Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Пинбол-эффект. От византийских мозаик до транзисторов и другие путешествия во времени - Джеймс Ли Берк на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Дэви, в частности, занимался проблемой безопасности в шахтах. В 1813 году на руднике в Гэйтсхеде-на-Тайне на севере Англии в результате страшного взрыва метана погибли девяносто два горняка. После серии опытов для определения условий, необходимых для взрыва метана, Дэви сконструировал особую шахтерскую лампу, которая теперь носит его имя. Он пришел к выводу, что если пламя лампы окружить тонкой проволочной сеткой, то воспламенения горючих газов в окружающем воздухе не происходит. За это изобретение он получил премию в две тысячи фунтов и приглашение в Лондонское королевское общество.

Вторым человеком, который заявил, что он изобрел такую же лампу, был некий полуграмотный машинист, работавший в шахте. Ему не дали патент даже несмотря на то, что его изобретение уже использовалось в шахтах и основывалось на том же самом принципе (пламя было закрыто металлической пластиной с дырочками). Его сторонники пришли в ярость от такой несправедливости, устроили сбор средств и выплатили ему отдельную премию в две тысячи фунтов. Эти деньги не только смягчили гнев изобретателя, но и позволили ему продолжить работу, которая по своему историческому значению ни с какой лампой сравниться не может. Второе его озарение помогло сократить огромные расходы Британской империи на войну с Наполеоном.

Одним из последствий этой войны была сильная инфляция и быстрый рост цен. Владельцы угольных шахт отчаянно искали более дешевые способы транспортировки угля, особенно в условиях резкого, «реактивного», как мы сказали бы сегодня, роста цен на фураж для лошадей. Забавно, но второе детище талантливого шахтера по имени Джордж Стефенсон100 — 25, которое будет перевозить уголь быстрее и дешевле, также имело «реактивное» название — паровоз «Ракета». Это изобретение перевернет мир. Популярность «Ракеты» у угольщиков объяснялась тем, что в качестве топлива она потребляла их же уголь, а когда локомотивы стали перевозить и другие товары, то стали крупнейшими «потребителями» угля в истории.

Превосходство «Ракеты» перед другими паровозами объяснялось революционной конструкцией парового котла, которую придумал Стефенсон. Для движения паровоза нужен был пар максимально высокого давления. Стефенсон решил эту задачу при помощи медных трубок с водой, выходящих из котла и дополнительно нагреваемых продуктами сгорания топлива. Трубки обеспечивали значительно бóльшую площадь нагрева, а следовательно, и более высокое давление пара. Пар приводил в движение поршни паровой машины, а поршни вращали колеса локомотива.

В 1829 году на станции Рейнхилл железной дороги Ливерпуль — Манчестер состоялось испытание нескольких моделей паровозов с призом пятьсот фунтов, и «Ракета» одержала бесспорную победу. Последнее место занял паровоз «Новелти». Его изобретатель, шведский инженер Джон Эрикссон, был так разочарован, что эмигрировал в Нью-Йорк. Его проигрыш в Рейнхилле станет определяющим фактором для хода Гражданской войны в США.

Другим призванием Эрикссона были пароходные винты. Он уже построил одно судно на винтовой тяге — пароход «Роберт Ф. Стоктон», который успешно пересек Атлантику (хотя был оснащен и парусами). В ходе этого проекта у изобретателя появились связи в Министерстве флота США. В 1861 году, в начале Гражданской войны, он написал президенту Линкольну и предложил помощь в постройке броненосцев для флота федерации. Еще десять лет назад, во время Крымской войны101 — 174, стала очевидна уязвимость деревянных кораблей для современной артиллерии. Эрикссон предложил принципиально новый проект военного судна под названием «Монитор» («Наблюдатель»). Линкольн дал согласие, и в октябре 1861 года на верфи «Континентал айрон воркс» был заложен остов нового корабля. Сто дней спустя постройка броненосца завершилась, и в январе 1862 года он был спущен на воду.


Рисунок из репортажа «Иллюстрейтед Лондон ньюс» о Гражданской войне в США, опубликованного 12 апреля 1862 года. Изображен знаменитый бой между броненосцем «Монитор» конструкции Джона Эрикссона (в центре) и броненосцем южан «Мерримак» (слева с флагом). После четырехчасового сражения «непобедимый» «Мерримак» отступил

«Монитор» не был похож на обыкновенный корабль. Его корпус едва выступал из воды, при этом осадка была мелкой — всего одиннадцать футов. На вооружении имелось два 11-дюймовых орудия, расположенных в цилиндрической вращающейся башне, а корпус был полностью бронирован сверху донизу. Судно оснастили паровой установкой и гребным винтом, водоизмещение составляло девятьсот восемьдесят семь тонн, а скорость — шесть узлов. «Монитор» идеально подходил для плана Линкольна блокировать южное побережье с моря. Благодаря своей мелкой осадке он мог свободно маневрировать в устьях рек, а низкие борта делали его трудноуязвимым для береговой артиллерии. Орудийная башня поворачивалась на триста шестьдесят градусов, так что «Монитор» мог вести огонь даже из неподвижного положения.

После первого успеха «Монитора» при Хэмптон Роудс — дуэли с судном южан «Мерримаком» — броненосцами этого типа заинтересовались в Европе, а Линкольн распорядился построить еще шесть аналогичных судов. Блокада побережья, успеху которой помог новый корабль, имела своей целью перекрыть пути вывоза хлопка, главного источника благосостояния южан. В план блокады также входил захват нескольких портов, и одним из них был Порт-Ройял, расположенный на барьерных островах у побережья Южной Каролины. В 1861 году Порт-Ройял был занят силами Конфедерации и превращен в ремонтную базу флота.

С 1862 года Порт-Ройял стал местом проведения самого необычного социального эксперимента за всю историю США. Более десяти тысяч черных рабов, живших на островах, получили свободу и право сформировать местные органы самоуправления. Им было выделено шестнадцать тысяч акров земли, оставленной плантаторами и конфискованной Бюро по делам беженцев и вольноотпущенников. Участки площадью до сорока акров на семью предоставлялись в полную собственность по цене 1,25 доллара за акр (с выплатой в рассрочку под низкий процент). Для негров были открыты школы, в которых преподавали чтение, письмо, географию, шитье и арифметику, а обучением занимались выпускники Йеля, Гарварда и Университета Брауна.

После окончания войны, начиная с 1865 года, бывшие плантаторы потянулись обратно. Благодаря усилиям лоббистов в Вашингтоне, а также сомнительным успехам бывших рабов в ведении фермерского хозяйства, власти в конце концов разрешили «прощенным» помещикам вернуться и получить обратно свои угодья. Незначительное количество земель осталось в собственности вольноотпущенников, но в целом эксперимент сочли неудачным. Таким образом, вскоре на островах стали снова выращивать знаменитый местный хлопок сорта си-айленд.

Изначально хлопок был завезен из Карибского бассейна, однако к концу XVIII века его выращивание с успехом освоили в Южной Каролине. Этот хлопок очень высоко ценился за свои прочные шелковистые волокна кремового цвета, достигавшие в длину четырех с половиной сантиметров. К середине XIX века хлопок си-айленд использовали преимущественно для пошива нижнего белья и дамских нижних юбок (порядочная южанка носила не менее шестнадцати нижних юбок). Экономика южных штатов к этому моменту практически полностью зависела от хлопка, большая часть которого импортировала Англия. Английская хлопчатобумажная промышленность была «сердцем» промышленной революции. Если в 1780 году в Англии было всего сто хлопкопрядильных мануфактур, то к 1830 году их стало более тысячи, и появлялись все новые предприятия. В 1820 году около восьмидесяти процентов всего хлопка приходило из США. Рабский труд и применение хлопкоочистительных машин102 — 79 обеспечивали столь низкую цену, что индийские поставщики не выдерживали конкуренции. Хотя из-за Гражданской войны поставки были нарушены, к 1880 году они полностью вернулись к довоенным объемам и английские фабрики возобновили круглосуточную работу (спасибо газовому освещению).

Оснащенные паровыми машинами текстильные производства располагались в местах, богатых углем, — главным образом в графстве Ланкашир в центральной Англии. Где был уголь, там был и светильный газ103 — 2960, так что фабрики, оснащенные газовыми рожками, не останавливались даже ночью, и объемы выпуска продукции удвоились.

Газовое освещение значительно сокращало риск возникновения пожаров: один газовый рожок давал столько света, что заменял двадцать три свечи. Газ стремительно набирал популярность. Рожками были оборудованы улицы почти всех городов Великобритании, в 1850 году газ появился в Торонто, а в 1872 году — в Токио. Освещение улиц в будущем сулило большие прибыли, это привлекло внимание Томаса Эдисона104 — 314155, который бахвалился, что сможет сделать электричество настолько дешевым, что при свечах будут ужинать лишь богачи. В 1882 году он открыл первую электростанцию на Перл-стрит в Нью-Йорке. Это событие привело в ужас производителей газа и резко сократило инвестиции в их предприятия. Тремя годами позже ученик Роберта Бунзена105 — 86196 (уж он-то смыслил в газе) нашел способ продлить жизнь газовым компаниям еще на несколько десятилетий.

Карл Ауэр фон Вельсбах, так его звали, был сыном директора императорской типографии в Вене. Во время работы в лаборатории Бунзена в Гейдельберге Вельсбах очень заинтересовался «редкими землями». В ходе экспериментов он обратил внимание, что некоторые соли, содержащие редкоземельные элементы, ярко светятся при нагревании. Продолжив исследования, он обнаружил, что если поднести к пламени газового рожка кусок сетчатой ткани из хлопка си-айленд, обработанный нитратом тория с примесью солей церия106 — 311, то сетка будет светиться ярким белым светом.

В 1885 году Вельбах получил патент на калильную сетку для газового фонаря. Это изобретение повысило яркость газовых рожков примерно в семь раз, помогло текстильщикам107 — 290 и дальше работать при газовом освещении и производить ткань быстро и дешево, и таким образом продлило век газового рожка до начала Первой мировой войны. Только тогда электричество стало более выгодным источником освещения. Калильные сетки до сих пор используются в туристских газовых фонарях. Вельсбах посвятил всю свою оставшуюся жизнь поиску и изучению редкоземельных элементов, но общественное признание и титул баронета он получил именно за усовершенствование газового рожка. Для пущей важности в качестве своего дворянского девиза он избрал слова «Больше света!».

Тем временем для некоторых производств, особенно в текстильной отрасли, все бoльшую важность приобретало качество и состав воздуха в производственных помещениях. Для изготовления и обработки волокон ткани и нитей была необходима определенная температура и уровень влажности. Первые системы кондиционирования воздуха появились на американских ткацких фабриках еще в 1838 году. Они увлажняли воздух при помощи роторного насоса и форсунок для подачи воды, что предохраняло нити от разрыва. В 1890 году продувка воздуха надо льдом поддерживала прохладу в Карнегихолле и создавала условия для хранения товара на складах фирмы «Истман Кодак»108 — 45.

Именно текстильной промышленности мы должны сказать спасибо за идею кондиционирования воздуха. Сам этот термин был впервые использован фабрикантом Стюартом У. Крамером в докладе для Американской ассоциации производителей хлопковых тканей. Слово «кондиционирование» относилось не к качеству воздуха, а к состоянию, или кондиции, хлопкового волокна. Первым настоящим кондиционером в современном смысле этого слова можно считать устройство, предложенное в 1902 году инженером из Буффало Уиллисом Кэрриером. Принцип действия был следующим: воздух, нагнетаемый в помещение, проходил через катушки из медных трубок, внутри которых циркулировала холодная вода, и таким образом охлаждался. Температура в помещении регулировалась при помощи изменения температуры воды в медных трубках и скорости подачи воздуха.

Однако настоящий прорыв в регулировании температуры произойдет благодаря появлению новых материалов для термоизоляции. Первый шаг на пути их изобретения сделали создатели двух так называемых «стеклянных платьев». Одно из них сшили для испанской принцессы Эулалии, другое предназначалось звезде Бродвея Джорджии Кайван. Второе платье демонстрировалось на Всемирной выставке 1893 года в Чикаго109 — 4273, а сейчас выставлено в Музее искусств и ремесел в городе Толедо штата Огайо. Платья вызвали большой ажиотаж, хотя создавались, скорее, для рекламных целей и перспективы попасть в серийное производство и модные магазины не имели. Кроме всего прочего, они были страшно дороги в производстве. Ткань плелась из шелковых и стеклянных нитей и выглядела как сверкающий атлас. Изготовил ее Эдвард Драммонд Либби, владелец компании, выпускающей стекло. В 1903 году Либби и его управляющий Оуэнс создали новую фирму «Оуэнс боттл машин», а позже — один из крупнейших американских стекольных концернов «Оуэнс-Иллинойс».

Первая мировая война вывела производство стекла на принципиально новый уровень. Потребовалось огромное количество линз для биноклей, фотоаппаратов, прицелов и кинопроекторов. Ранее бóльшая часть оптики закупалась в Германии, так что с началом войны ее запасы стали быстро подходить к концу. В целях обеспечения обороноспособности страны Национальный научно-исследовательский совет США постановил наладить выпуск шести различных типов линз силами американских производителей. Ежедневно для военных нужд требовалось производить около пятисот килограммов линз. Производство стекла превратилось в масштабную и наукоемкую отрасль промышленности.

«Оуэнс-Иллинойс» и другой стекольный гигант, компания «Корнинг», начали сотрудничать в исследовательской сфере, и по окончании войны в производстве стекловолокна произошел значительный прогресс. Появились стеклянная пряжа, которую можно было использовать для электроизоляции и создания фильтрующей ткани, и стекловата — очень легкое изолирующее покрытие. Стекловолокно получали продавливанием жидкого стекла сквозь мелкие отверстия в платиновом плавильном сосуде, затем волокна скручивались в нить и наматывались на барабан. Из нитей можно было сделать шнуры или полотно, а затем расплавить, придав стеклу нужную форму. Во время Второй мировой войны стекловолокно использовали для производства немагнитных мин, сбрасываемых топливных баков для самолетов и различных видов термоизоляции.

После войны представители «Оуэнс-Иллинойс» пошли в народ и стали устраивать выездные презентации своей продукции. Например, они демонстрировали будильник в контейнере из стекловолокна, который не было слышно снаружи, или мороженое, не таявшее в таком контейнере, хотя рядом стояла разогретая плита, показывали трюк со спортсменом-тяжеловесом, который раскачивался на тонких лентах стекловолокна, или просто просили кого-нибудь из публики разбить стекловолокно кувалдой. Последнее, кстати, так никому и не удалось.

В 1951 году Чарльз Таунс сидел на скамейке в вашингтонском парке и коротал время перед встречей в Управлении исследовательских работ ВМС США. Он был физиком и занимался передачей радиосигнала в водной среде. Внезапно на него снизошло озарение, которое произведет переворот в применении стекловолокна: молекулы можно заставить колебаться и испускать микроволновое излучение. В лаборатории он провел опыт и установил, что под действием тепла или электричества молекулы аммиака вибрируют с частотой двести сорок миллиардов колебаний в секунду. Таунс предположил, что если возбужденные молекулы можно подвергнуть воздействию микроволнового излучения той же частоты, молекулы аммика также станут испускать микроволны с большей энергией и возбуждать другие молекулы аммиака, таким образом, произойдет своего рода цепная реакция.

В 1953 году Таунс получил когерентный поток микроволн в ходе процесса, который получил название усиление микроволн посредством вынужденного излучения, или мазер (англ. MASER — microwave amplification by stimulated emission of radiation). В 1960 году Теодор Майман продолжил исследования в этом направлении и использовал в экспериментах рубиновый цилиндр с параллельными основаниями, покрытыми серебром. Для «накачки» энергии применялась импульсная ксеноновая лампа. Прозрачная поверхность цилиндра пропускала свет, при помощи электромагнитов частота колебаний в рубине подстраивалась под частоту поступающего света, и в результате происходил выброс монохроматического микроволнового излучения. Посеребренные стенки цилиндра отражали излучение в обоих направлениях, его интенсивность росла, и в итоге возникал необыкновенно мощный когерентный луч света.

Этот процесс усиления интенсивности света стали называть усилением света посредством вынужденного излучения, или лазер (англ. LASER — light amplification by stimulated emission of radiation). Дальнейшие исследования в этой области показали, что более подходящим материалом для лазера является не рубин, а сверхчистое стекло, обработанное неодимом, редкоземельным металлом, который открыл еще Вельсбах и пытался использовать для своей калильной сетки. Неодимовые лазеры позднее применят для возбуждения молекул других материалов и получения еще более мощных лучей.

Во время первых запусков по программе «Аполлон» было установлено, что когерентность лазера настолько высока, что на расстоянии от Земли до Луны пучок расширяется всего на несколько футов. Сегодня луч лазера с одинаковой легкостью разрезает и сетчатку человеческого глаза, и сталь, а также используется для высокоточных измерений и передачи оцифрованных данных по оптоволоконным сетям. Лазерными эндоскопами освещают операционное поле в неинвазивной хирургии, лазер дробит камни в почках, не повреждая органы человеческого тела. Он строит голограммы, определяет даже самые незначительные примеси в газе110 — 197240, сканирует кору головного мозга, выявляет дефекты в материалах, помогает предотвращать лесные пожары и обнаруживать из космоса даже незначительные подвижки земной коры — предвестники землетрясений.

Одно из самых последних, весьма эффектных применений лазера можно было наблюдать во время военной операции в Персидском заливе. Так называемые «умные бомбы» сбрасывались с самолета и наводились на цель с точностью до миллиметра при помощи лазерного луча с самолета-наводчика. Горькая ирония состоит в том, что главу, начатую с рассказа о пряностях Ближнего Востока, мы заканчиваем бомбой, которую солдаты в шутку называют «маринованным огурчиком».

Умные бомбы — одна из новинок в арсенале сил быстрого реагирования, которые действуют в новом мире, преодолевшем холодную войну, где ключевую роль играет гибкость военного ответа. Так было испокон веков…

6

Быстрое реагирование

Успех в войне достается той армии, действия которой наиболее адекватны ситуации, способной быстро и вовремя сконцентрировать ресурсы и огневую мощь в заданной точке, а затем без задержек и потерь передислоцироваться для выполнения новой задачи. Быстрое реагирование было ключом к победе во все времена.

Среди первых видов оружия для ведения войны был лук. Парадоксально, но широкое применение такой его разновидности, как большой английский лук, вызвало череду событий, приведших к изобретению, без которого невозможна современная высокотехнологичная армия и без него мы не справились бы с событиями, произошедшими после окончания холодной войны.

Никто не знает, где именно возник большой лук, но первые упоминания в источниках указывают на Уэльс. Гиральд Камбрийский (также известный как Гиральд де Барри), священник и политический деятель XII–XIII веков оставил удивительные заметки о событиях того времени. В 1188 году Гиральд сопровождал епископа Кентеберийского Болдуина в его путешествии по Уэльсу в поддержку Третьего крестового похода. До нас дошло описание этой поездки, полное местных легенд и замечательных историй. Один из таких эпизодов случился при осаде замка Абергавенни: «Два воина бежали по мосту, чтобы укрыться в башне замка. Валлийские лучники стреляли по ним сзади, и две стрелы ударились в дубовые ворота башни с такой силой, что наконечники насквозь пронзили доски толщиной с руку и были оставлены там на память». Гиральд пишет, что сам видел эти стрелы, и в дополнение рассказывает о случае, когда лучник ранил в ногу английского солдата: стрела пробила латы, пронзила насквозь бедро, прошла сквозь седло и в довершение убила лошадь.

В XIV веке английские короли уже имели в своих армиях батальоны лучников-валлийцев. Искусство стрельбы и дальнобойные качества их луков (они били почти на четыреста метров) делали валлийцев грозными противниками. В бою они стояли к врагу боком и в них было трудно попасть. Опытный лучник выпускал до пятнадцати стрел в минуту, при этом стрелки стояли рядами — пока одни, выпустив стрелы, перезаряжали луки, другие сразу же давали новый залп. Непрекращающийся ураган стрел сулил противнику страшные потери. Подсчитано, что во время битвы между англичанами и французами при Креси всего было выпущено более полумиллиона стрел. Обладая дальнобойными луками и почти не неся поклажи, лучники имели огромное тактическое преимущество перед всадниками и копьеносцами — они могли мгновенно реагировать на быстро меняющуюся обстановку боя.

Лучники становились народными героями своего времени, и самым легендарным был Робин Гуд, по преданию попадавший в стрелу с нескольких сотен ярдов. О Робине Гуде существует больше мифов, чем о Джесси Джеймсе[5]. Первое упоминание об этом человеке в зеленых одеждах мы встречаем в поэме Лэнгленда «Видение о Петре-пахаре» (1377), где в свою очередь имеются отсылки к еще более ранним народным балладам о Робине Гуде.


Фрагмент манускрипта с изображением битвы при Креси, ставшей триумфом английских лучников. Накануне боя шел дождь, и английские стрелки предусмотрительно сняли тетиву с луков, чтобы она не пострадала от влаги. Французские арбалетчики не могли этого сделать, и их оружие было бесполезно в сражении. В левой части картины изображена пушка, образец нового оружия, которое впоследствии изменит облик войны

Существует множество противоречивых описаний личности этого разбойника. Согласно одним, это очаровательный плут, который промышлял в Шервудском лесу с веселой оравой своих приятелей, отнимал добро у богатых и раздавал беднякам. Эта версия представляется наименее вероятной, так как не имеет никаких фактических подтверждений. В других источниках это фольклорный персонаж майского праздника плодородия. Также о Робине Гуде упоминали и как о дворянине, лишенном наследства, который сражается, чтобы получить то, что ему причитается по праву, и как о крестоносце на службе Ричарда Львиное Сердце, воюющем с его братом-злодеем Джоном, который занял престол, и как о придворном аристократе из свиты короля Эдуарда II. Также упоминается некий Робин Ход из Йоркшира, сбежавший от правосудия и скрывавшийся в лесах под Барнсдэйлом.

Так или иначе, в сухом остатке этих преданий мы имеем образ народного героя, способного на поступки необычайной храбрости и мастерски владеющего оружием. В этом смысле Робин Гуд представляется очередным воплощением традиционного для многих культур мифа, который восходит еще к легендам Месопотамии, — мифа о сверхчеловеке, приходящем на помощь простым людям и освобождающем их от тягот повседневной жизни. Эта история типична для обществ, где царит произвол верховной власти, а глас народа игнорируется.

Менее возвышенная (и, скорее всего, наиболее близкая к истине) версия вырисовывается из недавно обнаруженных судебных документов деревеньки Эйри в Беркшире. Там упоминается некто Уильям Роубход, в 1261 году уже привлекавшийся к суду и сбежавший из-под стражи. Кроме него, в шайке, которую подозревали в грабежах, было еще двое мужчин и две женщины.

Кем бы ни был Робин Гуд (практически нет сомнений, что такой человек действительно существовал в XIII веке), с ним, по всей видимости, произошло то же, что и с Джесси Джеймсом, — его именем называли себя многие, и получалось, что он совершал «подвиги» одновременно в самых разных местах.

Если личность Робина Гуда, скорее всего, реальна, то совсем иначе обстоит дело с его подругой — девой Мэриан. Несмотря на литературную традицию, где эти персонажи тесно связаны, в средневековом первоисточнике она вообще не фигурирует. По правде говоря, Мэриан впервые упоминается как подруга Робина Гуда только в XVI веке. Вся романтическая история основана, по всей видимости, на музыкальной пьесе, написанной в 1283 году в городе Аррасе, во Фландрии. Автором был Адам де ла Галь, бывший священник, возможно обучавшийся искусству полифонии в Париже и оказавшийся придворным музыкантом в свите графа Робера II д’Артуа, резиденция которого как раз располагалась в Аррасе. Вполне возможно, что эта пьеса, а точнее пастораль, была написана, чтобы усладить слух воинов Роберта II в походе в южную Италию — граф отправился помочь своему кузену, королю Карлу I Анжуйскому.

В этом произведении присутствует все, что только могло потешить солдата в дальнем походе, — романтическая и слегка пикантная комедия из жизни в далеком родном краю. Пьеса написана в пасторальной манере, восходящей к искусству Древней Греции. Основу сюжета в таких произведениях, как правило, составляет история простого деревенского жителя (обычно пастуха или пастушки), которого пытается обмануть или соблазнить коварный мошенник из города. В пьесе да ла Галя героиню, счастливо избежавшую сладострастного рыцаря, зовут Марион. Перемежающееся танцами и песнями повествование развивается по каноническому сюжету: Мэрион околдована чарами рыцаря и подумывает сбежать с ним из отчего дома, в последнюю минуту осознает бесчестность этих намерений и целая и невредимая возвращается в объятия своего неотесанного жениха по имени Робэн.

Аррас был идеальным местом для людей вроде де ла Галя — в этом процветающем городе с двухсоттысячным населением безбедно существовали еще две сотни поэтов и музыкантов. В каком-то смысле его пьеса «Комедия о Робэне и Марион» имеет социальный подтекст и отражает взаимоотношения деревенских жителей, занятых разведением овец, и горожан, наживавшихся на продаже овечьей шерсти. Именно шерсти был обязан своим богатством Аррас, равно как и вся Фландрия. С раннего Средневековья прибрежные равнины Фландрии, исчерченные сетью рек, были центром овцеводства и торговли111 — 203. В Европе того периода главной отраслью промышленности было производство ткани, а Фландрия слыла столицей текстиля. Во времена де ла Галя Аррас и другие центры текстильной промышленности, Гент и Ипр, стремительно развивались и распространяли свое влияние на близлежащие деревни.

Феномен голландской промышленной революции был, по большому счету, вызван одним техническим новшеством — горизонтальным ткацким станком, позаимствованным у арабов. Он был оборудован двумя ножными педалями для подъема нитей основы ткани, что освобождало мастеру руки и он мог быстро перебрасывать ими челнок. Это ускоряло процесс изготовления материи, делало его более выгодным с экономической точки зрения, а кроме того, позволяло ткать длинное полотно. Вековой опыт работы с шерстью превратил фламандцев в лучших ткачей средневековой Европы, их ткани носили во всех известных европейцам странах. Фламандские купцы побывали всюду — от Балтики до Ост-Индии, где закупали красители, и до Ближнего востока, откуда привозили квасцы для закрепления краски.

Коммерческий успех фламандцев отчасти объяснялся новой модой конца XII века на шерстяную верхнюю одежду. Обеспеченные люди отдавали теперь предпочтение шерсти, а не популярному в прежние времена льну. Спрос превышал предложение, и у фламандцев образовалось так много заказов, что они даже стали импортировать шерсть из Англии. Текстильная промышленность развивалась стремительными темпами, что вызвало появление узких специальностей. Они касались в основном операций по обработке материала, уже сошедшего со станка. Чистильщик оттирал с ткани грязь и жир, браковщик следил за вылезшими нитями, сукновальщик разминал ткань и делал ее мягче, чесальщик зачесывал ворс вверх по ткани, резчик подравнивал ворс, а проборщик затягивал дыры.

Еще одним важнейшим фактором, обеспечивавшим жизнеспособность экономики Фландрии, являлась возможность «отодвинуть» море, чтобы получить больше пастбищной земли для сотен тысяч овец. Уже в XII веке фламандцы были специалистами по осушению земель, однако в XIII–XIV веках климатические изменения вызвали повышения уровня моря и дамбы не могли больше сдерживать наступление воды. В ночь на 19 ноября 1421 года в результате наводнения в районе Холландс Ваард были разрушены семьдесят две деревни, 42,5 тысячи гектаров земли оказалось под водой, общее число погибших составило около ста тысяч человек. Наводнения участились, самые крупные из них пришлись на 1468, 1526, 1530, 1532 и 1551 годы, а самое разрушительное из всех случилось в День всех святых в 1570 году.

Неудивительно, что в конце XVI века — после столетия непрерывных наводнений — голландцы слыли лучшими инженерами-гидравликами Европы. Одним из них был Симон Стевин. О его юности известно мало. Стевин родился в 1548 году в Брюгге и был незаконнорожденным ребенком довольно обеспеченных родителей. В молодые годы трудился по финансовой части, в двадцать с небольшим много путешествовал, побывал в Польше, России и Норвегии, а затем поступил в Лейденский университет. К тридцати восьми годам он уже получил признание как инженер и автор работ по строительству дамб, каналов и шлюзов, а также формированию песчаных отмелей. Все это было связано с сооружением так называемых польдеров: заболоченные участки огораживали дамбой, воду откачивали, насыпали грунт и оставляли высыхать.

Стевин также специализировался на ветряных мельницах. Они были главным источником энергии для подъема воды, поскольку реки по голландским равнинам текут медленно и нет возможности использовать водяные мельницы. Конструированием мельниц Стевин внес весомый вклад в расширение земледельческой территории. Он разрабатывал мельницы с большими медленно вращающимися лопастями и системами передачи, где использовал более производительные зубчатые шестерни конической формы. Он также рассчитывал размер и количество зубцов в шестернях таким образом, чтобы вычислить минимальное давление ветра на лопасти для подъема воды на определенную высоту. Таким образом, он мог знать точный объем воды, поднимаемой с каждым оборотом крыльев.

Как и у многих деятелей эпохи позднего Ренессанса, интересы Стевина были разнообразны. К ним относились математика, астрономия, навигация, военное дело, музыка, гражданское право, строительство и библиотечное дело. Однако, в отличие от многих современников, он писал на родном языке. Стевин считал, что голландский прекрасно подходит для четкого изложения мыслей, и его собственные сочинения служат тому подтверждением — они написаны ясным и увлекательным слогом. К сожалению, голландский не распространен за пределами Нидерландов, поэтому многие из его сочинений так и оставались неизвестными, пока их не перевели на другие языки.

Одна из его работ, заслужившая всеобщее внимание, — изданная в 1592 году книга «Таблицы процентов», где Стевин сформулировал правила начисления простых и сложных процентов и привел таблицы для быстрого расчета дисконтов и аннуитетов. Причиной такого внезапного интереса к бухгалтерскому делу стал беспрецедентный экономический бум в Нидерландах. Развитию экономики весьма способствовало появление нового типа судна — голландского флейта112 — 206. В конструкции мачт применялись блоки для подъема и спуска парусов, поэтому большая команда ему не требовалась. За счет сокращения помещений для экипажа значительную часть внутреннего пространства занимал груз, а поскольку флейт имел почти плоское дно, трюм получался очень вместительным. Все эти факторы делали корабль дешевым и высокорентабельным, а благодаря своей неглубокой осадке флейт идеально подходил для каботажных и речных маршрутов. К концу XVI века Голландия практически монополизировала доставку и реэкспорт грузов из своих морских портов, развозя их на флейтах по рекам Европы.

Поскольку страна теперь купалась в деньгах, она предприняла следующий шаг на пути к экономическому процветанию — открыла ссудный банк для выдачи денег в кредит под проценты. В 1585 году Стевин сильно помог этому делу своей брошюркой с довольно неказистым названием «Десятая», которая в дальнейшем существенно изменила систему записи чисел и способ счета. Тем самым он не только облегчил жизнь банковским служащим и бухгалтерам, но и проложил путь для сложнейших астрономических вычислений и открытий следующего века.

До этого момента доли единицы записывали только в виде обыкновенных дробей с числителем и знаменателем. Этот способ отнимал очень много времени при выполнении элементарных арифметических действий, например в случае с уравнением x = 119 ÷ 32 + 312 ÷ 62 — 846 ÷ 83. Арабские цифры уже давно были в ходу в Европе и приняли практически современные очертания. Поскольку десятичная точка была известна еще со времен Средневековья, Стевин применил точку и десятичные разряды для обозначения дробей. Этот способ значительно увеличивал скорость счета, и новые дроби быстро получили широкое распространение.

Гораздо труднее складывалась судьба другого его предложения — о применении десятичных дробей в денежной системе. Никто толком не обращал внимания на эту идею довольно долгое время. Она была наконец использована в XVIII веке в далекой стране, куда вместе с иммигрантами хлынули самые разные деньги самых разных государств. Когда в 1792 году образовались Соединенные Штаты Америки, собственной валюты у них не было. Американцы использовали испанские дублоны и доллары, португальские муидоры и иоганнесы, французские ливры, су, пистоли и гинеи, британские фунты, шиллинги и пенсы, не считая дукатов, крон, песо и прочей мелочи. Ценность всех этих монет варьировалась в разных штатах и населенных пунктах.

Человеком, который положил конец этой неразберихе, стал одноногий аристократ и светский лев из Нью-Йорка, во времена якобинского террора служивший американским послом во Франции, избиравшийся в континентальный конгресс и занимавший должность помощника министра финансов. Звали этого человека губернатор Моррис. В 1782 году он представил в конгрессе доклад об иностранных валютах, имеющих хождение в стране. В заключение своего выступления он предложил перейти на десятичную денежную систему. Идею поддержал Томас Джефферсон113 — 80213295 и принял решение ввести единую денежную единицу, взяв за основу испанский доллар и разбив его на сто центов. В качестве символа новой валюты был принят знак $ — совмещенное изображение букв P и S, составляющих испанское слово pesos (песо). Поскольку Моррис был намного менее важной персоной, чем Джефферсон, никто уже и не вспомнит, что идея изначально принадлежала именно ему. Однако Моррис еще оставит в истории след, не менее значимый, чем доллар.

В 1803 году в беседе с главным маркшейдером штата Нью-Йорк Симеоном Девиттом Моррис рассказал об идее «открыть воды озера Эри… в искусственную реку и провести их сквозь страну до реки Гудзон». Несмотря на воодушевление, которое вызвал этот план, Джефферсон считал его преждевременным и отказывался выделять средства на строительство вплоть до 1810 года, когда давление со стороны бизнеса стало уже невозможно игнорировать. Мэр Нью-Йорка Девитт Клинтон организовал широкое движение в поддержку проекта. Своих усилий не оставлял и Моррис, и в первую очередь его стараниями в 1818 году билль о канале Эри получил одобрение конгресса, и спустя год строительство началось.


Открытие канала Эри 25 октября 1825 года губернатором Девиттом Клинтоном. Он торжественно выливает бочонок воды из озера Эри в Гудзонский залив. Канал, названный восьмым чудом света, пролегал между городами Баффало и Олбани и насчитывал 83 шлюза

Канал был закончен через семь лет, он насчитывал девятьсот двадцать два километра в длину и имел семьдесят восемь шлюзов, включая пять двойных. Канал стал шедевром инженерной мысли того времени, хотя, несмотря на внушительную длину, грандиозным его назвать нельзя: ширина на поверхности составляла 13,5 метра, а ширина в донной части — 8,5 метра при глубине всего в 1,5 метра. Возможно, поэтому за ним закрепилось народное название «канава Клинтона».

В честь открытия канала 25 октября 1825 года на всем его протяжении были устроены празднества. От озера Эри до самого Нью-Йорка торжественно протянули вереницу барж, запряженных лошадьми, и привезли два бочонка с озерной водой, которые символически выплеснули в воды Атлантики. Как только канал начал работу, предсказания Морриса сбылись. Транспортные тарифы сократились на десять процентов, а на территории, прилегающей к каналу, резко возросла деловая активность. За первые же десять лет расходы на строительство окупились, и за Нью-Йорком окончательно закрепился статус первого порта страны. Ежедневно в Детройт по каналу прибывало тысяча двести иммигрантов, а Чикаго из деревеньки превратился в город. В 1852 году в Нью-Йорк прибыло триста тысяч переселенцев, значительная их часть отправилась дальше на запад по каналу Эри. Строительство воспел в стихах поэт Филип Френо:

Сердца их из дуба, натружены руки,

Лопатой земля перекопана вся.

Работу их помнят и дети, и внуки,

Пока светит солнце и всходит луна.

Оптимист Френо не мог знать о сокрушительных переменах, которые произойдут позже. Всего через двадцать лет после открытия канала начнется строительство принципиально нового маршрута для будущих иммигрантов, и канал Эри, равно как и другие каналы, утратит свое значение. Железная дорога в два счета обставит их по всем пунктам: она будет прямой, ее постройка на пересеченной местности обойдется дешевле, она не потребует постоянной подачи воды, будет менее затратной в обслуживании и самое главное — она станет первым грузовым транспортом быстрее лошадиной повозки.

В 1845 году железнодорожная компания «Нью-Йорк энд Эри» открыла сообщение между озером Эри и Гудзонским заливом. Она же создала прообраз современной модели ведения бизнеса. Один из первых управляющих железной дороги «Эри» Чарльз Мино был тем самым человеком, который придумал решение проблемы, ставшей головной болью первых железнодорожников, — проезда встречных составов по одному пути. (Один из составов должен был пропустить другой, стоя на боковом пути, что вызывало задержки.) Оглядываясь назад, мы можем сказать, что решение, конечно, лежало на поверхности — в 1851 году вдоль путей были протянуты телеграфные провода114 — 30235275, а по ним передавались команды приближающимся составам — продолжать им движение или ждать в сторонке. Это нововведение положит начало кодовой системе регулирования движения, которая просуществует еще тридцать лет.

В 1854 году новый управляющий Дэниел Маккаллум поразился хаосу, царившему в управлении железной дороги. Он разработал новую структуру подчинения и взаимодействия подразделений компании и «маршрутов» обмена деловой информацией, организованную в виде пирамиды. Схема произвела столь яркое впечатление, что даже поступила в свободную продажу за доллар, о ней говорили в английском парламенте и писали в журнале «Атлантик мансли». Маккаллум также разработал регламент ежедневных, еженедельных и ежемесячных отчетов и предписал управляющим общаться с сотрудниками по телеграфу.

В тот самый момент, когда Маккаллум вступил в должность, открылась новая железная дорога «Пенсильвания». Ее президент Дж. Эдгар Томсон видел главную задачу железнодорожных перевозок (и главный фактор их прибыльности) в том, чтобы забрать груз в начальной точке и напрямую без проволочек доставить его к месту назначения. Он стал автором концепции линейно-функциональной системы менеджмента и дивизионной структуры компании. Эти разработки оказались настолько эффективны, что пенсильванская железная дорога стала крупнейшей бизнес-структурой в Америке — к 1880 году в ней работали пятьдесят тысяч человек.

Руководство железной дороги «Балтимор энд Огайо» объединило опыт Маккаллума и Томсона и построило компанию, состоящую из независимых подразделений: административного, эксплуатационного, финансового и юридического. Наконец в 1869 году вице-президент железной дороги «Луисвилл энд Нэшвилл» Альберт Финк нашел способ получения самой важной информации — стоимость одной тонно-мили. Для этого он запросил статистические и финансовые данные из бухгалтерии и транспортного отдела и перегруппировал сметы по характеру затрат. Затем Финк распределил данные по четырем категориям и смог сопоставить, насколько и по какой причине отличались аналогичные затраты на разных станциях.

Все эти управленческие новшества стали основой американской дивизионной структуры управления. Начальники местных отделений получили полномочия для самостоятельного контроля за перевозками, что обеспечивало гибкость в принятии срочных решений. При этом многие отделения компании находились на расстоянии сотен миль от головной конторы. Именно в железнодорожной отрасли появилась иерархия профессиональных менеджеров, решающих масштабные задачи (часто дистанционно) по обслуживанию тысяч клиентов и перемещению сотен видов грузов. Именно железные дороги создали прообраз структуры современных корпораций.

Практически тут же этот опыт перенял другой крупный бизнес, процессы в котором выстраивались сходным образом и который самим фактом своего существования обязан железным дорогам. Речь идет об универсальных магазинах. Как и в железнодорожном бизнесе, здесь сочетались огромные объемы материальных ресурсов и инвестиций, гигантский товарооборот при небольшом коэффициенте прибыльности, тысячи покупателей, приобретающих товары в сотнях торговых точек. Это требовало быстрой логистики и точной своевременной передачи информации о состоянии складов и денежных потоках.

Универсальные магазины вызвали революцию в сфере торговли. В их распоряжении были телеграф, почта, пароходы и паровозы. Взяли они на вооружение и дивизионную структуру управления железнодорожных компаний. Если в 1870-х годах такие магазины, как «Маршалл-филд» в Чикаго или «Стюартс» в Нью-Йорке, занимались в основном оптовой торговлей и розница составляла лишь пятнадцать процентов их оборота, то к 1880-м годам по мере развития городов, транспорта115 — 35, появления надземного метро и увеличения численности городского населения розничная составляющая оказалась доминирующей.

Магазины превратились в настоящие «дворцы торговли» — c люстрами, мраморными полами, отделкой в неоклассическом стиле, огромными стеклянными окнами, ротондами и галереями. Поход в такой торговый центр мог сравниться с культурным событием. Ассортимент товаров был очень широк — от бакалеи, с которой большинство магазинов и начали свой бизнес, до мебели. В универсальных магазинах продавались изделия из стекла и серебра, чулки и трикотаж, перчатки, платки, предметы роскоши и ювелирные украшения, книги, часы, даже перья и искусственные цветы.

Торговые центры «удобной торговли» были гигантскими заведениями, штат которых частенько равнялся населению небольшого американского города. Покупателей именовали «гостями», баловали и завлекали салонами красоты, ресторанами, живой музыкой, службой доставки, почтовыми отделениями и пунктами ремонта одежды, расположенными прямо в магазине. При невысокой норме прибыли затраты на дополнительные услуги, зарплату сотрудников, строительство зданий и их отделку были огромны. Как нельзя более остро стояла задача заставить покупателей тратить больше денег.

Как это сделать, показал Генри Кроуэлл из Равенны, Огайо. В 1881 году он по дешевке купил обанкротившуюся мельницу и стал убеждать людей есть то, чем раньше питались только шотландские и немецкие бедняки да лошади, — овес. Удалось это при помощи первой настоящей рекламной кампании в современном смысле этого понятия. Каждый ее элемент был тщательно проработан и таргетирован. Для начала Кроуэлл создал, как бы мы сейчас сказали, образ бренда — улыбающееся лицо квакера. Квакеры имели репутацию порядочных, честных и чистоплотных людей. Он так и назвал овсянку — «Квакер-оутс». В рекламной кампании нового продукта были задействованы все доступные на тот момент носители. В печатной рекламе акцент ставился на пользу и питательность овсянки, использовались слоганы «В жизни нет ничего важнее здоровья» и «Народы, которые питаются злаками, более выносливы, чем те, что едят мясо». Кроуэлл впервые применил такие рекламные приемы, как подарок за покупку, гарантия возврата денег, бесплатные купоны на упаковке, рекомендации знаменитостей и экспертные заключения ученых. Он придумал даже специальный «Квакерский поезд», который колесил по стране с подарками.

Деятельность Кроуэлла по сути заложила основы современного маркетинга. Самым большим его вкладом в развитие торговли и продвижения товаров стала упаковка. «Квакеры» продавались в коробках. Для домохозяек плюсы упакованной овсянки заключались в том, что коробка имела стандартизированный вес, обеспечивала чистоту продукта и подразумевала контроль за его качеством на производстве. Такие коробки было удобно выставлять в витрине и перевозить, что делало их также привлекательными для магазинов и торговых компаний.

Итак, покупателей убедили больше тратить, теперь осталось дело за малым — убедить рабочих больше производить. В 1924 году было проведено исследование трудовой мотивации, которое окажет огромное влияние на все аспекты производственной и управленческой деятельности в будущем. В течение пяти лет на фабрике компании «Вестерн электрик» в Хоторне проводились эксперименты с целью определения степени влияния условий труда на производительность. Проводились опыты с уровнем освещенности, температурой и влажностью в помещениях, режимом труда и отдыха, рационом питания, расписанием сна, длиной рабочей недели и количеством выходных дней, также варьировалась сама технология производства.

Результаты, полученные за первые два года экспериментов, вроде бы подтверждали изначальную гипотезу о том, что главный фактор, влияющий на производительность труда, — это усталость. Однако затем начались странности. Одной группе испытуемых пообещали, что условия труда станут более комфортными, и ее производительность увеличилась (хотя на самом деле условия остались прежними). В других случаях, после того как улучшение условий действительно стимулировало выработку, об этом сообщали рабочим, а затем незаметно возвращали прежние условия, но производительность оставалась по-прежнему высокой. Только после серии изнурительных собеседований с работниками исследователи поняли, в чем было дело. Информированность испытуемых о ходе эксперимента и их вовлеченность в обсуждение результатов сами по себе уже способствовали повышению производительности труда. Также на нее влияли позитивные ожидания и надежда на изменения к лучшему, даже если их не наступало. Этот феномен получил известность как эффект плацебо или хоторнский эффект. Веры в происходящие перемены к лучшему было достаточно для улучшения физического и эмоционального состояния рабочих.

Эти результаты послужили подтверждением выводов Уолтера Кеннона, профессора-физиолога из Гарварда. За несколько лет до этого он увлеченно исследовал глотательные движения человеческого пищевода при помощи рентгена116 — 39226. Своим пациентам Кеннон давал пищу, смешанную с сульфатом бария, так называемую бариевую кашицу. Движение кашицы по пищеварительному тракту, видимое в рентгеновских лучах, позволило выявить волнообразные движения мышц желудка. Когда Кеннон в дальнейшем исследовал феномен голода, то пришел к выводу, что он вызван сокращениями мускулатуры желудка и сухостью во рту.

Опыты на лабораторных животных показали, что сокращения желудочной мускулатуры резко прекращаются, если животное напугать или отвлечь. Так Кеннон пришел к теме влияния эмоционального состояния на физические процессы в организме. Когда он дезактивировал симпатическую нервную систему животного, оно переставало реагировать на физические раздражители. При этом из крови исчезало вещество, обычно присутствующее в состоянии возбуждения. Из чего Кеннон вывел, что это вещество, адреналин, является своего рода «посланником», который помогает телу адекватно вести себя в различных физических и эмоциональных состояниях.

Кеннон обратил внимание, что физиологические реакции часто длятся еще достаточно долго и после завершения такой химической стимуляции. Это помогло ученому выявить механизм действия адреналина в условиях стресса. В ситуациях, когда необходима мобилизация, адреналин, выделяемый надпочечниками, вызывает резкое повышения уровня сахара в крови. Происходит отток крови из органов брюшной полости (где она необходима для процессов пищеварения), кровь в больших количествах поступает в сердце, легкие и конечности. В 1920 году Кеннон выдвинул предположение, что высшие млекопитающие обладают целым набором функций, которые обеспечивают стабильность организма в разных обстоятельствах. В 1932-м вышла его книга «Мудрость тела», где он назвал поддержание такого баланса термином «гомеостаз».

Верным сподвижником Кеннона на протяжении пятнадцати последних лет работы был физиолог из медицинской школы Гарварда Артуро Розенблют. В начале Второй мировой войны Розенблют обсуждал исследования Кеннона с Норбертом Винером, светилом математики, профессором Массачусетского технологического института. В то время Винер117 — 122 и его ассистент Джулиан Бигелоу занимались проблемой, связанной с противовоздушной обороной, и с большим воодушевлением отнеслись к теме гомеостаза. В частности, их интересовало, каким образом информация от наших глаз и рецепторов поступает в мозг и почему, беря со стола карандаш или стакан, мы не промахиваемся.

Винер сформулировал концепцию, которую назвал кибернетика (он греческого «управление») и использовал в работе, посвященной системам наведения зенитного огня118 — 238. В соответствии с положениями кибернетической теории были созданы математические алгоритмы для обработки данных радаров. С их помощью на основании данных о траектории и движении цели можно было вычислить ее будущее местоположение в момент подлета снаряда.

Так, в 1944 году эта система Винера получила реализацию в приборе для управления зенитным огнем M-9. С самого начала он показал свою высокую эффективность в перехвате немецких ракет Фау-1 в районе Ла-Манша. В начале последнего месяца ракетных ударов119 — 43 зенитчики сбивали около двадцати четырех процентов выпущенных ракет. В день последнего налета из ста восьми ракет, поднявшихся в воздух, шестьдесят четыре было уничтожено с применением системы управления огнем.

В послевоенный период кибернетика стала основой вычислительной техники и автоматизации, а принцип обратной связи широко использовался в машиностроении. Одно из самых замечательных применений — инерциальная навигационная система с обратной связью. В состав такой системы входит гироскоп и акселерометр. С помощью гироскопа120 — 182 определяется направление движения самолета или ракеты, а акселерометр фиксирует все изменения скорости. Оба прибора работают в связке с электромоторами, которые возвращают приборы в изначальное положение с частотой тысячу раз в секунду. Необходимый для этого электрический заряд зависит от того, насколько велико отклонение приборов от изначальных значений. Используя эти данные в определенный момент времени, можно вычислить текущее положение объекта.

В результате этой истории, которая началась с лука, мы имеем современные высокоточные ракеты, которые благодаря обратной связи сами реагируют на препятствия в пространстве (например, на атмосферные явления или особенности рельефа) и безошибочно долетают до цели за сотни километров. Оборудованные инерциальными системами навигации ракеты поражают цель с точностью до метра, что наверняка оценил бы Робин Гуд.

Современная война высокотехнологична и ведется на расстоянии, и задолго до того, как в игру вступят живые люди, активно работает разведка и принимаются предупредительные контрмеры. Подобная тактика обязана своим существованием слишком частому повторению одного неприятного инцидента…

7

Самое время

Современные технологии пронизывают всю нашу жизнь настолько, что мы их даже не замечаем. При описании информационных систем, беспрепятственно взаимодействующих друг с другом, принято говорить о «прозрачности». Конструкторы стремятся сделать свои инновационные разработки такими удобными в использовании, чтобы мы и не догадывались, что они рядом. Пищевая пленка — самый характерный пример. Она повсюду, она нам необходима, ею легко пользоваться, и она прозрачна (в буквальном смысле этого слова). Как частенько бывает с техническими открытиями везде и во все времена, появилась она случайно.

Пластик привлек всеобщее внимание в начале Второй мировой войны. В этот период немецкие бомбардировщики наносили ночные удары по Англии так часто, как заблагорассудится121 — 119. Радиолокационные устройства раннего обнаружения были тогда весьма несовершенны, поэтому максимальное сопротивление, которое могли встретить немцы, — пара истребителей, спешно поднятых по тревоге. Обнаружение противника не отличалось скоростью и дальностью. К тому же радары, установленные на южном и восточном побережьях Англии, были длинноволновыми и им требовались большие антенны. А большая антенна — прекрасная мишень. Англичанам срочно требовался радар, который мог бы обходиться маленькой антенной, в противном случае война могла закончиться, едва начавшись.

Они не подозревали, что решение уже существовало и найдено оно было благодаря недоразумению, произошедшему 24 марта 1933 года в английской химической компании «Ай-си-ай». Дело в том, что химики использовали специальные стеклянные сосуды (которые они называли «бомбами») для изготовления красителей под большим давлением. Одна из «бомб» как-то взорвалась, и на горлышке образовался белый воскообразный налет. Впоследствии ситуация повторилась еще несколько раз. Наконец в 1935 году природа загадочного налета была определена. Он состоял из «полимерных» (от греческого «из многих частей») молекул и обладал водоотталкивающими и электроизолирующими свойствами. Материал назвали полиэтиленом и стали производить в виде пленки, технология изготовления которой по сути своей очень напоминает выдувание мыльных пузырей через проволочное колечко.

Полиэтилен начали делать еще до войны, но о том, что он может пригодиться для нужд противовоздушной обороны, никто не догадывался до тех пор, пока он не попал в руки ученых-атомщиков, которые искали хороший изолятор. Именно изолирующие свойства полиэтилена помогли британцам добиться существенных военных успехов благодаря новому высокочастотному радару122 — 117. Такой радар обладал более высоким разрешением, цель возвращала более точный сигнал, к тому же новые радарные установки были довольно компактны и могли устанавливаться на корабли и самолеты. В 1943 году английские ночные истребители, оснащенные новыми радарами, уже вовсю сбивали немецкие бомбардировщики, а корабли обнаруживали суда противника в ночном море. Подводный флот Третьего рейха стал нести большие потери, и исход битвы за Атлантику был предрешен.



Поделиться книгой:

На главную
Назад