаточные листья-семядоли, которые, получив от корешка влагу, разбухнут, развернутся, скинут оковы кожуры и запустят фотосинтез, а почка на верхушке зародышевого стебелька ждет притока свежих питательных веществ, чтобы пуститься в рост и превратиться в молоденькое растеньице. Большая часть семени заполнена провизией — особой тканью, клетки которой плотно набиты зернами крахмала и белков.
К слову сказать, у семенных растений есть и другие приспособления, которые позволяют переживать неблагоприятные условия. Вспомним, как перезимовывают морковь, свекла, картофель или лук — в виде подземных корневищ, клубней и луковиц. Принцип формирования этих вегетативных стадий покоя тот же, что и в семени: есть зачатки будущего растения — почки и «емкости» с питательными веществами. Но способ консервации провизии и, главное, самого зародыша у семян гораздо надежнее и позволяет хранить их существенно дольше. Если вегетативные органы предназначены только для зимовки, да и то не слишком холодной, то семена не боятся ни засухи, ни промораживания и могут храниться годами, а порой и тысячелетиями. В Японии нашли семена лотоса, которые пролежали в торфе более 1000 лет, после чего из них выросли нормальные растения.
Главный секрет такого успеха — глубокое обезвоживание. Откачка воды из семени в ходе его созревания — это активный многоступенчатый процесс. Он происходит не сам собой, не простым высыханием — ведь в тканях, окружающих семя, влажность гораздо выше. В семенах пшеницы, к примеру, влаги всего 14%, а бывает и того меньше, в то время как в окружающих тканях — примерно 85%.
В ходе формирования семени, когда зародыш достигает окончательного размера, в нем синтезируется гормон покоя — абсцизовая кислота, которая останавливает рост, активизирует синтез крахмала в эндосперме и белков в алейроновом слое под семенной кожурой, запускает аккуратное свертывание ДНК и быстро, но плавно уменьшает концентрацию воды.
В таком виде ткани зародыша могут переживать и жару, и мороз — в силу высокой концентрации внутриклеточных растворов, они не превратятся в лед, кристаллы которого способны безвозвратно разрушить любые структуры. Абсцизовая кислота надежно контролирует безмятежный покой семян. У некоторых растений они погружаются в сон настолько глубоко, что не могут выйти из него, пока не испытают сильного или длительного охлаждения, что необходимо для разрушения этого гормона. Бывает, что для пробуждения у семян нужно нарушить целостность кожуры или как следует вымочить их в воде, чтобы вымыть абсцизовую кислоту. В природе это достигается действием талых вод и трением о частицы грунта или повреждением скорлупы камешками в желудках птиц. При контакте с эндоспермом влага растворяет алейроновые зерна, высвобождает из них ферменты, разлагающие крахмал на простые сахара, те, в свою очередь, поступают в семядоли, по проводящей системе стебелька передаются в корешок, и он пускается в рост. Переживание позади, впереди — жизнь.
1. Семена мадагаскарского «дерева путешественников» покрыты синей оберткой, привлекающей птиц. В их желудках она стирается, что ускоряет прорастание семян. Фото: SPL/EAST NEWS
2. Белые гранулы — это зерна крахмала в клетке ткани (эндосперм), которыми семя гречихи наполнено до 87%. Вот почему гречка такая питательная. Фото: PHOTO RESEARCHERS/FOTOLINK
Любым существам, не способным двигаться самостоятельно, нужны приспособления для расселения. Ведь они не могут ни переместиться на более плодородный участок в случае истощения старого, ни избежать конкуренции с ближайшими родственниками, ни уклониться от нападения вредителей, расплодившихся на соседях. К каким только ухищрениям не прибегают растения, чтобы обрести хоть какую-то свободу передвижения: дают укореняющиеся отводки, выпускают усы и даже целиком пускаются в путь, как перекати-поле. Но появление семян дало растениям возможности, прежде невиданные: теперь они могут и летать, и плавать, и путешествовать разными видами живого транспорта.
Многие растения в переносе своих, как правило, округлых и мелких семян полагаются на ветер. Классический пример — орхидеи, чьи семена настолько мелки, что могут быть подхвачены даже слабыми восходящими струями, это важно, поскольку под пологом тропического леса царит затишье. В семени орхидей из-за их крошечного размера не помещаются ни оформленный зародыш, ни достаточный запас провизии. Судьба молодого растения полностью зависит от встречи с грибным мицелием, который должен проникнуть внутрь, пробудить семя ото сна, заменить ему недостающие органы и обеспечить зародыш всем необходимым питанием.
Но рекорд миниатюрности принадлежит не орхидеям, а паразитическому растению заразихе, чьи семена весят всего одну стомиллионную долю грамма. Это объяснимо: заботиться о пропитании эмбриону паразита не нужно. На другом полюсе рекордов — гигантские семена сейшельской пальмы весом до 25 килограммов. С такими, конечно, ветру не справиться, они предназначены для путешествий по морю. Некоторые растения предпочитают разбрасывать семена собственными силами, например, выстреливая ими куда подальше, как недотрога или бешеный огурец. У деревьев семена нередко снабжены пленчатыми выростами, которые придают им способность к весьма далекому планирующему полету.
Но чаще всего семя в путешествие отправляется внутри оригинальной упаковки — плода. Если у голосеменных растений семена образуются прямо на поверхности семенных чешуй, плодов у них нет, то у покрытосеменных семяпочки спрятаны внутри женских органов цветка — пестиков. Все великолепное разнообразие плодов — сухих, сочных, крылатых, с парашютами или шипами — это результат их превращений. Фантазия природы нацелена на одно: поиск оптимального способа транспортировки будущего растения в подходящее место, поэтому вкусные сочные плоды растение создает для ублажения того, кто согласится их съесть, чтобы принудить к невольному распространению своих семян.
Расследуя историю семян и плодов, ученые пришли к заключению, что развитие этих органов было сопряжено с эволюцией сухопутных позвоночных животных. В палеонтологической летописи первые семена найдены в отложениях девонского периода , 400 миллионов лет назад, когда на суше царствовали папоротники. Именно они первыми «изобрели» семена, но тогда их «изобретение» было мельче большинства современных семян и выглядело иначе: кожура укрывала семязачаток не полностью, сначала — лишь наполовину, потом — на три четверти, а зародыш в них развивался уже после опадения на землю. Со временем защита эмбриона усовершенствовалась, кожура окружила его целиком, развитие сместилось на более ранние стадии формирования этого органа. Распространялись такие семена, видимо, ветром.
Плоды же появились почти 100 миллионов лет спустя, в конце каменноугольного периода, когда занялась заря эпохи динозавров. В пермском периоде растительноядных рептилий стало много, и одновременно возросло и разнообразие плодов. О том, что животные ели плоды, убедительно свидетельствует находка семян в желудках нескольких проторозавров. Найдены семена и в их копролитах — окаменелых фекалиях.
Отношения между растениями и животными, при которых поедание семян, заключенных в плоды, стало приносить растению не вред, а пользу, начали складываться в конце мезозоя — эта задача выпала на долю мелких ящериц, птиц и первых млекопитающих. Все последующее время шла сопряженная эволюция плодов покрытосеменных растений и позвоночных. У некоторых плодов форма настолько своеобразна, что она могла возникнуть только после появления соответствующего разносчика. Например, развитие цепких крючков на плодах лопуха и череды связано с появлением млекопитающих с шерстистым покровом.
1. Плод ромашки — одногнездная семянка, в которой каждое семечко упаковано в чешуйчатый покров с волосками, собранными в хохолки для переноса ветром. Фото: SPL/EAST NEWS
2. Разрез семени пшеницы: снаружи оно покрыто кожурой, под которой алейроно вый слой с зернами белка (зеленые), а глубже — эндосперм с крахмалом (желтый). Фото: SPL/EAST NEWS
Несмотря на хорошую защищенность семян, далеко не всем из них удается взойти, а тем растениям, кому повезло, еще надо дотянуть до периода собственного размножения. Получается, что эффективность размножения семенами не так уж и велика: из всех зародышей лишь малое количество продолжит свой род. Но есть и другой способ. Увеличить число организмов можно быстро и легко с помощью вегетативного размножения, при котором новые особи вырастают из почек, фрагментов стебля, корневищ и даже из листьев. Тогда почему растения не размножаются только черенками и усами, зачем нужно еще семя? Оказывается, оно приносит пользу виду в целом — только семенным размножением можно улучшить качество потомства, поскольку в ходе полового процесса «освежается» генетический материал. Чтобы образовался зародыш, пыльца должна оплодотворить яйцеклетку, расположенную внутри шишки (у хвойных) или пестика (у цветковых), тем самым соединив в будущем семени признаки родительских растений. Клоны из генетически идентичных растений, которые получаются в ходе вегетативного размножения, хороши при стабильности внешней среды, но когда среда меняется, для выживания вида полезнее разнообразие: глядишь, кто-нибудь да сможет соответствовать моменту.
Осталось разобраться, как же в процессе эволюции появилось такое чудо, как семя? Были ли у него предшественники, или это что-то совершенно новое? Чтобы ответить на этот вопрос, вспомним, как размножаются ближайшие предки семенных — споровые растения, к которым относятся папоротники, хвощи и плауны. Глядя, скажем, на папоротник, трудно догадаться, что перед нами лишь одно из двух поколений, которые, чередуясь, обеспечивают продление рода. Тем не менее это так: то, что мы видим, — это бесполое поколение-спорофит, которому надлежит распылять споры и тем самым обеспечивать размножение. Из спор вырастают растения полового поколения — гаметофиты. Они совсем иного облика, очень маленькие или даже микроскопические, нежные, так как могут расти только во влажной среде. Их задача — произвести половые клетки, которые, встретившись, сольются, чтобы дать начало спороносному поколению. Для того чтобы мужская половая клетка сквозь внешнюю среду смогла добраться до яйцеклетки, необходим покрывающий гаметофит тонкий слой воды. Поэтому распространение споровых растений ограничено влажными местами обитания. Именно эти несовершенства и не позволили споровым растениям достичь на суше такого разнообразия и распространения, какое получили семенные растения. Семя заменило собой уязвимое половое поколение, взяв на себя часть его задач, а заодно и функции спор. Теперь женская половая клетка перестала зависеть от влажности внешней среды, поскольку развивается в семяпочке прямо на материнском растении, а период покоя переместился со стадии споры на зрелое семя. В результате семена оказались гораздо экономичнее, чем споры, и позволили эффективнее размножаться при меньших затратах.
Шрамы на ликах планет
Фото: SPL/EAST NEWS
Поверхность земного шара выглядела бы настоящим полигоном для бомбометания, изрытым многочисленными воронками разных размеров, не будь она защищена газовой оболочкой. Столкновения Земли с крупными небесными телами километрового диаметра происходят в среднем раз в миллион лет. Частицы же размером от пылинок до небольшого булыжника сыплются на нашу планету практически непрерывно. Влетая в атмосферу со скоростью в десятки километров в секунду, они нагреваются от трения о воздух и сгорают, не достигнув поверхности Земли. Такова судьба более 99% космических обломков. Лишь самые крупные из них долетают до поверхности, образуя кратеры, которые сравнительно быстро разрушаются эрозией. Поэтому на нашей планете известно не так уж много метеоритных кратеров — всего около 170.
Другое дело Луна , где нет атмосферы. Ее поверхность сплошь покрыта кратерами, поперечником от нескольких сантиметров до сотен километров. Подавляющее большинство из них очень древние. Более 4,5 миллиарда лет назад из пыли и каменистых обломков, вращавшихся вокруг Солнца, шло формирование планет и спутников. Частицы постепенно слипались в крупные комки, и на поверхность этих протопланет падали все новые фрагменты. Так продолжалось, пока около 4 миллиардов лет назад рой обломков не иссяк. Многочисленные лунные кратеры — это свидетельства последнего этапа, называемого «интенсивной бомбардировкой».
Космические ударники
Метеоритные, или ударно-взрывные, кратеры — это наиболее распространенные формы рельефа на многих планетах и спутниках в Солнечной системе и даже на столь малых объектах, как астероиды. На нашей планете средняя скорость при метеоритных ударах составляет около 20 км/с, а максимальная — около 70 км/с. При встрече метеорита с твердой поверхностью его движение резко замедляется, а вот породы мишени (так называют то место, куда он упал), наоборот, начинают ускоренное движение под воздействием ударной волны. Она расходится во все стороны от точки соприкосновения: охватывает полусферическую область под поверхностью планеты, а также движется в обратную сторону по самому метеориту (ударнику). Достигнув его тыльной поверхности, волна отражается и бежит обратно. Растяжения и сжатия при таком двойном пробеге обычно полностью разрушают метеорит.
Ударная волна создает колоссальнейшее давление — свыше 5 миллионов атмосфер. Под ее воздействием горные породы мишени и ударника сильно сжимаются и нагреваются. Частично они плавятся, а в самом центре, где температура досгигает 15 000 °C, — даже испаряются. В этот расплав попадают и твердые обломки метеорита . В результате после остывания и затвердевания на днище кратера образуется слой импактита (от английского impact — удар) — горной породы с весьма необычными геохимическими свойствами. В частности, она весьма сильно обогащена крайне редкими на Земле, но более характерными для метеоритов химическими элементами — иридием, осмием, платиной, палладием. Это так называемые сидерофильные элементы, то есть относящиеся к группе железа (по-гречески — sideros).
Мгновенное испарение части вещества приводит к взрыву, при котором породы мишени разлетаются во все стороны, а дно вдавливается. Возникает круглая впадина с довольно крутыми бортами, но существует она какие-то доли секунды — затем борта немедленно начинают обрушиваться и оползать. Сверху на эту массу грунта выпадает и каменный град из вещества, выброшенного вертикально вверх и теперь возвращающегося на место, но уже в раздробленном виде. Так на дне кратера образуется брекчия — слой обломков горных пород, сцементированных тем же материалом, но измельченным до песчинок и пылинок.
Столкновение, сжатие пород и проход взрывной волны длятся десятые доли секунды. Формирование выемки кратера занимает на порядок больше времени. А еще через несколько минут ударный расплав, скрытый под слоем брекчии, начинает быстро затвердевать. И вот уже готов свеженький, с пылу с жару, ударный кратер.
При сильных столкновениях твердые породы ведут себя подобно жидкости. В них возникают сложные волновые гидродинамические процессы, один из характерных следов которых — центральные горки в крупных кратерах. Процесс их образования подобен появлению капли отдачи при падении в воду небольшого предмета. При сильных ударах выброшенный из кратера материал может даже улететь в космос. Именно так на Землю попали метеориты с Луны и с Марса , десятки которых обнаружены за последние годы.
Аризонский калькулятор
Размер получившегося кратера зависит от скорости и угла падения, состава ударника и мишени (каменный метеорит или железный, скальные породы на планете или рыхлые), а также от силы тяжести на поверхности небесного тела. Например, при одинаковой энергии удара на Луне образуется кратер вдвое большего диаметра, чем на Земле.
В одном из ведущих планетологических центров мира — Луннопланетной лаборатории Университета Аризоны в городе Тусон разработали специальный интерактивный калькулятор, позволяющий рассчитать последствия падения на Землю крупного метеорита или астероида ( www.lpl.arizona.edu/impacteffects ). В числе прочего этот калькулятор вычисляет размеры образующегося кратера и воздействие на наблюдателей, которые находятся на заданном расстоянии от места катастрофы. Бывает интересно с его помощью оценивать сообщаемые в новостях сведения о возможных последствиях падения того или иного объекта.
Характерно, что при малом размере метеорита аризонский калькулятор отказывается оценивать размер кратера. Небольшой космический обломок либо полностью сгорит в воздухе, либо потеряет скорость и упадет, как простой камень. В последнем случае на поверхности, конечно, появится выбоина, но она сильно отличается от ударно-взрывного кратера, который на Земле не может быть меньше нескольких сотен метров. Для других планет эта величина зависит от плотности атмосферы. Например, на Венере с ее чрезвычайно плотной газовой оболочкой диаметр минимального кратера — более километра, а на Марсе до поверхности почти без потери скорости долетают и небольшие метеориты, формирующие кратеры десятиметрового размера. На небесных телах, лишенных атмосферы, например, на Меркурии , Луне и многих других спутниках планет, кратеры порождаются метеоритами любого размера и могут быть даже сантиметровыми.
Земля — кратер Маникуаган. Легенда о пережатых артериях
Опасные маневры астероида
Крупные метеориты, образующие на Земле ударный кратер, падают чрезвычайно редко. Однако не исключено, что менее, чем через 30 лет землянам предстоит стать свидетелями такого события. Открытый всего пять лет назад астероид Апофис невелик по космическим масштабам. Его точный диаметр пока не определен, но, по оценкам, составляет 300—400 метров. Он не вызывал бы беспокойства, если бы его путь не пролегал в опасной близости от Земли. По расчетам астрономов, каждые 1300 лет этот астероид на несколько десятилетий оказывается неподалеку от нашей планеты, и с ним происходит серия довольно близких встреч с интервалами примерно в 5—10 лет, после чего небесные пути Земли и астероида вновь надолго расходятся.
В 2029 году Апофис пройдет на расстоянии около 33 000 километров от Земли. При этом воздействие гравитационного поля нашей планеты может так изменить орбиту Апофиса, что при следующей встрече, в 2036 году, он пройдет еще ближе и, быть может, даже столкнется с Землей.
Расчеты, выполненные на основании нынешних, недостаточно точных данных о его движении, показывают, что падение в 2036 году может произойти в узкой полосе шириной в несколько десятков километров, проходящей от севера Казахстана через Сибирь к Магадану, далее от Камчатки через Тихий океан до Никарагуа, по северу Колумбии и Венесуэлы , а затем по Атлантическому океану до западного берега Африки.
В населенной местности падение приведет к тотальным разрушениям в радиусе 100 километров от места удара. Возникнет кратер диаметром несколько километров, а в стратосферу будет выброшено значительное количество пыли, что существенно сократит поступление солнечного тепла на всей Земле. В случае же падения в океан, даже вдали от берегов, возникнет сильнейшее цунами, которое уничтожит все прибрежные города.
Планетное общество США , штаб-квартира которого находится в Калифорнии, недалеко от побережья Тихого океана, уже провело в 2008 году конкурс на лучший проект защиты от столкновения с Апофисом. Он был приурочен к столетию Тунгусского события , которое остается пока крупнейшим вторжением из космоса, произошедшим на памяти человечества.
Среди проектов защиты от астероида — высокоскоростной удар металлической «болванкой» массой в одну тонну, ядерный взрыв на поверхности астероида, покраска его поверхности, с тем чтобы орбита изменилась под воздействием давления солнечного излучения и «гравитационный трактор», висящий над астероидом с работающими ионными двигателями малой тяги и постепенно смещающий его на новую орбиту своим гравитационным притяжением. Но для начала к Апофису, скорее всего, будет отправлена небольшая автоматическая станция, которая сфотографирует его поверхность, изучит гравитационное поле, по которому можно судить о внутреннем строении астероида, а главное — сбросит на него радиомаяк для точного отслеживания его траектории с Земли. Этот сравнительно недорогой проект американских инженеров занял первое место на конкурсе Планетного общества. Только после уточнения параметров движения астероида станет возможным планировать коррекцию его траектории. Ведь самое страшное, что может произойти, — это поторопиться и подтолкнуть астероид в неправильном направлении, прямо на нашу планету.
Луна — кратер Циолковский. Темное око на затылке земного спутника
Богатства «звездных ран»
Еще в конце XVII века английский астроном Эдмунд Галлей высказал предположение, что кометы могут падать на Землю, вызывая глобальные катастрофы, сходные с библейским Всемирным потопом. Он даже полагал, что от подобного столкновения возникла впадина Каспийского моря — в те времена Каспий изображался на картах в виде круга, напоминающего гигантский кратер. Однако подобные идеи оставались не более чем предположениями, пока на Земле не стали обнаруживать реальные свидетельства подобных катастроф. Обычно это не впадины рельефа, как на Луне, а кольцевые структуры, представляющие собой следы былых кратеров, практически стертых с поверхности Земли активной геологической деятельностью, прежде всего водной эрозией. Геологи назвали их астроблемами, что в переводе с греческого означает «звездные раны».
В местах падения небесных тел на Землю нередко формируются разнообразные залежи полезных ископаемых. Причем месторождения в астроблемах бывают уникальны по масштабам и минеральному составу. Так, на севере Сибири в Попигайском кратере диаметром 100 километров найдены алмазы, образовавшиеся при ударе метеорита в породы, содержавшие графит. Многие астроблемы служат промышленными источниками руды, например, около половины произведенного в мире никеля связано с месторождением Садбери в канадской провинции Онтарио. Считается, что овальная в плане геологическая структура размером 60x25 километров, в которой ведется добыча, образована в далеком прошлом при падении крупного метеорита. Наряду с никелем в Садбери добывают еще и более дорогие металлы платиновой группы, а также медь, кобальт, селен, теллур, золото, серебро. Эти элементы вовсе не были занесены на Землю метеоритом. Колоссальный взрыв привел к растрескиванию недр на большую глубину, и оттуда по разломам стали поступать вещества, сформировавшие рудное поле, которое считается одним из богатейших в мире.
К числу крупнейших и древнейших астроблем, возможно, относится Средне-Уральская кольцевая структура диаметром 550 километров. Восточная часть вала этой структуры отчетливо выражена в виде довольно резкого дугообразного изгиба среднего участка Уральской горной цепи, которая в целом идет почти строго с севера на юг. Подавляющее большинство уральских месторождений полезных ископаемых сосредоточено именно в этой дугообразной, наиболее низкой части Уральских гор, называемой Средним Уралом. Здесь добывали, да и до сих пор еще добывают железо, медь, хром, никель, титан, уран, золото и другие металлы, здесь же сосредоточены месторождения золота и знаменитых самоцветов. Залежи приурочены к разломам земной коры, напоминающим очертаниями гигантскую астроблему. Эти разломы и служат «выводящими каналами» для поступления рудного материала из глубин земных недр. Внутренняя же часть этого гигантского кратера постепенно заполнилась осадочными породами, в которых возникли нефтяные месторождения Волго-Камского региона.
Помимо формы, астроблемы выделяются «чужеродностью» геологического строения по отношению к окружающей местности. Породы, вскрытые при образовании кратера, резко отличаются по возрасту и на геологической карте видны, как своего рода кляксы. Отличаются и ландшафты, сформированные на местах бывших кратеров, — на фоне однородной степи или тайги привлекают внимание участки с концентрическим расположением речной сети, растительности, почв, что хорошо видно на космических снимках. Вот почему с появлением спутников, проводящих съемку нашей планеты, резко увеличилось количество обнаруженных следов древних падений метеоритов.
Испытания прототипов марсианских автомобилей и скафандров в метеоритном кратере на канадском острове Девон (цвета искусственные). Фото: HAUGHTON-MARS PROJECT/ P. LEE
Катастрофа на Юкатане
Если бы 65 миллионов лет назад кто-то мог взглянуть на Землю со стороны, он увидел бы над районом нынешнего мексиканского полуострова Юкатан грандиозный взрыв, выбросивший в околоземное пространство огромную массу вещества в виде гигантской воронки. По мнению многих исследователей, тогда наша планета столкнулась с астероидом, имевшим примерно 10 километров в поперечнике. В атмосфере Земли он развалился на обломки, которые, падая на поверхность планеты, произвели страшные разрушения. Взрыв колоссальной мощности выжег все живое в регионе, вызвал землетрясения, ураганы, волну цунами высотой до 100 метров и связанные с ней наводнения. Облака пыли, дыма, пепла и пара окутали всю Землю, затмив солнечный свет на несколько лет, прошли кислотные дожди. Наступило долговременное похолодание. Это вызвало массовую гибель многих видов растений и животных. Некоторые ученые считают, что подобные катаклизмы происходили в истории Земли неоднократно.
Картина этой катастрофы воссоздана по результатам исследования очень крупного, диаметром 180 километров, кратера, расположенного на северной оконечности полуострова Юкатан. Свое название этот гигантский кратер получил от расположенного практически в его центре небольшого поселения Чикшулуб. Несмотря на столь крупные размеры кратера, его обнаружили лишь 30 лет назад. Дело в том, что он перекрыт толстым слоем геологических напластований, и к тому же на суше находится только южная половина кратера, а остальная его часть расположена на морском шельфе и, помимо осадочных пород, скрыта еще и водами Мексиканского залива. Гравиметрическая съемка позволила получить изображение этой кольцевой структуры, недоступной непосредственному наблюдению.
Времени образования этого кратера соответствуют глинистые отложения, в которых содержание крайне редкого на Земле иридия в 15 раз выше фонового. Этот иридиевый слой как раз служит границей, отмечающей окончание мелового геологического периода, для которого типичны окаменелые останки динозавров. В более поздних отложениях их уже почти не находят. Отсюда и возникло предположение, что к вымиранию этих гигантов, а также еще очень многих видов фауны мелового периода, привело изменение климатических условий, вызванное падением гигантского метеорита, образовавшего кратер Чикшулуб. Впрочем, надо отметить, что с этой точкой зрения согласны далеко не все палеонтологи.
Марс — кратер Тихонравов. Почему они не прилетают?
Метеоритные инкубаторы
Недавние исследования показали, что, возможно, именно ударные кратеры, образовавшиеся при падениях метеоритов, стали теми оазисами, где возникла и начала развиваться жизнь на нашей планете. Американо-канадская научная группа несколько лет работала в метеоритном кратере Хогтон на острове Девон в Канадской Арктике. Этот кратер диаметром 24 километра хорошо выражен в рельефе. В условиях холодной арктической пустыни в нем почти нет растительности, что облегчает геологическое изучение. Кроме того, ландшафт и климатические условия здесь в определенной степени напоминают марсианские, и поэтому прямо внутри кратера были установлены легкие каркасные домики палатки необычной, цилиндрической формы, имитирующие базу на Марсе. Здесь испытывались прототипы скафандров и средств передвижения по поверхности Марса — четырех- и шестиколесных «марсоциклов», на каждом из которых может ехать один человек. Именно в окрестностях этого полуфантастического поселения и были сделаны находки, позволившие по-новому взглянуть на роль ударных кратеров в зарождении и эволюции жизни.
Геолог Канадского космического агентства Гордон Осински, тщательно проанализировав минералы из пород, слагающих этот кратер, установил, что 23 миллиона лет назад при взрыве, образовавшем кратер, возникла сеть глубоких трещин, по которым из недр к поверхности стала поступать горячая вода с растворенными в ней солями. Через десятки тысяч лет температура этих геотермальных источников понизилась настолько, что в них смогли жить микроорганизмы. Сама впадина кратера также способствовала созданию благоприятных для жизни условий, защищая от внешних воздействий и концентрируя своими склонами солнечное тепло. В кратере возникло озеро, просуществовавшее продолжительный период, и сейчас слои отложений, накопившихся на его дне, служат свидетельствами изменений, происходивших на нашей планете в прошлом. Гидротермальные образования вообще считаются благоприятными местами для развития жизни, и именно их следы обнаруживаются во многих ударных кратерах.
На любой планете подобные кратеры представляют собой наиболее интересные объекты, которые потенциально могут хранить следы прошлой жизни. Прежде всего это относится к Марсу, где поиски следов жизни целесообразнее всего вести внутри метеоритных кратеров. Если ранее считалось, что их образование должно приводить лишь к таким изменениям окружающей среды, которые вызывают массовые вымирания видов, то новый взгляд свидетельствует об обратном: ударные кратеры могли быть удобными местами обитания живых организмов, особенно в холодных областях земного шара. Согласно современным представлениям, жизнь на Земле возникла около 3,8 миллиарда лет назад — как раз в то время, когда закончилась интенсивная метеоритная бомбардировка и кратеры в изобилии покрывали поверхность молодой планеты. Возможно, они и стали уютными «гнездышками», а скорее «аквариумами» для первых обитателей Земли.
Мюнхен: между монархией и анархией
«Вот собираюсь съездить в Мюнхен», — говорю я Рейнхарду, единственному настоящему баварцу в кругу моих знакомых. «В Мюнхен? А зачем?» — на лице коренного мюнхенца Рейнхарда написано полное недоумение. В этом весь Мюнхен: сюда не ездят. Здесь живут. Богатый, сытый город, где все — «самое лучшее» в Германии (от футбольной команды до оперы), не понимает и не принимает охотников до перемены мест. Турист вызывает у настоящего жителя баварской столицы даже не жалость, а презрение.
По этой же причине мюнхенцы старательно избегают достопримечательностей. Обитателю какого-нибудь респектабельного района — Лехеля или Швабинга — никогда не придет в голову в выходные прогуливаться по центру. Тот же Рейнхард, которого журналистская судьба заставила «эмигрировать» на неприветливую и неискреннюю (как он считает) «Рейнщину», признается, что первое время удивлялся кельнцам: «В воскресенье в центре яблоку негде упасть. А почему? Потому что все любуются на собственный город!» Для мюнхенца это немыслимо: его влекут не всем известные площади и улицы, а живописные предгорья Альп, до которых рукой подать, озеро Тегерн, деревни Верхней Баварии с их простой, но отменной кухней или тот же Фрайзинг — место, от которого «есть пошел» Мюнхен.
Оплот монахов
Расположенный примерно в 30 километрах от Мюнхена, город Фрайзинг дал баварской столице и стране две фундаментальные вещи: христианство и пиво. В 724 году епископ Корбиниан явился сюда с миссионерскими намерениями к Гримоальду — герцогу из первой династии племенного союза баваров. Они пришли на землю, где раньше жили кельты, откуда-то с берегов Эльбы и Влтавы, из Богемии (Чехии). А эта страна тогда уже была заселена в основном славянами. Теперь в Германии часто и охотно шутят, что баварцы-то, мол, и не германцы вовсе.
Так или иначе, первосвятитель Корбиниан обнаружил, что здешние жители уже усвоили некоторые протохристианские верования, конечно, в причудливом смешении с разнообразными языческими. Он навел порядок в этой хаотической религиозной практике и основал на горе Нэрберг бенедиктинский монастырь.
Там в начале XI века и сварили первое немецкое пиво: монахи, как известно, — мастера готовить всякие укрепляющие тело и веселящие дух напитки. Фрайзингский сорт выпускается по сей день, а сам Фрайзинг, как и прежде, — оплот жизнерадостного и жизнестойкого баварского католицизма. Здесь, скажем, и сегодня запрещено чему бы то ни было (включая столбы телефонной связи) «возноситься» выше соборных колоколен. А еще этот городок — традиционный конечный пункт велосипедных прогулок мюнхенцев.
Но что касается приезжих, их всегда неудержимо тянет в центр. Не станем противиться этому обычаю и мы, тем более что расстояния тут невелики. Ведь центр сложился в те времена, когда Мюнхен был всего лишь деревней при монастыре.
Колокольня Фрауенкирхе — уникальная площадка для осмотра города с высоты птичьего полета
К слову о монахах
На «Петровой горке» — единственном холме посреди плоского, как тарелка, Мюнхена — так и стоит самая старая церковь города, Святого Петра. Но самый известный городской собор — построенная уже в конце XV века Фрауенкирхе, освященная во славу Девы Марии.