Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Жизнь как она есть: её зарождение и сущность - Фрэнсис Крик на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Жизнь как она есть: её зарождение и сущность

Книга известного английского физика и биохимика, лауреата Нобелевской премии в области физиологии, посвящена одной из самых больших тайн природы: зарождению жизни. Автор предлагает и обосновывает необычную гипотезу внеземного происхождения жизни: направленной панспермии.

Материал излагается в свободной и интересной манере, с большим количеством примеров.

Эта книга, несомненно, будет интересна широкому кругу читателей: биологам, химикам, биофизикам и просто тем, кто интересуется тайнами природы.

Фрэнсис Крик

Перевод с английского Е.В.Богатыревой

Москва 2002, Институт компьютерных исследований

LIFE ITSELF

ITS ORIGIN AND NATURE Francis Crick

Winner of the Nobel Prize for Physiology or Medicine, 1962

SIMON AND SCHUSTER NEW YORK

Благодарности

Эту книгу я написал после своего перехода на работу в Солк-институт в Южной Калифорнии. Я благодарен Фонду Кикхефера за предоставление мне кафедры для исследований, а также фондам Феркхауфа и Нобеля за дополнительную поддержку. Особая благодарность ректору Солк-института, доктору Фредерику де Хофману за создание идеальной обстановки для моих творческих научных исследований.

Я сомневаюсь, что когда-либо стал бы заниматься проблемой возникновения жизни, если бы не моя долгая дружба с доктором Лесли Оргелом. Идея о направленной панспермии, которая лежит в основе этой книги, родилась во время написания совместной статьи, однако он оказал более значительное влияние. Его группа в Солк-институте проводит экспериментальные исследования по пребиотической химии, и мы обсуждаем различные аспекты проблемы почти каждую неделю. Он также прочитал первоначальный вариант книги и сделал полезные замечания. Эту рукопись читал также доктор Густав Аррениус (внук того самого Аррениуса, который первым предложил панспермию). В результате его многочисленных замечаний, несколько разделов, особенно те, где рассматривается древняя атмосфера Земли, были значительно переработаны, хотя его не следует считать ответственным за конечный результат. Различными способами помогали мне также доктор Том Джукс и мой сын Майкл Крик.

Как довольно неопытному автору значительную помощь мне оказали сотрудники издательства Саймон и Шустер. Замечания и предложения Элис Мейхью придали книге намного лучшую форму по сравнению с первоначальной. Ее энтузиазм помог мне преодолеть первоначальное смущение. Она также предложила название. Эн Годоф была спокойна, терпелива и подготовлена к недоразумениям и задержкам на почте. Нэнси Шифман, редактору книги, удалось самым удачным образом улучшить мой английский и устранить недостатки и двусмысленности. Мой секретарь в Солк-институте, Бетти Ларс, героически боролась с моим почти неразборчивым почерком и особенно с многочисленными незнакомыми техническими терминами. Всем им выражаю свою благодарность за их усилия.

Посвящается Одиль.

Двойная спираль ДНК

Предисловие

Так где же они?

Итальянский физик Энрико Ферми обладал выдающимися талантами. Его жена считала, что он был гением, и с ней согласились бы многие ученые. Он был не только замечательным физиком-теоретиком, но также экспериментатором. Именно Ферми и его друг, венгерский ученый Лео Сцилард, руководили разработкой и созданием первого ядерного реактора, построенного на неиспользуемой площадке для игры в мяч под пустующим спортивным стадионом в Чикаго во время Второй мировой войны. В этой неподходящей обстановке впервые на нашей планете опасная энергия деления ядер покорилась человеку.

Ферми, как и большинство хороших ученых, интересовался многими вещами вне сферы своих научных исследований. Ему приписывают один известный вопрос. У вопроса Ферми долгая предыстория, скорее похожая на длинный и скучный анекдот. Она выглядит примерно так. Вселенная огромна, она включает мириады звезд, многие из них не похожи на наше Солнце. В нашей галактике примерно 1011 звезд[1], и существует, по крайней мере, 1010 галактик, а возможно и больше. Вероятно, вокруг большинства этих звезд вращаются планеты. На поверхности довольно значительной части этих планет обнаружится жидкая вода и газообразная атмосфера, состоящая из простых соединений углерода, азота, кислорода и водорода. Энергия, излучаемая звездой (в нашем случае, солнечная энергия) на поверхность планеты, вызовет синтез многочисленных небольших органических соединений, тем самым превращая океан в негустой теплый бульон. Эти химические вещества, в конечном итоге, соединятся друг с другом и будут сложным образом взаимодействовать для создания системы, способной к размножению, — примитивной формы жизни Эти простейшие живые существа будут размножаться, развиваться в ходе естественного отбора и становиться все более сложными, до тех пор пока со временем не появятся активные, мыслящие существа. За этим последует развитие цивилизации, науки и технологии, и вскоре они подчинят себе всю окружающую среду своей планеты. Затем, стремясь завоевать новые миры, они научатся путешествовать на соседние планеты, а затем на планеты ближайших звезд, выбирая для колонизации те из них, где существует благоприятная среда обитания. В конце концов, они распространятся по всей галактике, одновременно занимаясь ее исследованием. Эти очень необычные и талантливые люди вряд ли смогут пропустить такое прекрасное место как наша Земля, с ее обильными запасами воды и органических соединений, благоприятным температурным режимом и другими достоинствами. «В таком случае», — вероятно сказал Ферми, задавая свой потрясающий вопрос, — «если все это происходило, то они уже должны бы прибыть сюда, так где же они?» И Лео Сцилард, человек с необычным чувством юмора, дал отличный ответ на риторический вопрос Ферми. «Они среди нас», — сказал он, — «но они называют себя венграми».

Большинство людей согласятся с общим ходом рассуждений Ферми. Трудности возникают, когда пытаешься оценить вероятность каждого этапа, выразить ее в цифрах. На самом деле нет убедительных доказательств, что у других звезд есть планеты, хотя такая вероятность представляется весьма высокой. Если планеты существуют, то, по крайней мере, на некоторых из них есть благоприятная среда для образования хорошего бульона — смеси простых органических соединений в воде. И именно следующий этап представляется в настоящее время столь загадочным: образование в этом бульоне примитивной, химической, размножающейся системы.

Даже если он действительно имел место, то мы не знаем, ни какова вероятность того, что длительный процесс эволюции достиг своего апогея в более высокоразвитой цивилизации, ни сколько именно времени занял этот процесс, ни того, будут ли действительно подобные существа исследовать Вселенную, а также каких успехов они достигнут в своих путешествиях. Все эти события действительно могли бы происходить по сценарию Ферми, но, вероятно, некоторые этапы могут оказаться весьма редкими, а некоторые стадии довольно медленными. Это легко объясняет, почему до сих пор на нашей планете, по-видимому, не было пришельцев из открытого космоса.

В последней половине прошлого века шведский физик Аррениус предложил довольно необычную гипотезу о происхождении жизни на Земле. Он предположил, что жизнь не могла сама зародиться здесь, а была занесена микроорганизмами из открытого космоса. Он предположил, что эти примитивные споры, зародившиеся где-нибудь в другом месте, мягко двигались под действием давления падающего на них света. Он назвал свою гипотезу панспермией, что означает «семена повсюду». Сейчас к этой идее относятся с недоверием, потому что трудно представить, как жизнеспособные споры могли бы достигнуть нашей планеты после такого длительного путешествия в космосе и не погибнуть под воздействием радиации.

В этой книге я описываю вариант панспермии, который предложили мы с Лесли Оргелом несколько лет назад. Мы предположили, что микроорганизмы во избежание порчи должны были путешествовать в головной части беспилотного космического корабля, посланного на Землю высокоразвитой цивилизацией, которая зародилась где-нибудь в другом месте несколько миллиардов лет назад. Корабль был беспилотным, с тем чтобы по возможности увеличить дальность его полета. Жизнь зародилась здесь, когда эти организмы попали в первозданный океан и начали размножаться. Мы назвали свою гипотезу направленной панспермией и, не привлекая внимания, опубликовали статью в Icarus, журнале, посвященном космосу и издаваемом Карлом Саганом. Эту идею нельзя назвать новой. Дж. Б. С. Холдейн высказывал нечто подобное еще в 1954 году, с тех пор и другие исследователи рассматривали ее, но никто не сделал этого так обстоятельно, как это сделали мы.

В главе 13 я обсуждаю вопрос, следует ли направленную панспермию считать подлинной наукой или же только довольно нехудожественной разновидностью научной фантастики. В большей части этой книги я подробно рассматриваю различные шаги в аргументации Ферми. Она довольно близко соприкасается с теми научными знаниями, что сегодня есть у нас, хотя они часто оказываются довольно неубедительными. Пожалуй, мне скорее хотелось описать в общих чертах те условия, которые должно учитывать любое решение, чем разрешить проблему происхождения жизни на Земле. И что это за условия! От малости атомов и молекул до огромной панорамы всей Вселенной; от событий, которые происходят в бесконечно малую долю секунды, до целой вечности самого времени, от Большого взрыва до современности; от неясного взаимодействия органических макромолекул до бесконечных сложностей развитых цивилизаций и высоких технологий. И в этом — одна из прелестей этой в других отношениях разочаровывающей темы, когда вплотную приступаешь к ее разрешению; необходимо хоть что-то знать о многих сторонах этой такой удивительной Вселенной, в которой мы живем.

Глава 1. Времена и расстояния, большие и малые

Одно обстоятельство относительно происхождения жизни не вызывает сомнений. Когда бы и где бы она ни возникла, она зародилась очень много лет назад, так давно, что крайне трудно составить какое-либо реалистичное представление о таких огромных промежутках времени. Наш собственный личный опыт тянется в прошлое на десятки лет, и все же даже в течение этого ограниченного периода времени мы склонны забывать, каким именно был этот мир, когда мы были молоды. И сто лет назад Земля также была населена людьми, они спешили по делам, ели и спали, гуляли и беседовали, влюблялись и зарабатывали на жизнь, при этом каждый из них упорно занимался своими делами, и все же (за очень редким исключением) никого из них уже нет сегодня в живых. Вместо этого совершенно другой круг людей населяет сегодня Землю вокруг нас. Краткость человеческой жизни обязательно ограничивает промежуток времени, охваченный непосредственными личными воспоминаниями.

Человеческая культура создает иллюзию, что наши воспоминания уходят в прошлое намного дальше. До изобретения письменности опыт прошлых поколений, воплощенный в преданиях, мифах и моральных заповедях, передавался устно или же, в меньшей степени, в рисунках, резьбе по дереву или камню. Письменность сделала передачу подобной информации более точной и разносторонней, а в последнее время фотография обострила наши образы недавнего прошлого. Кинематограф создаст у будущих поколений еще более непосредственное и живое представление об их предках, чем то, которое мы можем получить сейчас из написанного слова. Какая жалость, что мы не располагаем говорящим портретом Клеопатры; он бы не только показал истинную длину ее носа, но также более явно обнажил бы сущность ее обаяния.

Приложив усилия, мы можем перенестись мысленно в прошлое: во времена Платона и Аристотеля и даже еще дальше, в Бронзовый век героев Гомера. Мы можем что-то узнать о высокоразвитых цивилизациях Египта, Среднего Востока, Центральной Америки и Китая и совсем немного о других, более примитивных и рассеянных сообществах людей. Но даже в этом случае мы испытываем трудности, постоянно размышляя о ходе истории с самого зарождения цивилизации вплоть до нашего времени, когда таким образом мы можем действительно ощутить медленный ход времени. Наши умы не созданы для спокойных размышлений о периодах времени длиной в сотни или тысячи лет.

Тем не менее, когда мы начинаем задумываться о происхождении жизни, то по сравнению с временными масштабами, которые мы должны рассмотреть, весь период истории человечества покажется ничем иным, как одним движением век. Простого способа настроить свое мышление на такие огромные промежутки времени не существует. Необъятность прошедшего времени находится вне пределов нашего быстрого восприятия. Можно только составить представление о нем на основании косвенных и неполных описаний приблизительно также, как слепой старательно создает с помощью прикосновения и звука картину непосредственно окружающего его мира.

Привычный способ обеспечить удобную основу для наших размышлений — это сравнить возраст Вселенной с длиной одного земного дня. Возможно, лучше при подобного рода сравнении принять возраст нашей Земли за одну неделю. В таком масштабе возраст Вселенной со времен Большого взрыва составил бы примерно две-три недели. Самые древние макроскопические ископаемые (те, что относятся к началу кембрийского периода) были бы еще живыми как раз позавчера. Современный человек появился бы в последние десять секунд, а земледелие в последние одну- две секунды. Одиссей жил бы только в последнюю половину секунды до настоящего момента времени.

Даже это сравнение едва ли сделает понятнее для нас более длинный временной масштаб. Еще одна возможность — это нарисовать линейную карту времени с отмеченными на ней различными событиями. Проблема здесь состоит в том, чтобы начертить достаточно длинную линию, показав наш собственный опыт в разумном масштабе, и все же достаточно короткую для удобного воспроизведения и исследования. Для удобства подобная карта напечатана в начале этой книги. Но возможно, что еще более наглядный метод — это сравнение времени с самими напечатанными здесь строками. Давайте представим, что вся книга по длине равняется времени, прошедшему с начала кембрийского периода до наших дней, то есть примерно 600 миллионам лет. Тогда каждая полная страница представляет примерно 3 миллиона лет, каждая строка — примерно девяносто тысяч лет, а каждая буква или пробел — примерно полторы тысячи лет. Тогда Земля возникла бы примерно семь книг назад, а Вселенная (возраст которой определяется весьма приблизительно) за десять или около этого книг до нее. Почти вся записанная история человечества уложилась бы в последние две-три буквы этой книги.

Если вы теперь снова обратитесь к страницам книги, медленно читая ее по одной букве, — не забывайте, что каждая буква — это полторы тысячи лет, — то возможно вы каким-то образом ощутите грандиозность промежутков времени, которые нам следует рассмотреть. В этом масштабе времени продолжительность нашей собственной жизни оказалась бы меньше ширины запятой.

Если бы жизнь действительно зародилась здесь, то у нас едва ли возникла бы необходимость интересоваться остальной Вселенной, но если она возникла где-нибудь в другом месте, то следует также правильно представлять большие расстояния. Как ни трудно правильно передать наглядное и точное представление о возрасте Вселенной, но осознать ее размер — почти выше человеческого понимания, тем не менее мы попытаемся выразить его. Главный камень преткновения — это крайняя пустота пространства, не только крайне незначительное число атомов между звездами, но еще и громадное расстояние от одной звезды до другой. Видимый близкий нам мир заполнен объектами, и наши интуитивные оценки их удаленности зависят в основном от различных сведений, обусловленных наблюдаемой их величиной и зрительно воспринимаемой зависимостью друг от друга. Намного труднее судить о расстоянии до незнакомого объекта, плывущего в пустоте чистого голубого неба. Я однажды слышал, как выступающий по канадскому радио человек сказал, когда ему задали вопрос, что он считает, что Луна «размером примерно с воздушный шар», хотя предположительно это произошло еще до эпохи полетов в космос.

Вот как два астронома, Джастроу (Jastrow) и Томпсон (Thompson), пытаются описать по аналогии величину и расстояние между объектами в космосе:

Представим, что Солнце размером с апельсин; в этом масштабе.

Земля является лишь песчинкой, вращающейся по орбите вокруг Солнца на расстоянии тридцати футов; Юпитер, который в одиннадцать раз больше Земли, — это вишневая косточка, вращающаяся на расстоянии 200 футов или одного городского квартала от Солнца. Галактика в этом масштабе составляет 200 миллиардов апельсинов, и каждый апельсин отделен от соседей средним расстоянием в 1000 миль.

Трудность восприятия аналогии подобного рода заключается в том, что нам почти невозможно оценить расстояния в пустом пространстве. Сравнение с городским кварталом вводит в заблуждение, потому что мы слишком легко можем мысленно представить здания в нем, но при этом исчезает понятие пустоты. Если вы попытаетесь вообразить апельсин, плывущий даже на расстоянии мили в небе, то убедитесь, что расстояние до него, по-видимому, становится неопределенным. «Апельсин», удаленный на тысячу миль, окажется слишком мал, чтобы его увидеть, если конечно он не раскален добела.

Еще один возможный способ — это превратить расстояния во время. Представьте, что вы находитесь на космическом корабле, который двигается быстрее любого современного космического корабля. В силу различных причин, которые позднее станут очевидными, будем считать, что его скорость равняется одной сотой скорости света, то есть примерно 1800 миль в секунду. С этой скоростью вы можете добраться из Нью-Йорка до Европы примерно за три секунды («Конкорд» летит приблизительно три часа), поэтому по обычным меркам мы несомненно путешествуем очень быстро. Мы достигли бы Луны за три минуты, а Солнца за пятнадцать часов. Пересечение всей Солнечной системы из конца в конец (будем считать довольно произвольно, что это расстояние равно диаметру орбиты Нептуна) заняло бы у нас почти три с половиной недели. Основной момент, который следует уяснить, заключается в том, что это путешествие не похоже на очень длительную поездку в поезде, оно длится несколько дольше, чем путешествие от Москвы до Владивостока и обратно. Подобное путешествие, вероятно, оказалось бы довольно однообразным, даже если бы за окном постоянно менялся пейзаж. Во время пересечения Солнечной системы непосредственно за иллюминатором космического корабля не будет вообще ничего. Очень Медленно, день за днем размер и положение Солнца будут меняться. Поскольку мы удалились бы довольно далеко от него, то его видимый диаметр уменьшался бы, пока вблизи орбиты Нептуна оно не стало бы выглядеть «чуть больше булавочной головки», именно это я уже говорил ранее, предположив, что его видимый размер, наблюдаемый с Земли, соответствует приблизительно размеру серебряного доллара. Несмотря на такое быстрое передвижение (с этой скоростью мы могли бы передвигаться на поверхности Земли из одной точки в другую менее чем за семь секунд), не забывайте, что это путешествие окажется крайне утомительным. Основное впечатление от него — это почти полная пустота пространства. С этого расстояния планета будет казаться немногим больше случайного пятнышка в этой бескрайней пустыне.

Это ощущение огромной трехмерной пустоты достаточно скверное, пока в центре нашего внимания находится Солнечная система. (Почти все масштабные модели Солнечной системы, которые мы видим в музеях, в значительной степени вводят в заблуждение. Солнце и планеты почти всегда изображают на большом расстоянии слишком крупными по сравнению с расстояниями между ними.) Безбрежность пространства действительно нас поражает, как раз когда мы пытаемся продвинуться дальше. Чтобы достигнуть ближайшей звезды (на самом деле группы из трех звезд, находящихся довольно близко к друг другу), нашему космическому кораблю потребовалось бы 430 лет, и шансы, что мы преодолеем путь туда, весьма незначительны. Путешествие с такой высокой скоростью заняло бы у нас целую жизнь длиною в сотню лет, и все же мы преодолели бы только четвертую часть пути туда. Мы бы постоянно перемещались от пустоты к пустоте, не встречая ничего, кроме нескольких молекул газа и случайного маленького пятнышка пыли, показывающих, что мы все же двигаемся. Очень, очень медленно слегка менялось бы положение немногих ближайших звезд, тогда как само Солнце постепенно незаметно исчезало бы, до тех пор пока оно не стало бы просто еще одной звездой в блестящей панораме звезд, видимых со всех сторон космического корабля. Это путешествие к ближайшей звезде, каким бы длинным оно не представлялось, по астрономическим меркам очень короткое. Потребовалось бы не менее десяти миллионов лет, чтобы пересечь нашу галактику из конца в конец. Подобные расстояния находятся вне нашего понимания, если конечно мы не начнем мыслить самым абстрактным образом. И все же в космическом масштабе расстояние через галактику едва ли является каким-либо расстоянием вообще. Предположительно, расстояние до Андромеды, ближайшей крупной галактики, примерно в двадцать раз больше, но чтобы достичь границ пространства, видимых нами в гигантские телескопы, нам следовало бы путешествовать на расстояние более чем в тысячу раз дальше. Примечательным для меня явилось то, что это удивительное открытие, безбрежность и пустота пространства, не привлекало художественное воображение поэтов и религиозных мыслителей. Люди довольствуются размышлениями о беспредельных возможностях Бога (в лучшем случае сомнительное занятие) и совершенно не желают творчески осознать величину этой необыкновенной Вселенной, в которой они оказались, хотя и не в силу своих достоинств. Возможно, кто-то наивно подумал, что и поэтов, и священников до такой степени изумили эти научные открытия, что они принялись с неистовой энергией за работу с тем, чтобы попытаться воплотить их в основах нашей культуры. Сочинитель псалмов, сказавший: «Когда взираю я на небеса Твои, — дело твоих перстов, на Луну и звезды, которые Ты поставил, то что есть человек, что Ты помнишь его?. .. », по крайней мере, попытался до известной степени в пределах своих убеждений выразить свое восхищение Вселенной, видимой невооруженным глазом, и малости человека по сравнению с ней. И все же его Вселенная была очень маленькой, почти уютной, по сравнению с той, что открыла нам современная наука. Как будто почти явная незначительность Земли и тонкая пленка ее биосферы полностью парализовали воображение, как будто слишком ужасно размышлять о ней и поэтому лучше ее проигнорировать.

Я не буду здесь описывать, как рассчитывают эти очень большие расстояния. Расстояние между основными объектами Солнечной системы теперь можно очень точно рассчитать на основе теории механики Солнечной системы и дальности действия РЛС, расстояния между ближайшими звездами, — ориентируясь на их относительное положение, слегка меняющееся, если его наблюдать в разное время с Земли при ее годовом вращении по орбите вокруг Солнца. Относительно других расстояний все доказательства носят более специальный характер и менее точны. Но то, что эти расстояния примерно того порядка, какой рассчитали астрономы, не вызывает ни малейшего сомнения.

До сих пор мы рассматривали очень большие величины. К счастью, когда мы обратимся к очень малым расстояниям и периодам времени, дела обстоят не так плохо. Нам необходимо знать размер атомов (размер и содержимое маленьких ядер внутри каждого атома интересует нас меньше) по сравнению с повседневными вещами. Его мы можем узнать, сделав два относительно небольших шага. Начнем с миллиметра. Это расстояние (примерно одна двадцать пятая дюйма) мы можем легко различить невооруженным глазом. Одна тысячная его доля называется микроном. Клетка бактерии — длиной примерно два микрона. Длина волны видимого света (которая ограничивает то, что мы можем видеть в мощный оптический микроскоп) — примерно полмикрона.

Теперь мы переходим к следующей тысячной доле, составляющей единицу длины, известную как нанометр. Обычно расстояние между двумя соседними атомами, тесно связанными между собой в органическом соединении, находится в пределах от одной десятой до одной пятнадцатой нанометра. При самых благоприятных условиях мы можем увидеть расстояния величиной с нанометр или немного меньше в электронный микроскоп при условии, что препарат для исследования подготовлен надлежащим образом. Более того, можно показать изображения целого ряда природных объектов в любом масштабе, начиная с небольшой группы атомов и кончая блохой, так что, получив некоторый опыт, мы можем ощутить, как один масштаб переходит в другой. В противоположность пустоте пространства, живой мир перенаселен на всех уровнях. Легкость, с которой мы можем переходить от одного масштаба к другому, не должна скрыть от нас тот факт, что количество объектов в единице объема может быть необычайно большим. Например, капля воды содержит более тысячи миллиардов миллиардов молекул воды.

Период времени, который нас интересует, редко оказывается меньше пикосекунды, то есть одной миллионной миллионной доли секунды, хотя в ядерных реакциях и исследованиях внутриатомных частиц встречаются намного меньшие периоды времени. Этот незначительный интервал — как раз тот масштаб времени, в котором колеблются молекулы, но если взглянуть на него с другой точки зрения, он не кажется необычным. Рассмотрим скорость звука. В воздухе она относительно низкая, немного больше, чем скорость большинства реактивных самолетов, и составляет примерно тысячу футов в секунду. При вспышке молнии на расстоянии одной мили потребуется полных пять секунд, чтобы до нас донесся ее звук. Эта скорость в данном случае приблизительно равняется средней скорости молекул газа в воздухе, в промежутках между их столкновениями друг с другом. Скорость звука в большинстве твердых веществ обычно немного больше.

Теперь зададим вопрос, сколько времени потребуется звуковой волне, чтобы пройти над маленькой молекулой? Простой расчет показывает, что это время должно быть в пределах пикосекунды. Это как раз тот результат, которого скорее всего следовало ожидать, так как он означает примерно тот масштаб времени, в котором атомы молекулы колеблются относительно друг друга. В данном случае существенно следующее: дело в том, что он составляет, грубо говоря, частоту повторения импульсов, лежащую в основе химических реакций. Фермент, органический катализатор, может вызывать реакцию тысячу и более раз в секунду. Хотя эта скорость может показаться нам быстрой, но на самом деле она довольно медленная в масштабе времени колебания атомов.

К сожалению, нелегко передать представление о масштабах времени от секунды до пикосекунды, хотя специалист по физической химии может научиться хорошо владеть этим довольно большим диапазоном. К счастью, мы не будем непосредственно касаться этих очень коротких промежутков времени, хотя опосредованно встретимся с их влиянием. Большинство химических реакций действительно очень редкие события. Молекулы обычно прерывисто двигаются вокруг и наталкиваются друг на друга много раз, прежде чем редкая удачная встреча позволит им ударить друг друга с достаточной силой и в правильном направлении, чтобы преодолеть защитные барьеры и вызвать химическую реакцию. И только благодаря тому, что в одном небольшом объеме обычно находится так много молекул и все их действия происходят одновременно, скорость течения химической реакции кажется довольно плавной. Случайные колебания сглаживаются большим количеством участвующих в ней молекул.

Если мы вернемся назад и еще раз рассмотрим эти такие разные масштабы — незначительный размер атома и почти невообразимый размер Вселенной, частоту повторения импульсов химической реакции по сравнению с пустынями безбрежной вечности со времен Большого взрыва, то увидим, что во всех этих случаях наша интуиция, основанная на опыте повседневной жизни, скорее всего, окажется весьма обманчивой. Сами по себе большие числа значат очень мало для нас. Существует только один способ преодолеть это препятствие, такой естественный для человека. Мы должны считать и пересчитывать, пусть даже весьма приблизительно, проверять и перепроверять наши первоначальные впечатления до тех пор, пока медленно, со временем и на основе постоянной практики, реальный мир, мир безмерно малый и безмерно большой, не станет для нас таким же знакомым, как простая колыбель нашего общего земного опыта.

Глава 2. Космическая мистерия

Теперь, когда мы познакомились с величинами, имеющими отношение к нашей теме, и большими, и малыми, и со временем, и с пространством, мы должны в общих чертах описать то, что знаем о происхождении Вселенной, а также об образовании галактик и звезд, и наконец планет, составляющих нашу солнечную систему, так чтобы мы могли обрисовать условия, в которых зародилась жизнь на Земле или где-нибудь в другом месте космоса.

Если к проблеме происхождения жизни трудно подступиться, потому что она возникла так давно, то можно подумать, что возникновение Вселенной, которое, должно быть, произошло значительно раньше, окажется еще недоступнее для понимания. Это не совсем верно, потому что взаимодействия, необходимые для зарождения живой системы, составляют небольшой сложный ряд среди многих других возможных взаимодействий в очень неоднородной среде, тогда как во время первых этапов развития после Большого взрыва все было настолько тесно перемешано друг с другом, что в процессе большей частью преобладали именно общие принципы реакций. Вследствие чего, к разрешению этой проблемы подойти легче.

В основе почти всех последних дискуссий о происхождении Вселенной лежит теория Большого взрыва. Отсюда вытекает теоретическое обоснование, что на первом этапе, который мы обычно можем себе представить, вся материя во Вселенной должно быть занимала достаточно небольшой объем при необычайно высокой температуре. Этот первозданный болид очень быстро расширялся и, расширяясь, остывал. Стивен Вайнберг написал отличную книгу, где для широкого круга читателей в общих чертах описал тип реакций, которые, вероятнее, всего происходили в эти первые три минуты[2].

Представление о происходившем складывается на основе наших современных знаний об основных частицах материи и излучения, а также на довольно незначительном количестве экспериментальных фактов, таких как фон космического излучения, который сейчас наполняет собой все пространство, — слабый шорох создания, едва слышимый в радиотелескопы. Подобный воображаемый синтез не обязательно полностью достоверен. Вайнберг признается в возникающем иногда ощущении нереальности при его описании. Другие важные наблюдаемые факты, необходимые для построения теории, — это расширение Вселенной, его доказывает известное красное смещение, а также огромный избыток в современной Вселенной частиц электромагнитного излучения (фотонов) по сравнению с частицами материи (барионами), соотношение примерно 109 (миллиард) к единице, и кроме того, относительно редко встречаются более тяжелые элементы. Считается, что даже в современной Вселенной девяносто девять процентов атомов состоят из двух самых легких элементов, водорода и гелия, причем первый встречается чаще. На основании всех этих фактов физики-теоретики смогли сделать вывод, что спустя первую одну сотую долю секунды (и эта цифра даже еще менее точна), болид превратился в сложную смесь излучения и материи, быстро и сильно взаимодействующих друг с другом при необычайно высокой температуре, примерно 1011 градусов, и стал чрезвычайно быстро расширяться. Эта температура была слишком высокой для существования атомов и даже слишком высокой для предотвращения распада сложных ядер (плотных центров атомов). По мере своего расширения болид охлаждался, пройдя в быстрой последовательности через несколько этапов, в ходе которых, вследствие снижения температуры на каждом этапе, по сравнению с предыдущим, определенные процессы происходили реже, другие же стали более распространенными. В конечном счете, примерно через три минуты температура снизилась не более чем до 109 градусов, так что теперь без угрозы распада могли образовываться некоторые очень легкие ядра, такие как ядра трития и гелия. Через полчаса или около этого температура упала до 3 х 108 (300 миллионов) градусов (только в двадцать раз выше, чем внутри Солнца), и синтез новых ядер прекратился. В течение следующих миллионов лет (или около этого) Вселенная продолжала расширяться и остывать, до тех пор, пока ядра не стали захватывать электроны для образования устойчивых атомов. Тогда материя смогла начать сгущаться, превращаясь в галактики и звезды.

Вследствие этого огромного космического взрыва. Вселенная с тех пор начала расширяться. Будет ли она расширяться до бесконечности, или, в конечном счете, это расширение замедлится и полностью прекратится, и она вернется к исходному состоянию, зависит исключительно от степени ее массивности. Точно также как камень, подброшенный высоко в воздух, упадет обратно на Землю, если его скорость не окажется так велика, что он сможет этого избежать, так и Вселенная продолжит расширяться до тех пор, пока ее масса не увеличится настолько, что, в конце концов, под действием силы тяжести расширение прекратится и начнется обратный процесс. Если это так, то некоторое время спустя, в очень далеком будущем, Вселенная начнет сжиматься и произойдет еще одна катастрофа. Прежде считалось, что рассчитанная плотность Вселенной слишком мала для этого, критическая плотность соответствует примерно трем атомам водорода в каждом литре пространства. А сейчас существует предположение, что маленькие нейтральные частицы, нейтрино, которыми заполнено все пространство, вероятно, могут иметь некоторую, но очень маленькую массу, хотя прежде считалось, что они, подобно свету, невесомые. Если это так, то их может оказаться вполне достаточно, чтобы навсегда остановить расширение Вселенной.

Возможно, самый важный вывод, сделанный на основании нашей весьма ограниченной точки зрения, заключается в том, что на ранних этапах развития Вселенной, несмотря на очень высокую плотность и температуру, в каких бы то ни было значительных количествах образовались только немногие очень легкие элементы. Следовательно, за исключением водорода, все элементы, необходимые для жизни, еще должны были появиться, в частности: углерод, азот, кислород и фосфор. Этот вывод подтверждается с помощью спектроскопических наблюдений, которые доказывают, что на старейших звездах этих элементов намного меньше, чем на новых.

Обстоятельства дальнейшего развития спустя один миллион лет отчасти неясны. Как именно растущий болид, который предположительно должен был быть в пространственном отношении довольно однородным, расширялся еще дальше, чтобы образовать большие неоднородные скопления материи, которые мы наблюдаем в виде галактик, и как именно были образованы различные типы звезд — на все эти вопросы все еще нет достаточно обстоятельного ответа, хотя мы можем кратко и в общих чертах описать некоторые процессы.

Несмотря на то, что на ранних этапах развития Вселенной сила тяжести играла незначительную роль, теперь она стала приобретать ключевое значение. Мы можем видеть, что, в значительной степени благодаря силе тяжести, начинают образовываться массы материи, которые притягивают другие массы, до тех пор, пока, в конечном счете, не возникают еще более крупные скопления. Вызванные этим разрастанием и уплотнением столкновения повысят местную температуру до тех пор, пока масса не накалится до такой степени, что начнет светиться. В конечном итоге, более крупные куски материи достигнут такой высокой температуры, что начнут происходить ядерные реакции — образуется новая звезда.

С этого момента теплота, созданная ядерным синтезом, будет препятствовать сжатию звезды, так как если оно происходит, то звезда нагреется, ядерные реакции ускорятся, и в результате возрастающее давление заставит звезду немного расшириться, чтобы нейтрализовать начинающее сжатие. Этот механизм работает как регулятор, который позволяет звезде благополучно «гореть» в течение миллионов или даже миллиардов лет.

В конце концов, у звезды должно истощиться ядерное топливо. Расчеты показывают, что большие звезды сгорают очень быстро, звезды средней величины (как Солнце) — медленнее, а небольшие звезды — очень и очень медленно. Звезда, в десять раз массивнее Солнца, вырабатывает свое топливо в сто раз быстрее. Что происходит, когда начинает истощаться ядерное топливо, — достаточно сложный вопрос, и ответ на него во многом зависит от массы звезды. Процесс ядерного синтеза может создать элементы, такие как углерод и азот, из водорода и гелия. Затем звезда может попытаться использовать эти более тяжелые элементы в качестве топлива, создавая при этом еще более тяжелые, но, в конечном итоге, наступает этап, когда не остается больше элементов, ядерные превращения которых могут обеспечить ее достаточной энергией. В этот момент всеобъемлющая сила тяжести, которая сдерживалась теплотой, порождаемой ядерными процессами, одерживает верх. Звезда сжимается. Как именно это происходит, опять зависит от размера звезды и характера элементов ее составляющих. Звезды меньших размеров, вероятно, становятся белыми карликами и очень, очень медленно исчезают из виду. У более крупных звезд сжатие может быть таким быстрым, что звезда буквально взрывается, извергая до половины своего содержимого в космос и рассеивая материю с высокой скоростью во всех направлениях. Во время самого взрыва создаются многие элементы тяжелее железа (которые не очень многочисленны).

Такой катастрофический взрыв называется сверхновой звездой. В течение нескольких дней звезда светится необычайно ярко. Когда это случилось со звездой в нашей галактике в 1604 году, то это явление вызвало сенсацию. Мы до сих пор можем наблюдать остатки сверхновой звезды, ее предшественницы, наблюдаемой китайскими астрономами в 1054 году. Это большое облако светящегося газа, которое мы называем Крабовой туманностью, все еще очень быстро расширяется, и мы можем даже видеть остаток звезды, теперь пульсар (вращающаяся нейтронная звезда), в ее центре.

Именно взрывы, подобные этим, оказались основным источником большинства элементов в нашем теле (за исключением водорода). Осознание того, что многие из атомов, из которых созданы мы сами, образовались не в начале мироздания, а должны были подвергнуться действию тепла внутри звезды и быть выброшенными в космос, создает странное ощущение.

Как же в таком случае образовались планеты? Подробнее этот вопрос рассмотрен в главе 8. Здесь мы только в общих чертах опишем этот процесс. Когда мы рассматриваем в телескопы сложности нашей галактики, то можем увидеть, что многое в ней закрыто большими облаками газа и пыли, некоторые из них более рассеянные, некоторые менее, но все они, по земным меркам, очень разрежены. Частицы пыли, примерно такого же размера, что и частицы сигаретного дыма, вероятно, образованы из смеси маленьких кусочков железа, камня, льда и соединений углерода. Довольно удивительно, но в этих газовых облаках были обнаружены более пятидесяти видов плавающих малых органических молекул, особенно в более плотных облаках (где меньше ультрафиолетового света, их разрушающего), хотя в массе они в итоге составляют только около одной миллионной доли. Это химически активные молекулы, такие как цианистый водород (HCN) и формальдегид (HCHO). Какая именно часть этого огромного количества очень слабых молекул, рассеянных в пространстве, сыграла свою роль в происхождении жизни, точно неизвестно, но, скорее всего, их непосредственное участие было не слишком значительным. Мелкие молекулы, которые образуют основу жизни (см. главу 3, а также главу 5) — аминокислоты, сахарозы, основания, и т. д. — все же там не обнаружены, хотя некоторые из них можно было бы довольно легко синтезировать из тех, что встречаются в космосе. Есть некоторые предположения относительно реакций, которые могут происходить в кометах и других небольших телах Солнечной системы.

Считается, что Солнце и окружающие его планеты образовались в результате уплотнения, возникшего благодаря силе тяжести, медленно вращающегося такого облака. Как именно это произошло, все еще спорный вопрос. Грубо говоря, по мере сжатия облака скорость его вращения возрастала (чтобы сохранить момент количества движения), так что оно вытянулось в форму диска. Центр этого диска со временем стал Солнцем, тогда как оставшиеся куски материи уплотнились и образовали планеты и астероиды. Подробнее этот процесс рассмотрен в главе 8.

Большая часть этого облака, должно быть, состояла из водорода и гелия, так как эти элементы наиболее распространены на Солнце, но планета типа Земли находится слишком близко к Солнцу и в то же время не так массивна, чтобы удержать такие легкие элементы силой своего относительно слабого гравитационного поля, поэтому, вероятно, что они затерялись в космосе. (На крупных внешних планетах их все еще очень много.) Земля же со своим внутренним ядром из железа и твердой оболочкой из более легких элементов, находящихся вблизи поверхности, образовалась из скопления пепла существовавших когда-то звезд. Биосфера, в которой мы живем, — это хрупкий слой материи на поверхности довольно малой планеты звезды весьма средней величины.

Наиболее важный момент, который вытекает из этого краткого описания, заключается в том, что жизнь, насколько нам известно, вероятно, не могла зародиться вскоре после Большого взрыва, потому что необходимых элементов для ее возникновения тогда не существовало. Потребовался период в один или два миллиарда лет, возможно, больше, прежде чем достаточное количество крупных звезд завершили свой жизненный цикл и взорвались, предоставив тем самым атомы, необходимые для создания органической жизни. Затем они должны были рассеяться, чтобы из осколков образовались новые звезды и планеты. К сожалению, мы точно не знаем, насколько естественней этот процесс, поэтому мы не можем быть уверены, исходя из теоретических предпосылок, у какого количества звезд могут быть планеты, вращающиеся вокруг них, хотя, как мы увидим в главе 8, этому есть некоторые косвенные подтверждения.

Давайте теперь кратко перечислим те размеры и периоды времени, которые нас интересуют. Диаметр Солнечной системы — около одной пятнадцатой светового года. Ближайшая звезда находится на удалении 4,3 световых лет. В пределах двадцати световых лет находятся примерно сто звезд. Наша собственная галактика — это медленно вращающийся неправильный диск, состоящий из звезд, пыли и газа, примерно 100000 световых лет в диаметре, содержащий, вероятно, 1011 звезд. Ближайшая крупная галактика — Андромеда, несколько больше нашей. Она находится на удалении двух миллионов световых лет, между ними почти ничего нет (за исключением нейтрино и фотонов), хотя в непосредственной близости находятся несколько галактик меньшей величины. За ее пределами Вселенная расширяется во всех направлениях на расстояние, по крайней мере, в три миллиарда световых лет, и, может быть, содержит общее число галактик 1011 различных типов и размеров.

Возраст Земли и остальной Солнечной системы составляет примерно 4,5 миллиардов лет. Время, которое прошло со времени Большого взрыва, известно с меньшей точностью, но, вероятно, находится в пределах от семи до пятнадцати миллиардов лет. Вскоре после Большого взрыва практически не существовало тяжелых элементов, значительное их количество образовалось через миллиард (или около этого) лет после него.

Глава 3. Единообразие биохимии

В сущности, проблема возникновения жизни — это проблема органической химии, химии соединений углерода, но органической химии в необычной плоскости. Особый характер живых существ, как мы убедимся, с невероятной тонкостью и точностью подробно определен уже на уровне атомов и молекул. В начале, должно быть, именно молекулы развились таким образом, что образовалась первая живая система. Поскольку жизнь зародилась на Земле настолько давно, возможно, даже четыре миллиарда лет назад, то нам очень трудно узнать, как выглядели первые живые существа. В основе всех живых существ на Земле, без исключения, лежит органическая химия, а подобные химические соединения обычно неустойчивы в течение длительных периодов времени при том колебании температур, что существует на поверхности Земли. Постоянные сотрясения, вызванные тепловым движением в течение сотен миллионов лет, в конце концов, разрушают сильные химические связи, прочно удерживающие вместе атомы органической молекулы в течение более коротких периодов времени, например, в течение нашей собственной жизни. По этой причине почти невозможно найти «молекулярные ископаемые» из тех очень давних времен.

Минералы могут быть намного устойчивее, по крайней мере, на отчасти менее обработанном уровне, в основном потому что в их атомах для образования регулярных трехмерных структур используются прочные связи. Разрыв одинарной связи значительно не разрушит форму минерала. Ископаемые можно в изобилии наблюдать в горных породах, сформировавшихся немногим более миллиарда лет назад, к тому времени, когда организмы уже достаточно развились, и у них появились костные ткани. Обычно подобные ископаемые состоят не из первичных тканей тех организмов, а из неорганических отложений, которые просочились в них и приобрели их форму. Форма мягких тканей обычно не сохраняется, хотя иногда присутствуют следы типа червоточин — отпечатки на горных породах времени.

Существуют ли вообще ископаемые намного древнее этих? Тщательное микроскопическое исследование очень древних пород доказало, что они содержат небольшие вкрапления, которые выглядят как окаменелые остатки очень простых организмов, несколько напоминающих некоторые одноклеточные организмы, обитающие сегодня на Земле. Это имеет большое значение. Мы склонны предполагать, что в процессе эволюции многоклеточные существа развились из этих древних организмов, которые имели только одну клетку. Хотя некоторые обстоятельства здесь все еще спорны, первые организмы такого типа появились примерно 2 1/2 — 3 1/2 миллиарда лет назад. Возраст Земли примерно 4 1/2 миллиарда лет. После того как утих хаос ее первоначального формирования, наступил период длиною около миллиарда лет, в течение которого могла бы развиться жизнь на основе сложного химического состава земной поверхности, особенно в океанах, озерах и заводях. Мы совсем не располагаем ископаемыми останками того периода, потому что все еще не обнаружены сохранившиеся фрагменты осадочных пород того времени.

У нас есть только два способа подойти к этой проблеме. Мы можем попытаться смоделировать те древние условия в лаборатории. Поскольку жизнь — это, вероятно, счастливая случайность, которой даже для появления в расширенной лаборатории на поверхности планеты могло понадобиться много миллионов лет, то не слишком удивительно, что подобные исследования до сих пор далеко не продвинулись, хотя здесь есть и некоторые успехи. Кроме того, мы можем тщательно изучить все живые организмы, существующие сегодня. Так как все они произошли от какого-нибудь из тех первых простых организмов, то можно надеяться, что они все еще несут в себе некоторые следы тех самых древних живых существ.

На первый взгляд, подобная надежда представляется абсурдной. Неужели что-то может объединять лилию и жирафа? Неужели человек может иметь что-то общее с бактериями, живущими в его кишечнике? Циник мог бы заявить, что поскольку, так или иначе, все живые существа едят или их съедают, то это, по крайней мере, говорит о том, что у них есть нечто общее. Удивительно, но оказывается, что это действительно так. Единство биохимии намного глубже и полнее, чем предполагали всего лишь сто лет назад. Огромное разнообразие природы: человек, животные, растения, микроорганизмы, даже вирусы — на химическом уровне все создано по общему основному плану. Именно фантастическое совершенствование этого основного плана, развившееся в ходе естественного отбора за бесчисленные поколения, создает для нас трудности в нашей повседневной жизни при проникновении под его внешнюю форму и постижении единства изнутри. Несмотря на все различия, мы все пользуемся единым химическим языком, или, точнее, как мы увидим, двумя такими языками, близко связанными друг с другом.

Для понимания единства биохимии мы должны сначала уяснить в самых общих чертах, какие химические реакции происходят внутри организма. Живую клетку можно представить как довольно сложную, хорошо организованную химическую фабрику, которая принимает один набор органических молекул — свое питание, — расщепляет их при необходимости на более мелкие единицы, а затем вновь сортирует и соединяет эти более мелкие единицы, часто за несколько осторожных шагов, в целях создания многих других мелких молекул, некоторые из которых она выделяет, а другие использует для дальнейшего синтеза. В частности, она собирает особые наборы этих мелких молекул в длинные цепи, обычно без ответвлений, чтобы образовать жизненно важные макромолекулы клетки, три больших семейства гигантских молекул: нуклеиновые кислоты, белки и полисахариды.

Первый уровень организации, который мы должны рассмотреть, самый низший из всех, — это тот уровень, на котором атомы связываются один с другим для образования мелких молекул. Итак, один атом является довольно симметричным объектом. Его форма приближается к сферической, и если мы посмотрим на него в зеркало, то его зеркальное отражение окажется точно таким же, именно так выглядел бы и бильярдный шар. Более сложные структуры могут оказаться «разветвленными» — наши собственные руки отличный тому пример[3]. Если мы посмотрим на правую руку в зеркало, то увидим левую руку, и наоборот. Мы можем сложить обе наши руки, как в молитве, и кажется, что между ними мы держим зеркало. Способа, с помощью которого мы можем точно наложить одну руку на другую, даже мысленно, не существует.

У некоторых простых органических молекул, таких как спирт, «разветвленность» отсутствует; они и их зеркальные отображения одинаковы, так же, как кубок. Но большинству органических молекул это не свойственно. Сахар на обеденном столе, если взглянуть на него в зеркало, становится совершенно другим собранием атомов. Эта разница имеет значение не для всех типов химических реакций. Если бы мы нагрели такую молекулу и могли наблюдать, как увеличиваются молекулярные колебания до тех пор, пока не нарушится одна из связей, то увидели бы, что в случае, когда мы представили бы этот процесс в зеркальном изображении, относительные перемещения всех атомов оказались бы идентичными. Основные реакции в химии симметричны в условиях отражения с очень высокой степенью приближения. Разветвленность становится важной, только если две молекулы должны точно соответствовать друг другу. Мы можем увидеть это при изготовлении перчатки. Все детали перчатки: ткань, нить, даже пуговицы — каждая по отдельности, зеркально-симметричны, но их можно соединить двумя похожими, но различными способами, чтобы сшить перчатку как на правую руку, так и на левую. Очевидно, что нам нужны обе, потому что у нас две разные руки, хорошая перчатка на левую руку не подойдет на правую.

Простейшая форма асимметричной молекулы этого типа образуется, когда один атом углерода связан одинарными связями с четырьмя другими разными атомами или группами атомов. Это происходит потому, что все четыре связи атома углерода не лежат в одной и той же плоскости, а расположены с равными промежутками во всех трех измерениях и направлены приблизительно к вершинам правильного тетраэдра.

Распределение в пространстве четырех связей вокруг одного атома углерода.

Таким образом, органические молекулы (молекулы, содержащие атомы углерода) часто могут быть разветвленными, даже когда они могут оказаться мелкими, но нам нужно понять, какое значение все это имеет для клетки. Основная причина заключается в том, что биохимическая молекула не изолирована от других. Она вступает в реакцию с другими молекулами. Почти любая биологическая реакция ускоряется с помощью свойственного только ей особого катализатора. Мелкая молекула, для того чтобы прореагировать подобным образом, должна плотно прилегать к поверхности катализатора, и поскольку у мелкой молекулы есть вздутие, то оно должно быть и у катализатора. Как в случае с перчаткой, реакция не будет происходить должным образом, если мы попытаемся приспособить левостороннюю молекулу во впадину, соответствующую правосторонней.

Представьте, что в эту минуту вы можете наблюдать за работающей химической фабрикой и видеть все многочисленные происходящие там реакции, при этом молекулы быстро перемещаются с одного места на другое, приспосабливаясь к различным каталитическим молекулам, расщепляются, вновь образуются, группируются и вступают в реакцию еще самыми различными способами. Теперь представьте, что вы наблюдаете за фабрикой, являющейся точным зеркальным отражением первой. Все будет происходить как и раньше, так как в зеркальном мире законы химии те же самые. Трудности возникнут, только если вы попытаетесь объединить обе фабрики, смешивая при этом некоторые составные части одной системы с элементами зеркального мира.

Поэтому мы можем понять, почему в одном организме многие «разветвленные» асимметричные молекулы, крупные и мелкие, должны быть гармоничны. Более того, доказано экспериментально, что асимметричные молекулы с одной стороны вашего тела имеют точно такое же вздутие, что и молекулы с противоположной стороны. Но разве не могли бы существовать два различных типа организмов: один — зеркальное отображение другого, по крайней мере, в том, что касается их составляющих? Такого просто нет. В природе не существует двух различных царств, в одном из которых есть молекулы одного типа, а в другом — их зеркальное отображение. Глюкоза везде имеет одинаковое вздутие. Еще важнее, что мелкие молекулы, которые соединяются вместе для образования белка, аминокислоты, все являются L-аминокислотами (их зеркальные изображения называются D-аминокислоты: L = Levо, D = Dextro) 2, а все сахары в нуклеиновых кислотах также имеют одинаковое вздутие. Первый великий объединяющий принцип биохимии заключается в том, что все основные молекулы во всех организмах имеют одинаковое вздутие.

2 В указанной выше книге далее сказано, что правовращающие соединения обозначают буквой D, а левовращающие — буквой L. И затем: «Два изомера глицеральдегида обозначают как D-изомер (правовращающий)и L-изомер (левовращающий)». — Прим. пер..

Две разновидности аминокислотного аланина. Каждая является зеркальным отображением другой. На рисунках вверху показаны пространственные модели; внизу — модели строения молекулы. Буквами обозначены атомы. Разновидность аланина, обнаруженная в белке, — L-аланин, на рисунке слева.

Есть много других биохимических особенностей, которые необыкновенно похожи во всех клетках. Фактически существующие метаболические пути (точные пути, по которым одна мелкая молекула преобразуется в другую) часто удивительно похожи, хотя не всегда одинаковы. Поэтому существует несколько структурных особенностей, но единообразие еще поразительнее на глубочайших уровнях организации; поразительнее, потому что оно является одновременно произвольным и законченным.



Поделиться книгой:

На главную
Назад