Ток КЗ проходит от места повреждения по земле к заземленным нейтралям трансформаторов Т1 и Т2, распределяясь обратно пропорционально сопротивлениям ветвей. Защита от замыкания на землю отключает поврежденный участок. Через трансформаторы Т3 и Т4 ток однофазного КЗ не проходит, поскольку их нейтрали не имеют глухого заземления.
Однофазное замыкание на землю является причиной наибольшего числа повреждений в электросетях (по статистике — до 80 % случаев всех КЗ), и оно считается тяжелым видом повреждения. Поэтому для его предотвращения (снижения возможности возникновения) принимают специальные меры, например, такие как частичное разземление нейтралей трансформаторов. Эта мера не касается автотрансформаторов, поскольку они рассчитаны для работы с обязательным заземлением концов общей обмотки.
Число заземленных нейтралей на каждом участке по возможности выбирается минимальным и должно определяться расчетом. Основными требованиями к защите заземленных участков являются требования к релейной защите по поддержанию на определенном уровне токов замыкания на землю и обеспечение защиты изоляции разземленных нейтралей от перенапряжений. Последнее требование тем более важно, что все отечественные трансформаторы 110–220 кВ имеют пониженный уровень изоляции нейтралей.
При неполнофазных отключениях (включениях) ненагруженных трансформаторов с изолированной нейтралью, то есть когда коммутационная аппаратура (выключатели, разъединители или отделители) оказывается включенной не тремя, а двумя или даже одной фазой, переходный процесс сопровождается кратковременными перенапряжениями. Надежной защитой от таких процессов является применение вентильных разрядников.
На практике, помимо воздействия кратковременных перенапряжений, нейтрали трансформаторов могут оказаться под воздействием фазного напряжения промышленной частоты, которое опасно как для изоляции трансформатора, так и для разрядника в его нейтрали. Опасность усугубляется еще тем, что такое напряжение может длительно оставаться незамеченным при неполнофазных режимах коммутации выключателями, разъединителями и отделителями ненагруженных трансформаторов, а также при аварийных режимах.
При неполнофазном включении ненагруженного трансформатора, то есть при пофазной коммутации, его электрическое и магнитное состояние изменяется. Если включение трансформатора осуществляется со стороны обмотки, соединенной в звезду, то при наличии двух фаз напряжение на нейтрали и на отключенной фазе будет равно половине фазного. Если подать напряжение по одной фазе, то все обмотки трансформатора и его нейтраль будут находиться под напряжением включенной фазы. Во избежание негативных последствий и предупреждения аварии неполнофазный режим должен быть немедленно устранен.
В идеале наилучшей мерой защиты в таких случаях является глухое заземление нейтралей обмоток трансформаторов. Поэтому перед включением или отключением от сети трансформаторов 110–220 кВ, у которых нейтраль защищена вентильными разрядниками, следует наглухо заземлять нейтраль включаемой или отключаемой обмотки, если к тем же шинам или к питающей линии не подключен другой трансформатор с заземленной нейтралью.
Глухое заземление нейтрали трансформатора облегчает процессы отключения и включения намагничивающих токов, вследствие чего дуга при отключении трансформатора горит менее интенсивно и быстро гаснет.
Отключение заземляющего разъединителя в нейтрали трансформатора, работающего с разземленной нейтралью, следует производить сразу же после включения и проверки полнофазного включения коммутационного аппарата. Не допускается длительно оставлять нейтраль заземленной. Заземлением нейтрали изменяется распределение токов нулевой последовательности и нарушается селективность действия защит от однофазных замыканий на землю.
В настоящее время широкое распространение получили упрощенные схемы питания от одиночных и двойных проходящих линий 110–220 кВ. Число присоединяемых к ним трансформаторов может достигать 4–5. Если к такой линии присоединены два и более трансформаторов, то целесообразно хотя бы у одного из них иметь глухое заземление нейтрали, что позволит в случае неполнофазной подачи напряжения на линию вместе с подключенными к ней трансформаторами избежать появления опасных напряжений на изолированных нейтралях других трансформаторов. На линейных вводах всех подключенных к линии трансформаторов образуется симметричная трехфазная система напряжений, при которой напряжение на изолированной нейтрали трансформатора будет равно нулю.
В сетях с эффективно заземленной нейтралью трансформаторы при возникновении аварийных режимов подвержены опасным перенапряжениям. Это может иметь место, когда при обрыве и соединении провода с землей выделяется участок сети, не имеющей заземленной нейтрали со стороны источника питания. На таком участке напряжение на нейтралях трансформаторов становится равным по величине и обратным по знаку ЭДС заземленной фазы, а напряжение неповрежденных фаз относительно земли повышается до линейного. Возникающие при этом из-за колебательного перезаряда емкостей фаз на землю перенапряжения представляют опасность для изоляции трансформаторов и другого оборудования данного участка.
В сетях с эффективно заземленной нейтралью на случай перехода части сети в режим работы с изолированной нейтралью предусматривают защиты от замыкания на землю, реагирующие на напряжение нулевой последовательности 3
Такие защиты действуют на отключение выключателей трансформаторов с незаземленной нейтралью. Их настраивают так, чтобы при однофазном повреждении первыми отключались трансформаторы с изолированной нейтралью, а затем трансформаторы с заземленной нейтралью.
На ПС 110 кВ, где трансформаторы не могут получать подпитку со стороны СН и НН, такие защиты от замыкания на землю не устанавливаются и глухое заземление нейтралей не производится.
На основании изложенного оперативному персоналу необходимо выполнять следующие рекомендации:
при выводе в ремонт трансформаторов, а также при изменениях схем ПС необходимо обеспечивать режим заземления нейтралей, принятый в энергосистеме, и при переключениях не допускать в сетях с эффективно заземленной нейтралью выделения участков без заземления нейтралей у питающих сеть трансформаторов;
во избежание автоматического выделения таких участков на каждой системе шин ПС, где возможно питание от сети другого напряжения, рекомендуется иметь трансформатор с заземленной нейтралью с обязательной токовой защитой нулевой последовательности;
при выводе в ремонт трансформатора, нейтраль которого заземлена, необходимо предварительно заземлить нейтраль другого параллельно работающего с ним трансформатора;
без изменения положения нейтралей других трансформаторов производится отключение трансформаторов с изолированной нейтралью или нейтралью, защищенной вентильным разрядником.
2.7. Защита оборудования ПС от перенапряжений
Защита высоковольтного оборудования ПС от грозовых и коммутационных перенапряжений осуществляется:
от прямых ударов молнии — стержневыми и тросовыми молниеотводами;
от набегающих волн с отходящих линий — молниеотводами (от прямых ударов молнии на определенной длине этих линий) и защитными аппаратами, устанавливаемыми на подходах и в РУ, к которым относятся разрядники вентильные (РВ), ОПН, разрядники трубчатые (РТ) и защитные искровые промежутки.
Для оборудования ПС 110–220 кВ наибольшую опасность представляют грозовые перенапряжения, вследствие чего вольт-секундные характеристики искровых промежутков РВ должны быть такими, чтобы разрядники (например, типов РВС, РВМ, РВМГ) были отстроены от воздействия коммутационных перенапряжений.
Для сетей 330–750 кВ опасны как грозовые, так и коммутационные перенапряжения. Вследствие этого разрядники для ПС с таким напряжением (например, типа РВМК) выбираются на срабатывание при воздействии как грозовых, так и коммутационных перенапряжений.
Здания ЗРУ и ПС следует защищать от прямых ударов молнии в районах с числом грозовых часов в году более 20.
При установке стержневых молниеотводов на защищаемом здании от каждого молниеотвода прокладываются не менее двух токоотводов по противоположным сторонам здания.
РУ 3-20 кВ, к которым присоединены ВЛ, должны быть защищены РВ или ОПН, установленными на шинах или у трансформаторов. РВ или ОПН в одной ячейке с ТН должен быть присоединен до предохранителя ТН.
На подходах к подстанциям ВЛ 3-20 кВ с металлическими и железобетонными опорами установка защитных аппаратов не требуется. Однако при применении на ВЛ 3-20 кВ изоляции, усиленной более чем на 30 % (например, из-за загрязнения атмосферы), на расстоянии 200300 м от ПС и на ее вводе должны быть установлены защитные искровые промежутки.
Следует иметь в виду, что РВ морально и конструктивно устарели и уже сняты с производства, а оставшиеся в эксплуатации РВ практически отслужили свой нормативный срок. В настоящее время происходит их замена на современные ОПН. Таким образом, разрядники в качестве средств защиты от перенапряжений на вновь проектируемых ПС 110–750 кВ не применяются.
Необходимость установки ОПН для защиты оборудования в ячейках линий 330–750 кВ для ограничения коммутационных перенапряжений определяется расчетом и уровнем испытательных напряжений защищаемого оборудования.
Для линий 330 и 500 кВ длиной до 50 км установка ОПН не требуется.
Защитные аппараты от перенапряжений устанавливаются:
в цепи трансформатора (автотрансформатора);
на шинах РУ ПС;
у шунтирующих реакторов.
ОПН устанавливается для защиты трансформаторов, автотрансформаторов и шунтирующих реакторов в цепи их присоединений до выключателя.
2.8. Трансформаторное масло: изоляционные свойства, отбор проб, очистка, осушка и регенерация
Трансформаторное масло применяется в трансформаторах в качестве охлаждающей среды для отвода тепла от проводов обмоток, а также служит изоляцией.
Одной из основных характеристик трансформаторного масла является его вязкость, уменьшающаяся при росте температуры и возрастающая при ее снижении.
Высокая вязкость масла ухудшает работу механизмов систем охлаждения, в связи с чем эта величина является нормируемой и подлежит проверке перед его заливкой в трансформатор.
Изоляционные свойства масел характеризуются показателями, значения которых должны быть не ниже указанных в табл. 2.6.
При эксплуатации изоляционные свойства трансформаторного масла ухудшаются: оно загрязняется, увлажняется, накапливает продукты окисления, в результате чего масло теряет свои химические и электрофизические свойства и стареет.
Кроме того, масло стареет также за счет совместного воздействия на него кислорода воздуха и электрического поля. Окислению способствуют высокие температуры, солнечный свет, наличие растворимых в масле солей металла, являющихся катализаторами окисления.
При наличии электрического поля в масле доля влаги растет по сравнению с наличием влаги при отсутствии электрического поля. Известно, что капли влаги и частицы загрязнений располагаются в электрическом поле вдоль его силовых линий, что приводит к резкому снижению электрической прочности масла.
В настоящее время получил распространение способ
Для регенерации применяют различного рода адсорбенты естественного и искусственного происхождения. Восстанавливающие свойства адсорбентов основаны на способности за счет действия сил межмолекулярного притяжения осаждать на их поверхности продукты старения.
В качестве естественных адсорбентов применяются отбеливающая земля «зикеевская опока», искусственных — крупнопористый (КСК) и мелкопористый (КСМ) силикагель. Иногда применяется активный оксид алюминия, обладающий адсорбционной способностью по отношению к кислым продуктам старения масла.
При регенерации масло прокачивается через наполненный адсорбентом бак-адсорбер.
Наряду с перечисленными выше применяются специальные устройства для защиты масла в трансформаторах, такие, например, как расширитель трансформатора или воздухоочистительные фильтры.
Расширитель трансформатора, помимо основной функции по компенсации изменения объема масла в масляной системе трансформатора вследствие колебания температуры, позволяет также уменьшить площадь открытой поверхности масла, соприкасающейся с воздухом, что снижает степень окисления, увлажнения и загрязнения масла. Влага и механические примеси, попадая в расширитель из воздуха, осаждаются в его нижней части, откуда удаляются при ремонте трансформатора.
Воздухоочистительные фильтры устанавливают на опускных («дыхательных») трубах расширителей. В нижней части фильтра размещается масляный затвор, работающий по принципу сообщающихся сосудов, который очищает проходящий через него воздух от механических примесей и устраняет прямой контакт масла в расширителе с окружающей средой. Корпус фильтра заполняется силикагелем, осаждающим на своей поверхности частицы воды, содержащиеся в воздухе. С понижением температуры трансформатора объем масла в нем уменьшается, вследствие чего в расширителе создается разрежение и изменяется соотношение уровней масла в затворе. Когда уровень масла во внешней полости затвора упадет настолько, что обнажится край затворного цилиндра, порция атмосферного воздуха пройдет через затвор и далее через поглотитель влаги, попадая в расширитель. При нагревании трансформатора масло начнет оказывать давление на воздушную подушку и в расширителе процесс пойдет в обратном направлении.
Воздухоосушающая способность фильтра определяется визуально по изменению цвета индикаторного силикагеля с голубого на розовый. Розовый цвет силикагеля свидетельствует о его увлажнении и необходимости замены всего силикагеля.
Срок службы силикагеля в воздухоочистительных фильтрах зависит от объема масла в трансформаторе и колеблется от 1 до 2 лет. Замена масла в масляных затворах производится через 2–3 года.
Для непрерывной регенерации масла в трансформаторах широко применяются
Адсорбционные фильтры применяют в системах охлаждения ДЦ и Ц, где обеспечивается принудительная прокачка масла через фильтры.
Термосифонные фильтры применяют в системах охлаждения М и Д, где масло перемещается сверху вниз вследствие разности плотностей нагретого и охлажденного масла.
Сорбентом в этих фильтрах служит силикагель КСК или активный оксид алюминия. Замена сорбента производится после того, как кислотное число превысит 0,1–0,12 мг КОН/г масла.
Для устранения контакта масла в расширителе трансформатора с атмосферным воздухом и предотвращения тем самым загрязнения и окисления масла применяется
Основным элементом системы является эластичный резервуар, выполненный из резинотканевой пластины (газонепроницаемый химически стойкий материал) и соединяемый газопроводом с расширителем трансформатора. Система заполняется азотом, давление которого незначительно превышает нормальное атмосферное давление при всех температурных изменениях уровня масла в расширителе. При нагреве трансформатора уровень масла в расширителе поднимается и заполняющий его азот переходит в эластичный резервуар, объем которого увеличивается. При понижении уровня масла в расширителе азот переходит в него из эластичного резервуара, стенки которого опадают. Газоосушитель служит для поглощения влаги, которая может попасть в газовую систему из масла или изоляции, а также из газового баллона во время подпитки системы азотом.
На ПС с двумя и более трансформаторами применяется групповая азотная защита с питанием от одного эластичного резервуара.
Дегазация масла производится под вакуумом на специальных установках, насыщение азота — продувками. При 3–4 продувках кислород в масле почти полностью замещается азотом. Содержание кислорода в газовом пространстве расширителя должно быть не более 1 %. При большем содержании кислорода азотная защита масла становится неэффективной.
Обслуживание азотной защиты заключается в следующем:
при осмотре устройства проверяется уровень масла в расширителе трансформатора, наполнение эластичных резервуаров азотом, цвет силикагеля в осушителе;
если объем эластичных резервуаров мал и не соответствует уровню масла в расширителе, проверяется внешнее состояние эластичных резервуаров и герметичность соединений всей газовой системы;
при необходимости производится подпитка газовой системы азотом из баллонов. Для этого отключается газовая защита трансформатора, закрывается кран и система через редуктор и кран заполняется азотом из баллонов до тех пор, пока объем эластичного резервуара не станет соответствовать уровню масла в расширителе. Подключение эластичного резервуара к трансформатору производится в обратном порядке. Затем окончательно подключается к трансформатору его газовая защита.
Необходимость в подпитке азотом возникает, как правило, не чаще 1 раза в месяц. При надежной герметичности соединений всех узлов в надмасляном пространстве подпитку азотом производят 1 раз в год.
Пробы азота отбирают через каждые 6 мес. Если в газовой смеси обнаруживается более 3 % кислорода, при открытом вентиле производится 10-минутная продувка надмасляного пространства в расширителе чистым и сухим азотом. Газовая защита выводится из работы на все время продувки.
Доливка масла в трансформатор, имеющий азотную защиту, производится через нижний сливной кран.
Для герметизации масла трансформатора применяется
Уровень масла в расширителе контролируется по стрелочному указателю, рычаг которого опирается на поверхность пленки. Трансформатор с пленочной защитой заполняется дегазированным маслом с обязательным периодическим контролем его газосодержания.
Герметичность пленки проверяется при очередном ремонте трансформатора. В случае срабатывания газовой защиты трансформатора должна проводиться и проверка пленочной защиты.
Для увеличения срока службы трансформаторного масла применяются
ингибиторы — антиокислители;
деактиваторы — вещества, уменьшающие каталитическое действие растворимых в масле соединений, содержащих металлы;
пассиваторы — вещества, образующие на металле пленку, предохраняющую от каталитического действия металлов.
Широкое применение нашли такие присадки, как ионол и антраниловая кислота.
Наиболее эффективным является одновременное применение ионола и антраниловой кислоты.
Для обслуживания маслонаполненного оборудования должны быть организованы централизованные масляные хозяйства, оборудованные резервуарами для хранения масла, насосами, оборудованием для очистки, осушки и регенерации масла, передвижными маслоочистительными и дегазационными установками, емкостями для транспортировки масла.
В соответствии с требованиями ПУЭ, указатели уровня и температуры масла маслонаполненных трансформаторов и аппаратов и другие указатели, характеризующие состояние оборудования, должны быть расположены таким образом, чтобы были обеспечены удобные и безопасные условия для доступа к ним и наблюдения за ними без снятия напряжения (например, со стороны прохода в камеру).
Для отбора проб масла расстояние от уровня пола или поверхности земли до крана трансформатора или аппарата должно быть не менее 0,2 м или должен быть предусмотрен соответствующий приямок.
Для предотвращения растекания масла и распространения пожара при повреждениях маслонаполненных силовых трансформаторов (реакторов) с количеством масла более 1 т в единице должны быть выполнены маслоприемники, маслоотводы и маслосборники с соблюдением следующих требований ПУЭ:
габариты маслоприемника должны выступать за габариты трансформатора (реактора) не менее чем на 0,6 м при массе масла до 2 т; 1 м при массе от 2 до 10 т; 1,5 м при массе от 10 до 50 т; 2 м при массе более 50 т. При этом габарит маслоприемника может быть принят меньше на 0,5 м со стороны стены или перегородки, располагаемой от трансформатора (реактора) на расстоянии менее 2 м;
объем маслоприемника с отводом масла следует рассчитывать на единовременный прием 100 % масла, залитого в трансформатор (реактор). Объем маслоприемника без отвода масла следует рассчитывать на прием 100 % объема масла, залитого в трансформатор (реактор), и 80 % воды от средств пожаротушения из расчета орошения площадей маслоприемника и боковых поверхностей трансформатора (реактора) с интенсивностью 0,2 л/с-м2 в течение 30 мин;
устройство маслоприемников и маслоотводов должно исключать переток масла (воды) из одного маслоприемника в другой, растекание масла по кабельным и другим подземным сооружениям, распространение пожара, засорение маслоотвода и забивку его снегом, льдом и т. п.;
маслоприемники под трансформаторы (реакторы) с объемом масла до 20 т допускается выполнять без отвода масла. Маслоприемники без отвода масла должны выполняться заглубленной конструкции и закрываться металлической решеткой, поверх которой должен быть насыпан слой чистого гравия или промытого гранитного щебня толщиной не менее 0,25 м, либо непористого щебня другой породы с частицами от 30 до 70 мм. Уровень полного объема масла в маслоприемнике должен быть ниже решетки не менее чем на 50 мм;
маслоприемники с отводом масла могут выполняться как заглубленными, так и незаглубленными (дно на уровне окружающей планировки). При выполнении заглубленного маслоприемника устройство бортовых ограждений не требуется, если при этом обеспечивается выполнение приведенных выше требований к объему маслоприемника.
Маслоприемники с отводом масла могут выполняться:
с установкой металлической решетки на маслоприемнике, поверх которой насыпан гравий или щебень толщиной слоя 0,25 м;
без металлической решетки с засыпкой гравия на дно маслоприемника толщиной слоя не менее 0,25 м.
2.9. Маслонаполненные вводы: обслуживание, контроль изоляции
Обслуживание маслонаполненных вводов должно осуществляться в соответствии с «Типовой инструкцией по эксплуатации маслонаполненных вводов на напряжение 110–750 кВ» (РД 34.46.503).
Маслонаполненные вводы служат для ввода высокого напряжения в баки масляных трансформаторов и реакторов, масляных выключателей, а также для прохода через стены помещений закрытых РУ.