Однако прочность связи не всегда одинакова.
Однонитевые куски ДНК связываются сильнее с соответствующей одинарной нитью, чем с менее подобными одинарными нитями.
Причина в том, что больше «букв» ДНК («оснований» Уотсона и Крика) оказываются напротив партнеров, с которыми они не могут соединиться.
Связь между нитями поэтому ослаблена — как у застежки— молнии с недостающими некоторыми зубьями.
Как нам измерить эту прочность связи, после того, как фрагменты от различных видов нашли друг друга и объединились? До смешного простым методом.
Мы определяем «точку плавления» связей.
Помните, я говорил, что точка плавления двухспиральной ДНК около 85 °C.
Это верно для нормальный, должным образом согласующейся двухспиральной ДНК, как, например, когда нить человеческой ДНК «отплавлена» от комплиментарной нити человеческой ДНК.
Но когда связь слабее — как например, когда человеческая нить соединяется с нитью шимпанзе — достаточно немного более низкой температуры, чтобы разорвать эту связь.
И когда человеческая ДНК связывается с ДНК более дальнего родственника, такого как рыба или жаба, достаточно еще более низкой температуры, чтобы их разделить.
Различие между точкой плавления, когда одна нить связана к другой нитью своего собственного вида, и точкой плавления, когда она связана с нитью другого вида, является нашей мерой генетического расстояния между двумя видами.
Как практическое правило, уменьшение на каждый 1° Цельсия «точки плавления» приблизительно равноценно снижению на 1 процент количества соответствий букв ДНК (или увеличению на 1 процент числа недостающих зубьев в застежке-молнии).
В этом методе есть осложнения, в которые я не вдавался, и хитрые проблемы, для которых есть изобретательные решения.
Например, если смешать ДНК человека с ДНК шимпанзе, то большая часть фрагментированной человеческой ДНК соединится с другими фрагментами человеческой ДНК, а большая часть ДНК шимпанзе соединится со своей же.
Как отделить гибридную ДНК, чью «точку плавления» Вы действительно хотите определить, от «однородной» ДНК? Ответом является умная уловка, предусматривающая предварительную радиоактивную маркировку.
Но эти детали увели бы нас слишком далеко от нашего пути.
Суть здесь в том, что гибридизация ДНК — это техника, которая приводит ученых к цифрам, вроде 98 процентов генетического сходства между людьми и шимпанзе, и она приводит к очевидно более низким процентам, если перейти к парам животных, связанных более отдаленным родством.
Новейший метод измерения подобия между парой соответствующих генов различных видов является наиболее прямым и самым дорогим: фактически чтением последовательности букв непосредственно в генах, используя те же методы, которые применялись в проекте «геном человека».
Хотя все еще дорого сравнивать весь геном, можно получить хорошее приближение, сравнивая выборку генов, и это теперь делается все чаще.
Какой бы ни была техника, которую мы используем для измерения подобия между двумя видами, будь то антитела кролика, или точки плавления, или прямое секвенирование, следующий шаг в значительной степени одинаков.
Получив отдельное число, отображающее подобие между каждой парой видов, мы затем заносим эти числа в таблицу.
Возьмите ряд видов и напишите их названия в одном и том же порядке как во главе колонок, так и во главе строк.
Затем занесите проценты подобия в соответствующие ячейки.
Таблица будет треугольной (половиной квадрата), потому что, например, процент подобия между человеком и собакой будет таким же, как подобие между собакой и человеком.
Так, если заполнить во всей квадратной таблице каждую из этих двух половин, любая сторона диагонали зеркально отразила бы другую.
Теперь, каких результатов нам следует ожидать? Согласно эволюционной модели можно прогнозировать, что более высокая оценка будет помещена в ячейку, соединяющую человека и шимпанзе; более низкая — в ячейку, соединяющую человека и собаку.
В ячейке человека/собаки должна теоретически быть оценка, идентичная подобию в ячейке шимпанзе /собаки, потому что у людей и шимпанзе совершенно одинаковая степень родственных отношений с собаками.
Она также должна быть идентичной и ячейкам обезьяны/собаки и лемура/собаки.
Ведь люди, шимпанзе, обезьяны и лемуры, все связаны с собакой через их общего предка, древнего примата (который, вероятно, немного был похож на лемура).
Та же самая оценка должна обнаружиться в ячейках человека/кошки, шимпанзе/кошки, обезьяны/кошки и лемура/кошки, потому что кошки и собаки связаны со всеми приматами через общего предка всех хищных.
Должна быть намного более низкая оценка — в идеале одинаково низкая — во всех ячейках, объединяющих, скажем, кальмара с любым млекопитающим.
И не должно иметь значения, какое выбрано млекопитающее, так как все они одинаково отдалены от кальмара.
Таковы строгие теоретические ожидания, и нет никакой причины, почему на практике они не должны были нарушаться.
Если бы они были нарушены, то это было бы свидетельством против эволюции.
То, что происходит фактически, оказывается — в пределах статистической погрешности — именно тем, что мы должны ожидать при условии, что эволюция имела место.
Это все равно, что сказать, что, если нанести генетические расстояния между парами видов на ветви дерева, все удовлетворительно складывается.
Конечно, складывается не совсем безупречно.
Числовые расчеты в биологии редко реализуются с более чем приблизительной точностью.
Свидетельства от сравнения ДНК (или белка) может быть использовано, чтобы решить — исходя из эволюционного предположения — какие пары животных являются более близкими кузенами, чем другие.
Что превращает их в чрезвычайно сильное свидетельство эволюции — так это возможность построить дерево генетических подобий отдельно для каждого гена поочередно.
И важный результат состоит в том, что каждый ген приводит к приблизительно тому же дереву живого.
Еще раз, это именно то, что ожидалось бы, если бы Вы имели дело с истинным генеалогическим деревом.
Это не то, что ожидалось бы, если бы проектировщик оглядел весь животный мир и выискал и выбрал — или «заимствовал» — лучшие белки для работы, везде, где бы они ни находились в животном мире.
Самое раннее крупномасштабное исследование в этом направлении было проведено группой генетиков в Новой Зеландии во главе с профессором Дэвидом Пенни.
Группа Пенни взяла пять генов, которые, хотя и не идентичны у всех млекопитающих, были достаточно подобны, чтобы заслужить у всех одно и то же название.
Детали не имеют значения, но, во избежание недоразумений, эти пять генов были генами гемоглобина A, гемоглобина B (гемоглобины придают крови ее красный цвет), фибринопептида A, фибринопептида B (фибринопептиды используются в свертывании крови), и цитохрома C (который играет важную роль в клеточной биохимии).
Они выбрали одиннадцать млекопитающих для сравнения: макаку-резус, овцу, лошадь, кенгуру, крысу, кролика, собаку, свинью, человека, корову и шимпанзе.
Пенни и его коллеги размышляли статистически.
Они хотели вычислить вероятность того, что по чистой случайности две молекулы привели бы к одному и то же генеалогическому дереву, если бы эволюция не была реальностью.
Таким образом, они попытались представить себе все возможные деревья, которые могли закончиться одиннадцатью потомками.
Это удивительно большое число.
Даже если Вы ограничитесь «двоичными деревьями» (то есть деревьями с ветвями, которые разделяются только надвое — а не натрое или больше), общее количество возможных деревьев составит больше чем 34 миллиона.
Ученые терпеливо нашли каждое из этих 34 миллионов деревьев и сравнили каждое с каждым из остальных 33 999 999 деревьев.
Нет, конечно они этого не делали! Это заняло бы слишком много компьютерного времени.
Однако они разработали разумное статистическое приближение, сокращенный аналог этих титанических расчетов.
Вот как этот метод приближения работает.
Они взяли первый из тех пяти генов, скажем, гемоглобин-A (во всех случаях я использую название белка, чтобы обозначить ген, который кодирует этот белок).
Из всех тех миллионов деревьев они хотели найти наиболее «экономное» в отношении гемоглобина-A.
Экономное здесь означает «требующее предположить минимальное число эволюционных изменений».
Например, все те тысячи деревьев, предполагавших, что наиболее близкий кузен человека был кенгуру, в то время как люди и шимпанзе связаны более отдаленным родством, оказались очень неэкономными деревьями: они должны были предположить множество эволюционных изменений, чтобы привести к результату, что у кенгуру и людей был недавний общий предок.
Вердикт гемоглобину-A был в таком духе:
Гемоглобин-A выносит вердикты такого рода, некоторые более благоприятные, чем другие, каждому из этих 34 миллионов деревьев, и, наконец, приходит к выбору нескольких дюжин деревьев высокого ранга.
О каждом из этих высокоранговых деревьев гемоглобин-A мог бы сказать примерно так:
Конечно, было бы хорошо, если бы гемоглобин-A и каждый другой ген могли бы предложить единственное дерево максимальной экономичности, но мы слишком многого хотим.
Среди этих 34 миллионов деревьев ожидается только, что несколько слегка различных деревьев должны конкурировать за высокий рейтинг по гемоглобину-A.
А как насчет гемоглобина-B? Как насчет цитохрома-C? Каждый из этих пяти белков имеет право на свое собственное отдельное голосование, чтобы выявить свои собственные предпочтительные (то есть наиболее экономные) деревья из числа тех 34 миллионов деревьев.
Для цитохрома-C было бы вполне возможно прийти к совершенно другим результатам голосования за наиболее экономное дерево.
Могло бы оказаться, что цитохром-C людей действительно очень похож на цитохром-C кенгуру и очень отличается от такового у шимпанзе.
Далеко не приветствующий соединение в близкую пару овец и коров, обнаруженную гемоглобином-A, цитохром-C мог бы обнаружить, что едва ли нужны мутации вообще, чтобы разместить овец очень близко, скажем, к обезьянам, и чтобы разместить коров очень близко к кроликам.
Согласно гипотезе творения, нет никакой причины, почему этого не должно происходить.
Но что фактически обнаружили Пенни и его коллеги, это удивительно высокое согласование среди всех пяти белков (и они использовали еще более умную статистику, чтобы показать, насколько маловероятно случайное возникновение такого согласования).
Все пять белков «голосовали» практически за одно и то же подмножество деревьев из числа 34 миллионов возможных деревьев.
Это, конечно, именно то, что мы ожидали бы при условии, что действительно есть только одно истинное дерево, связывающее все одиннадцать животных, и что это — генеалогическое дерево: дерево эволюционного родства.
Кроме того, это дерево согласия, за которое голосовали все эти пять молекул, оказалось тем же, которое зоологи уже вывели на анатомических и палеонтологических, не молекулярных, основаниях.
Исследование Пенни было опубликовано в 1982 году, довольно недавно.
Прошедшие годы видели обширное увеличение подробных свидетельств на основании точных последовательностей генов большого числа видов животных и растений.
Согласованность по большинству экономных деревьев теперь простирается далеко за пределы одиннадцати видов и пяти молекул, которые изучал Пенни и его коллеги.
Их исследование было только хорошим примером, очень сильным, как доказали их статистические свидетельства.
Общая сумма информации о генетических последовательностях, доступных теперь, не оставляет по этому вопросу никаких мыслимых сомнений.
Намного более убедительные, даже чем (также очень убедительные) ископаемые свидетельства, свидетельства от сравнений генов сходятся, быстро и решительно, на единственном великом дереве живого.
Выше помещено дерево для одиннадцати видов исследования Пенни, которое представляет собой современное всеобщее голосование многих различных частей генома млекопитающих.
Устойчивость согласованности между всеми различными генами в геноме вселяет в нас уверенность не только в исторической точности самого консенсусного дерева, но также в факт, что эволюция имела место.
Если молекулярная генетическая технология продолжит расширяться с ее нынешней экспоненциальной скоростью, то году к 2050 получить полную последовательность генома животного будет дешево и быстро, едва ли не труднее, чем измерить его температуру или его кровяное давление.
Почему я говорю, что генетическая технология развивается по экспоненте? Может мы даже могли бы ее измерить? Есть аналог с компьютерной технологией, названный Законом Мура.
Названный в честь Гордона Мура, одного из основателей компании компьютерных микросхем Intel, он может быть выражен различными способами, потому что несколько показателей компьютерной мощности связаны друг с другом.
Один вариант закона утверждает, что количество модулей, которые могут быть упакованы в интегральную схему заданного размера, удваивается за срок от восемнадцати месяцев до двух лет или около того.
Это — эмпирический закон, что означает, что он не выводится из некоторой теории, а просто оказывается действительным, когда Вы оцениваете данные.
Он справедлив уже в течение приблизительно пятидесяти лет, и многие эксперты думают, что так будет в течение по крайней мере еще нескольких десятилетий.
Другие экспоненциальные тенденции с подобным удвоением во времени, которые могут быть расценены как версии Закона Мура, включают увеличение скорости вычислений и размера памяти в расчете на единицу стоимости.