В PocketBook Touch есть словарь ABBYY Lingvo, встроенные часы, научный калькулятор, просмотрщик фотографий, MP3-плеер, RSS-агрегатор, "рисовалка" рукописных заметок Scribble, две игры (пасьянс "Косынка" и судоку) и даже простенький интернет-браузер. Из всего этого списка практический смысл имеют лишь словарь (на четыре языка - русский, украинский, английский и немецкий), калькулятор, плеер и RSS-агрегатор.
Всё остальное или просто неуместны в подобном устройстве (как часы, выводимые на весь экран или просмотрщик фото в чёрно-белом режиме), или неудобны в ридере на E Ink: для игр или веб-сёрфинга такой дисплей чрезмерно инерционен. Более того, попасть пальцем в некоторые меню браузера с первого раза мало кому удастся: они слишком мелкие и явно рассчитаны на экран больших размеров.
Действительно полезными можно признать хороший встроенный словарь и функцию RSS-агрегатора: можно подписаться на несколько RSS-лент и читать их, например, по дороге на работу, а словарь поможет тем, кто читает книги на иностранных языках. Браузером же можно пользоваться, к примеру, для проверки электронной почты через веб-интерфейс или для чтения сообщений в твиттере. Для полноценного сёрфинга по интернету он малопригоден.
Подведём итоги. В активе PocketBook Touch - отличное качество сборки, быстрая и контрастная "электронная бумага" последнего поколения, удобное управление через сенсорный экран и поддержка 15 форматов электронных книг. Производитель обещает до месяца работы новинки без подзарядки (при выключенном Wi-Fi), что не может не радовать. В целом, как ридер, устройство выполняет свои функции на все сто и вполне может быть рекомендовано к приобретению.
Что касается дополнительных функций, то их стоит рассматривать лишь как бесплатное приложение, и не более того. Большинство из них вы попробуете единственный раз после покупки, после чего забудете об их существовании. Если же вам требуется полноценный браузер, игры, удобный доступ к почте и социальным сетям, то вы ошиблись адресом: вам нужен не ридер, а планшет.
Дмитрий Вибе: Всюду жизнь
Автор: Дмитрий Вибе
Тема органики в космосе стремительно набирает популярность. Среди полутора сотен молекул, обнаруженных в межзвёздной среде, примерно треть состоит из шести и более атомов. Специалистам по астрохимии, которые отродясь не называли по имени даже оксид углерода, отделываясь коротким "це-о", приходится заучивать слова наподобие "метилформиат" и "аминоацетонитрил", потому что если в докладе проговаривать их формулы, на это уйдёт половина отведённого на доклад времени. Да и учить наизусть все эти HOCH2CH2OH - занятие для джедаев.
На фоне новостей типа "Учёные нашли в космосе сахар", "Учёные нашли в космосе антифриз" и, естественно, "Учёные нашли в космосе огромное облако спирта" даже опытным астрофизикам трудно отказаться от искушения заговорить если не о панспермии, то по крайней мере о богатых предпосылках для возникновения жизни во Вселенной. Давно известно, что
Забавно при этом, что, по-видимому, отсутствует чёткое определение того, что именно следует относить к органическим веществам. Несомненный признак один: молекула органического вещества содержит атом или атомы углерода. Однако при этом вряд ли кто-то сочтёт органическими первые молекулы, обнаруженные в межзвёздной среде, - радикалы CH и CN - или, например, оксид углерода - самое распространённое в космосе соединение после молекулярного водорода.
Первая молекула, которую можно без особых сомнений считать органической, была найдена вне Солнечной системы в 1969 году. Льюис Снайдер с соавторами при помощи 140-футового радиотелескопа Национальной радиоастрономической обсерватории США нашли в спектрах полутора десятков объектов линию поглощения формальдегида. Годом позже при помощи того же инструмента в паре направлений, близких к центру Галактики, была замечена линия излучения метанола. В 1971 году Барри Тернер обнаружил в молекулярном облаке Sgr B2 излучение цианоацетилена (HC3N), положив тем самым начало исследованию межзвёздных цианополиинов - углеродных цепочек, украшенных атомом водорода с одной стороны и атомом азота с другой стороны. Сейчас самая длинная молекула в этом семействе - HC11N, и это по земным меркам совершеннейшая экзотика. На Земле цианополиинов (равно как и многих других ненасыщенных водородом межзвёздных молекул) нет ни в живых организмах, ни в минералах, да и искусственно они синтезируются с большим трудом.
По всей видимости, у Природы подобных проблем с органическим синтезом не возникает. Правда, нужно отметить важное обстоятельство. Сложные молекулы присутствуют в космосе, но нельзя сказать, что они есть повсеместно. Больше того, значительная их часть обнаружена в одном из четырёх мест. Первое - уже упомянутое молекулярное облако Sgr B2, точнее, даже не всё облако, а его северная часть. Второе и третье - комплексы молекулярных облаков в Орионе и Тельце. Четвёртое - оболочка углеродной звезды IRC+10216 (она же CW Льва; кстати, её инфракрасное изображение в Google Sky часто выдают за планету Нибиру).
Отчасти такая концентрация в нескольких объектах связана с тем, что искать проще под фонарём. Если вы не ставите иной цели, кроме как найти ещё какую-нибудь замысловатую молекулу, вам нужно не обшаривать всё небо, а просто ещё раз пристально посмотреть на облако Sgr B2. Именно там в последние годы обнаруживают всякую новую органику. Однако могут быть и более физические причины.
Синтезироваться молекулам-монстрам в холодном (единицы кельвинов) и разреженном газе всё-таки не так легко. И реакций подходящих нет, а те, что есть, идут слишком медленно. Сейчас считается, что в синтезе межзвёздной органики решающую роль играет пыль. Ингредиенты для химического синтеза садятся на поверхность космических пылинок и начинают "прилипать" друг к другу. Первым шагом становится слияние молекулы СО с водородом, в результате чего образуется радикал HCO, а он уже присоединяет к себе прочие атомы, последовательно превращаясь в формальдегид, муравьиную кислоту, метанол - далее везде. По прошествии некоторого времени пылинка оказывается окружённой органической мантией весьма сложно переплетённого химического состава.
Предположение о решающей роли поверхностных реакций решает проблему только наполовину. Мантия - это очень хорошо, но мы-то наблюдаем молекулы в газе. Точнее, молекулы в мантиях тоже можно наблюдать, но сделать это гораздо сложнее, и ничего крупнее метанола в ледяных оболочках пылинок пока не наблюдалось (ещё раз подчеркну -
Такая эволюция характерна для протозвёзд, которые рождаются холодными, а потом обретают внутренний источник энергии - будущую звезду. Она испаряет органические мантии, выводя на свет всю синтезированную в них липкую гадость. Поэтому для поисков органики столь перспективными оказываются области звёздообразования и, конкретно, окрестности только что родившихся звёзд. И чем больше таких звёзд, тем больше органики и тем проще её наблюдать. При этом не испарившаяся часть органики может впоследствии попадать и в протопланетные диски, и на формирующиеся планеты, действительно становясь сырьём для зарождения жизни... В комментариях к предыдущей колонке спрашивали, как обнаружить кусочек дозвёздного вещества. Очень просто - это мы с вами! Как говорил Эддингтон, человечество - это звёздная пыль, пошедшая неверным путём (некоторое время назад я уже писал об этом, хотя в несколько ином ключе).
Впрочем, это пока только гипотезы. До сих пор идут споры о том, могут ли формироваться в межзвёздной среде не просто сложные молекулы, но молекулы подлинно биологического значения, в частности аминокислоты. Уже несколько раз сообщалось, что в облаке Sgr B2 обнаружен глицин, но за каждым его открытием неизменно следовало закрытие. Слишком сложно идентифицировать сложные межзвёздные молекулы. Каждая из них обладает тысячами спектральных линий, часто попадающих в недоступные для наблюдений с Земли диапазоны спектра. В полном же спектре объекта друг на друга накладываются линии десятков молекул, что совершенно не облегчает жизнь спектроскопистам.
Проблема подстерегает и с другой стороны. Чтобы уверенно связать набор линий с присутствием определённой молекулы, её спектр желательно измерить в лабораторных условиях. Но как это сделать, если вы далеко не всегда можете заранее предсказать, в какую ещё причудливую комбинацию объединились межзвёздные атомы? Поэтому открытия новых органических молекул в космосе происходят не так часто. Это трудоёмкая и нудная работа, к тому же требующая очень высококачественных наблюдений. Однако от неё напрямую зависит ответ на мировоззренческий вопрос о частоте встречаемости жизни во Вселенной.
P.S. Раз уж я упомянул Льюиса Снайдера, не удержусь и перескажу одну рассказанную им историю, никак не связанную с колонкой. Некоторое время назад в Штатах работал радиотелескоп BIMA - Berkeley-Illinois-Maryland Array. На одном из совещаний консорциума, который управлял работой телескопа, Снайдер (работающий в Университете Иллинойса в Урбана-Шампейн) вынужден был сделать коллегам замечание. "Невозможно было их слушать, - вспоминал он. - БИМА, БИМА, БИМА… Я не выдержал и сказал им, что мой штат называется Ыллиной, а не Иллиной, и потому телескоп следует называть БЫМА, а не БИМА!" Ничего не напоминает?