Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Физика в бою - В. Н. Жуков на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Физика в бою

ВВЕДЕНИЕ


Боевой ракетный старт. В гуле и грохоте, в дыму и пламени устремляется огромная ракета к небу. И вот уже стала точкой, пропала из виду… Проходят считанные минуты, и далеко, за сотни километров от пусковой шахты, местность сотрясает гигантский взрыв. Цель поражена!

Так внешне просто выглядит сейчас решение сложнейшей боевой задачи. Но для того, чтобы войска могли располагать и ракетами, точнейшим образом выдерживающими заданную траекторию полета, и боевыми частями, способными поражать любые объекты, науке, технике надо было пройти очень долгий путь развития.

Боевая техника всегда была активным «потребителем» достижений научно-технического прогресса. А так как военное дело включает в свою сферу исключительно разнообразную боевую деятельность, оно использовало успехи почти всех отраслей знаний, и среди них довольно трудно выделить те, которым оказывалось особенное предпочтение. Лишь одна наука бесспорно может быть названа важнейшей союзницей военного дела на всех этапах его развития. Эта наука — физика.

Какой бы новый вид оружия, боевой техники ни создавал человек, он неминуемо сталкивается с физическими законами. Рождалось первое артиллерийское орудие — приходилось учитывать законы движения снаряда, законы расширения газов и деформаций металла; создавалась первая подводная лодка — и на сцену выступали законы движения тел в жидкостях; ставилась задача обнаружения воздушных целей ночью, за облаками — первым делом нужно было узнать закономерности распространения и отражения радиоволн. И физика, словно разведчик, шагающий впереди, всегда давала в руки оружейников и конструкторов нужные сведения. Ей на помощь приходили другие отрасли естествознания, более узкие научные дисциплины, но она всегда оставалась главным ответчиком на самые основные, всеобъемлющие вопросы.

Эта роль физики еще более возросла в последние годы нашего века, когда она почти полностью взяла на себя задачу создания новейшего и самого грозного средства вооруженной борьбы — ядерного оружия. Появление такого оружия вместе с удивительно быстрым и мощным развитием ракетной техники вызвало революцию в военном деле, привело к коренным изменениям в способах ведения боевых действий, методах вооруженной борьбы. Вот почему глубоко осознать особенности технической революции, предвидеть перспективу развития военного дела невозможно без знакомства с основными путями, по которым современная физика воздействует на прогресс боевой техники и вооружения.

Велика роль физических знаний и в обучении, воспитании личного состава армии и флота. Как и другие естественно-научные знания, они служат фундаментом диалектико-материалистического мировоззрения, на них базируется изучение всевозможных образцов боевой техники и вооружения, многие из которых исключительно сложны по устройству и способам эксплуатации. Умело владеть современным оружием, быстро ликвидировать отказы и неисправности может лишь тот воин, который не только хорошо знаком со схемами и инструкциями, но и ясно представляет физические процессы, происходящие в узлах, цепях и агрегатах техники при всех режимах ее работы. Наконец, твердые знания основ физики нужны для того, чтобы организовывать противоатомную защиту войск в различных условиях их боевой деятельности.

Надо нам всем понять, что без высокого уровня технической подготовки всего личного состава, без знания основ физики и математики сейчас невозможно квалифицированное использование современной боевой техники.

Имеется немало литературы, раскрывающей достижения современной физики, показывающей ее роль в создании ядерного оружия. Вместе с тем ощущается нужда в популярных книгах, где бы вопрос ставился шире, всесторонне обрисовывалась та важная роль, какую физика играет в современном военном деле, рассказывалось о том, как используются ее достижения для дальнейшего развития ядерного и ракетного оружия, повышения надежности противоатомной защиты и боевых возможностей сухопутных войск, авиации и военно-морского флота. Познакомившись с подобными книгами, читатель смог бы активизировать общенаучные знания, полученные в средней школе, отчетливей представить себе различные направления, по которым идет военнотехнический прогресс, поднял бы свою техническую культуру.

Такие цели и преследует книга «Физика в бою». В нее вошли переработанные статьи военных специалистов, написанные по материалам зарубежной печати и опубликованные в последние годы в газете «Красная звезда». Эти статьи не претендуют на исчерпывающее освещение темы: слишком многогранно влияние физики на военное дело. Однако авторы надеются, что читатель, познакомившись с книгой, станет увереннее смотреть на проблемы, излагаемые в специальной литературе, заинтересуется более обстоятельными трудами по физике и ее связями с техническими науками и расширит свой военно-технический кругозор.

ФИЗИКА И НОВОЕ ОРУЖИЕ

Генерал-майор инженерно-технической службы И. АНУРЕЕВ, профессор, доктор военных наук

Научно-технический прогресс всегда оказывал решающее влияние на способы ведения войны, ее характер. Но никогда эта его роль не проявлялась столь быстро, так всеобъемлюще и с такими последствиями, как в наши дни. Научные достижения и открытия привели к созданию таких мощных средств ведения боя, которые изменили существовавшие долгое время взгляды на роль различных видов вооруженных сил в войне, заставили пересмотреть основные положения тактики, оперативного искусства и стратегии.

Какие же научные достижения нашего времени оказали столь решающее воздействие на военное дело? К ним следует прежде всего отнести открытие способов использования ядерной энергии, развитие ракетной техники, математики и вычислительной техники, радиоэлектроники, автоматики, химии, металлургии, приборостроения. Особое место принадлежит физике, которая также непременно должна быть включена в этот перечень. Не говоря уже о том, что ей военное дело обязано появлением ядерного оружия, на использовании разнообразных физических законов базируется создание всех без исключения образцов боевой техники и вооружения.

Как известно, физика изучает наиболее общие формы движения материи — механические, тепловые, электромагнитные и другие и их взаимные превращения. В настоящее время эта наука включает разделы: механику, молекулярную физику, учение о колебаниях и волнах, учение об электричестве, теорию электромагнитного поля, оптику, ядерную физику. Границы между физикой и некоторыми другими естественными науками не очерчены резко. В последнее время появились обширные пограничные области между физикой и химией, астрономией, наукой о Земле и другими областями знания.

Успехи физики и химии, наряду с успехами других естественных наук, оказали исключительно большое влияние на развитие материалистического мировоззрения. Диалектический материализм самым широким образом использовал для обоснования своих положений физические открытия.

Толчком к развитию физики, как и всех других наук, послужили требования практики, возникавшие в процессе исторического развития общественных формаций. Крупные открытия конца XVII и начала XVIII столетий были сделаны под влиянием развивающейся техники и военного дела.

Основоположник русской физики и химии М. В. Ломоносов тесно сочетал научную работу с требованиями практики. Его многочисленные и разнообразные исследования по оптике, электричеству, метеорологии, по природе жидких и твердых тел были самым тесным образом связаны с практическими потребностями. Многие примеры из истории развития физики показывают, что нередко весьма абстрактные (отвлеченные), на первый взгляд, физические открытия со временем находили самое разнообразное применение в технике и военном деле.

Открытие в 1831 г. Фарадеем электромагнитной индукции создало условия для широкого использования в технике и в военном деле электрических явлений. Появились различные электрические машины, средства управления, контроля, измерений, что оказало революционизирующее влияние на технику вообще и военную технику в частности.

Периодический закон Д. И. Менделеева не только сыграл выдающуюся роль в развитии учения об атоме и природе химических явлений, но и стал руководящим при решении огромного количества практических задач химии и физики. На базе этого закона и последующих успехов физики удалось открыть элементы, способные участвовать в реакциях деления и синтеза (соединения), что в дальнейшем привело к созданию самого мощного оружия поражения — ядерного оружия.

Во второй половине прошлого века английский ученый Максвелл создал общую теорию электромагнитного поля. На основе этой теории он пришел к выводу о возможности распространения электромагнитной энергии в виде волн. Открытие Максвелла было использовано А. С. Поповым для создания радиотелеграфа. Это выдающееся изобретение русского ученого привело к исключительно мощному развитию средств связи войск, созданию различных радиотехнических систем, к появлению радиолокации — технической основы радиотехнических войск противовоздушной обороны. На счету радиотехники множество и других военных средств, которыми оснащаются армия и флот.

Исследования русского ученого А. Г. Столетова по активноэлектрическим явлениям сыграли большую роль в изучении фотоэлектрического эффекта (физического явления, состоящего в том, что при действии видимого света, ультрафиолетовых, инфракрасных, рентгеновских лучей, а также гамма-лучей на вещество изменяются его электрические свойства). Фотоэлектрический эффект широко применяется в современной технике (телевидение, aвтоматикa, звуковое кино и т. д.). Телевизионные приборы и системы нашли самое широкое применение в военном деле. Они используются в системах управления различными боевыми средствами, служат датчиками информации, используются для связи космических объектов с Землей.

Важнейшее значение для военного дела имеет и такой раздел физики, как оптика. Она возникла как учение о свете в связи с изучением возможностей человека видеть окружающее пространство. Впоследствии физика расширила область исследования, и слово «свет» стало употребляться для обозначения объективного, происходящего вне нас явления, которое, воздействуя на глаз, вызывает субъективное зрительное ощущение. В настоящее время физика говорит о «свете» как о широкой совокупности единых по своей природе объективных явлений, сводящихся к распространению коротких электромагнитных волн. Родилась, таким образом, электромагнитная теория света. Она показала единство световых и электромагнитных явлений и дала новое доказательство основного положения диалектического материализма о глубокой взаимосвязи всех явлений природы.

В развитии современной оптики большую роль сыграли советские физики. А. Ф. Иоффе и Н. И. Добронравов произвели ряд опытов над элементарным фотоэффектом и получили важные результаты, подтверждающие закон, гласящий, что световая энергия поглощается отдельными порциями, величина которых пропорциональна частоте световых колебаний. С. И. Вавилов разработал метод, позволяющий визуально обнаруживать изменения слабых световых потоков, обусловленных их прерывистой структурой. Д. С. Рождественский развил учение о спектрах своими работами по аномальной дисперсии[1] и по теории атомов.

На базе достижений науки возникла мощная оптическая промышленность. Тончайшие оптические явления, изучаемые в физике, нашли самое широкое применение в технике и военном деле. Это различные системы наведения и управления, приборы контроля и измерений, элементы автоматических систем и многое другое. Область использования достижений оптики расширяется с каждым днем.

Но, конечно, особенное значение для военного дела имело развитие ядерной физики. Открытие способов боевого применения ядерной энергии явилось результатом длительного изучения объективных свойств окружающей нас природы, обобщением многочисленных вновь установленных фактов. Оно стало возможным благодаря достижениям современной физики, в результате которых было разработано учение о строении атома, о радиоактивности и изотопах, искусственном расщеплении ядер.

Возьмем такой пример. Элементарные частицы, входящие в состав ядра атома, движутся с большими скоростями. Например, скорость альфа-частиц составляет 20 тыс. км/сек, а их кинетическая энергия в 200 млн. раз превосходит энергию молекулы газа при комнатной температуре. Изучать движение частиц с такими, сравнимыми со скоростью света, скоростями методами классической механики нельзя. Для этих случаев применимы положения теории относительности и квантовой механики.

Важнейший закон теории относительности — закон взаимосвязи массы и энергии. Сущность его такова: внутренняя энергия тела равна массе покоя, умноженной на квадрат скорости света. До установления этого закона можно было использовать лишь ничтожные доли внутренней энергии (тепловая энергия, энергия химических реакций). Достижения в области физики ядра, развитие квантовой механики (науки о законах движения элементарных частиц) позволили открыть и извлечь атомную энергию. У людей появились практически неисчерпаемые запасы энергии. Как известно, это выдающееся достижение физики империализм использовал прежде всего в военных целях, что заставило и Советский Союз создать атомное оружие. Так в арсенале современных вооруженных сил появились атомные бомбы, основанные на реакции деления тяжелых ядер урана-235, урана-233 и плутония-239.

Вслед за реакцией деления была получена реакция синтеза изотопов водорода — дейтерия и трития с превращением их ядер в тяжелые ядра гелия. Такие реакции могут протекать при очень высоких температурах, порядка 10–15 млн. градусов. Подобные температуры возникают во время ядерных процессов на Солнце и на звездах, в результате которых выделяется огромная тепловая энергия. На Земле термоядерные реакции осуществляются пока в момент взрыва термоядерных бомб. Таким образом, другое выдающееся открытие физики привело к созданию еще более мощного оружия массового поражения — термоядерного оружия. В нашей стране созданы самые мощные термоядерные бомбы с тротиловым эквивалентом в 50 и даже 100 мгт. Они обладают колоссальной разрушительной силой и могут вызывать сильное радиоактивное заражение на огромных пространствах.

Во время второй мировой войны наиболее распространенными крупными боеприпасами были фугасные авиационные бомбы, в которые снаряжалось примерно 0,5 т взрывчатого вещества — тротила. Если бы уложить 200 млн. этих бомб в одном месте и взорвать, ударная волна была бы такой же, как при взрыве одной современной термоядерной бомбы в 100 мгт. Однако нужно иметь в виду, что в этом случае появляются новые мощные факторы поражения — проникающая радиация и радиоактивное заражение местности. Взрыв одной термоядерной бомбы средней мощности в крупном промышленном районе с большой плотностью населения может привести, как отмечалось в печати, к гибели 1,5 млн. человек. В последующем от пагубного действия радиоактивного заражения может погибнуть еще 0,5 млн. человек.

В зарубежной печати приводились расчеты, показывающие, что для вывода из строя Западной Германии, например, достаточно восьми термоядерных бомб мощностью по 3–5 мгт.

А вот что пишет американский ученый Полинг: «Всего в районах, по которым, вероятно, будут нанесены сильные ядерные удары, проживает около миллиарда человек. В течение 60 дней с момента атомного удара

Может погибнуть 500–750 млн. человек». Трудно сказать, чем руководствовался Полинг в своих расчетах. Но если он прав хотя бы наполовину, то и это говорит об огромной разрушительной мощи термоядерного оружия.

На вооружении современных армий состоит теперь также ядерное оружие малого калибра, которое коренным образом меняет характер боя. Наша армия сейчас располагает ядерным оружием в большом ассортименте. Необходимость такого оружия диктуется вот какими обстоятельствами. Ядерные заряды большой мощности на поле боя применить трудно. Они поражают большие площади, и использовать их в условиях непосредственного соприкосновения с противником невозможно без риска поразить свои войска.

Как отмечалось в зарубежной печати, в США испытывались ядерные заряды мощностью 100 т и менее. Действие такого заряда в 200 раз слабее взрыва бомбы, сброшенной американцами в 1945 г. над Хиросимой.

Что дают в тактическом отношении малокалиберные ядерные боеприпасы? Ударная волна их взрыва на незначительном удалении вызывает лишь средние разрушения кирпичных зданий. Световое излучение может вызывать ожог второй степени, а проникающая радиация хотя и приводит к лучевой болезни, но не в опасной форме.

Ядерные боеприпасы малого калибра можно применять даже в том случае, когда свои войска находятся в положении непосредственного соприкосновения с противником. Они способны уничтожать или надежно подавлять противотанковые опорные пункты, огневые позиции артиллерии. В результате таких ударов в обороне противника образуются бреши, которые могут быть использованы наступающими для расчленения боевых порядков врага и просачивания в его тыл. Бой принимает исключительно маневренный, скоротечный характер.

Достижения ядерной физики позволили осуществить и управляемую ядерную реакцию. На ее основе были созданы различные атомные силовые установки. Военное использование управляемых ядерных реакций привело прежде всего к созданию атомных подводных лодок-носителей баллистических ракет с ядерными боеприпасами. Применение атомных энергетических установок на зарубежных лодках позволило, как отмечалось, увеличить скорость подводного хода до 50 км/час. Для работы атомных силовых установок не нужен атмосферный воздух, поэтому с их появлением подводные лодки стали подводными кораблями в полном смысле этого слова. Они долгое время могут не всплывать на поверхность.

В перспективе следует ожидать, как считают зарубежные специалисты, применения ядерных двигателей и на ракетах, что позволит резко улучшить их тактикотехнические свойства. Огромное значение будут иметь ядерные силовые установки и ядерные источники питания для космических аппаратов различного назначения.

Ядерное оружие приобрело стратегическую значимость благодаря созданию совершенных носителей его — ракет. Современные баллистические и глобальные ракеты способны доставлять мощные ядерные боеприпасы в любой район земного шара. Чтобы преодолеть расстояние, скажем, в 10 тыс. км, межконтинентальной баллистической ракете требуется всего 25–30 минут. От ее удара вряд ли можно укрыться. А советские глобальные ракеты вообще вычеркнули понятие географической неуязвимости. Их удар неотвратим. Сочетание ядерных боеприпасов и ракет определило характер будущей войны как ракетно-ядерной войны межконтинентального размаха.

К важнейшим открытиям и достижениям физики, использованным при создании современной ракетной техники, следует отнести глубокую разработку вопросов аэродинамики, газовой динамики и ракетодинамики. В настоящее время эти научные направления — уже самостоятельные, чрезвычайно сложные и объемистые науки, имеющие много разветвлений. Но принципиально все они относятся к физическим наукам, их основы закладываются в механике, разделе физики, изучающем простейшее из всех форм движения — механическое движение.

Без развития аэродинамики было бы немыслимо создание современных боевых самолетов и крылатых ракет. Развитие реактивной авиации стало возможным благодаря появлению газовой динамики, основы аэродинамики больших скоростей и теории реактивных двигателей. Основоположник ее — выдающийся русский ученый академик С. А. Чаплыгин. Еще в 1902 г. он установил основные зависимости для движения газов с большими дозвуковыми и сверхзвуковыми скоростями. Результаты достижений газовой динамики нашли практическое применение при создании современной реактивной авиации и ракетной техники.

Скорости полета современных военных самолетов сейчас в 2–3 раза превышают скорость распространения звука. Но, как выяснилось, и это не предел. Дальнейшее увеличение скорости полета вызвало появление новой ветви аэродинамики — гиперзвуковой аэродинамики. Эта наука позволит обстоятельно изучить движение газа с большими сверхзвуковыми скоростями. Военное использование гиперзвуковой аэродинамики, по-видимому, приведет к созданию новых летательных аппаратов. Как считают за рубежом, они могут явиться новыми совершенными носителями ядерного оружия, а также мощными средствами противосамолетной и противоракетной обороны.

Полеты баллистических ракет и космических аппаратов на высотах 100–150 им в сильно разреженной атмосфере потребовали тщательного изучения законов движения летательных аппаратов в условиях, когда молекулы газа имеют большую длину свободного пробега, исчисляемую сотнями метров и даже несколькими километрами. Не случайно в настоящее время быстро — развивается экспериментальная и теоретическая аэродинамика сильно разреженных газов. Она позволяет рассчитывать параметры движения баллистических ракет при движении их в конце активного участка траектории и при входе в атмосферу, исследовать законы движения орбитальных самолетов, помогает более точно определять время существования космических аппаратов на орбите.

При движении ракет и других летательных аппаратов с большими скоростями в атмосфере, даже разреженной, возникают чрезвычайно высокие температуры, которые приводят к сильному нагреву стенок аппарата. Проблема «кинетического» нагрева весьма остра в авиации и ракетной технике. Необходимо изыскивать новые материалы и покрытия, способные выдерживать высокие температуры. Изучение движения тел при очень высоких температурах нагрева показало, что в так называемом пограничном слое (тонкий слой воздуха у стенок летательного аппарата) возникают электромагнитные явления, которые также необходимо учитывать. Исследованием электромагнитных явлений в пограничном слое занимается новая ветвь аэродинамики — магнитогидродинамика.

И наконец, о ракетодинамике. Основы ее создал выдающийся русский ученый К. Э. Циолковский. В своей знаменитой работе «Исследование мировых пространств реактивными приборами» (1903 г.) великий ученый установил основные законы движения ракет, вывел свою знаменитую формулу для расчета скорости многоступенчатой ракеты. В настоящее время это «настольная» формула для любого специалиста по ракетной технике. В результате развития аэродинамики, ракетодинамики и других направлений физики, использования достижений химии, радиоэлектроники, металлургии, приборостроения и оказалось возможным создать образцы военной ракетной техники. В настоящее время это важнейшая система вооружения.

Для этого вида оружия характерна высокая боевая эффективность во всем диапазоне дальностей, начиная от нескольких десятков и кончая несколькими сотнями километров. Ракеты оперативно-тактического назначения надежны в эксплуатации, не требуют много времени для подготовки к пуску. Они могут нести и ядерные заряды. Это открывает широкие возможности для поражения ядерными ударами любых объектов противника на поле боя. Точность наведения ракет сегодня такова, что ракета, пролетев свыше 12 тыс. км, отклоняется от заданной точки не более одного километра.

Физика в последние годы многого добилась и в области учения об электричестве и магнетизме, теории электромагнитного поля, электромагнитных волн и других разделов. Это привело к появлению таких самостоятельных наук, как, например, радиофизика и электроника. Они стали основой современных достижений в области радиоэлектроники, телемеханики, автоматики, вычислительной техники, без которых немыслимо развитие и применение современной военной техники.

Выдающееся научное достижение замечательного русского ученого А. С. Попова, открывшего принцип радиосвязи и явление отражения электромагнитных волн, последующие открытия физиков в области радиолокации и радиофизики ультракоротких волн привели к бурному внедрению в армии различных радиотехнических и радиоэлектронных систем. Они составляют сейчас основы систем связи, аппаратуры ночного видения, обнаружения самолетов и ракет в полете, управления полетом крылатых и баллистических ракет, используются для создания помех радиотехническим средствам управления противника.

Особое значение в военном деле получила радиолокация. Она стала важнейшим средством при создании эффективной противосамолетной и противоракетной обороны. Современные радиолокаторы, как отмечалось в зарубежной печати, в состоянии отыскать цель (самолет, ракету) на расстоянии 5000 км и более.

Большие возможности открываются благодаря достижениям в области физики твердого тела и полупроводников. Аппаратура связи, радиолокации, наведения становится более надежной в работе, компактной по размерам. Электронные приборы на полупроводниках не боятся ударов, тряски и могут служить в 5—10 раз дольше, чем на обычных радиолампах. Аппаратура становится более удобной и миниатюрной. Уже сейчас на вооружении армий появились компактные радиолокаторы на полупроводниках, легко переносимые одним-двумя солдатами. Есть отдельные типы радиостанций, которые можно разместить в каске.

Однако это не все. Достижения молекулярной электроники позволяют создать аппаратуру поистине микроскопических размеров. Она может быть собрана на специальных тончайших пленках или на так называемых твердых схемах. Твердыми их называют потому, что вся схема прибора спрятана внутри твердого вещества — кристалла.

Несколько слов еще об одном новом направлении в физике — квантовой радиофизике. Ее успехи открывают пути получения электромагнитных колебаний высокой интенсивности в узких лучах. Такие приборы в зарубежной литературе называют лазерами. По данным американской печати, при помощи лазеров удалось получить в импульсе мощность порядка 1–3 млн. вт. Подсчитано, что радиостанции на лазерах будут способны одновременно передавать тысячи телевизионных программ и телефонных переговоров. Некоторые зарубежные специалисты пытаются использовать квантовые генераторы для создания нового вида оружия — лучевого, которое якобы способно уничтожать живую силу и технику.

Мы рассмотрели основные направления, по которым физика — поистине безграничная в своих возможностях наука — влияет на современное военное дело. Как видно, это влияние огромно, и, несомненно, оно будет непрерывно возрастать. Точно так же обстоит дело и с другими областями современной науки. Это обязывает советских воинов всесторонне изучать не только тот вид техники, который им вверен, но и овладевать основами всех научно-технических знаний, связанных с прогрессом в военном деле. Широкие знания помогут воинам лучше усвоить свою роль и место как вооруженных защитников Родины, с большим эффектом выполнять задачи, связанные с дальнейшим укреплением оборонного могущества нашей страны.

ИЗ ГЛУБИН ВЕЩЕСТВА

Инженер-полковник М. ПАВЛОВ, доцент, кандидат технических наук

Сейчас уже всем известно, какой огромной разрушительной мощью обладает ядерное оружие. Тротиловые эквиваленты термоядерных зарядов межконтинентальных баллистических ракет измеряются несколькими миллионами и даже десятками миллионов тонн. Эта цифра станет более понятной, если учесть, что общее количество взрывчатых веществ, использованных за всю вторую мировую войну, составило приблизительно 3 млн. т тротила.

Наряду с мощными ядерными зарядами, предназначенными для решения стратегических задач, созданы ядерные заряды для использования на поле боя. Их тротиловый эквивалент колеблется от нескольких десятков до десятков тысяч тонн. Создание столь разнообразного арсенала ядерного оружия обязано достижениям физики XX столетия — открытию ядерной энергии. Но само это открытие было бы невозможным без познания ряда физических закономерностей микромира.

В 1905 г. великий физик нашего столетия Эйнштейн опубликовал законы теории относительности. Согласно этой теории масса тела (частицы) не остается постоянной при движении. Зависимость массы тела от скорости движения определяется формулой


где m0 — масса покоящегося тела (масса покоя);

v — скорость движения тела;

с — скорость распространения света в пустоте.

Согласно этому закону для малых скоростей v масса m тела практически равна m0, но при приближении v к скорости света с масса тела m быстро возрастает.

Другой важный закон теории относительности — соотношение между массой тела m и его энергией E, которое равно:


Разложив в ряд это выражение для энергии Е, получим такую зависимость:


Выведенная формула дает общую энергию, которой обладает тело массы m0, движущееся со скоростью v. Постоянный член m0с2 представляет собой энергию, присущую самому телу. Второй член в формуле не что иное, как обычное выражение кинетической энергии тела (т. е. энергии механического движения), встречающееся в классической механике. Видно, что при малых скоростях тела v второй и последующие члены в формуле малы по сравнению с первым членом.

Этот фундаментальный закон теории относительности — закон взаимосвязи массы и энергии — сыграл выдающуюся роль в раскрытии многих тайн атома и его ядра. На его использовании основано получение энергии при расщеплении тяжелых ядер атомов, которое практически осуществляется в реакторах и ядерных боеприпасах. Этот закон показал и путь получения энергии при соединении легких ядер атомов — путь, используемый пока что лишь в термоядерных боеприпасах. Но недалек день, когда люди научатся управлять термоядерной реакцией по своему усмотрению. Эго навсегда избавит человечество от угрозы истощения энергетических ресурсов.

Но как же практически применяется закон взаимосвязи массы и энергии?

По современным представлениям, вся природа состоит из мельчайших частиц — атомов. Атом — сложная частица, состоящая из ядра, вокруг которого вращаются электроны. В ядро входят частицы, примерно равные по массе — протоны и нейтроны. В ядрах легких и средних элементов число протонов равно числу нейтронов. В более тяжелых ядрах число нейтронов несколько больше числа протонов, а в тяжелых ядрах количество нейтронов примерно в 1,5 раза больше, чем протонов. Число электронов на орбитах равно числу протонов в ядре. Интересно, что по весу протон (нейтрон) примерно в 1836 раз тяжелее электрона. Это значит, что в ядре атома сосредоточена почти вся его масса. Согласно закону взаимосвязи массы и энергии в ядре атома сосредоточена в основном и вся его энергия. Вот почему ученые обратили внимание на ядро атома, когда встал вопрос о выделении ядерной энергии.

Часть энергии атома, заключенная в электронной оболочке, выделяется при химических реакциях (горение топлива, взрыв обычных взрывчатых веществ) и называется химической. Взрыв одного килограмма тротила дает около тысячи больших калорий, сгорание килограмма хорошего каменного угля — до 7 тыс., а килограмма нефти — до 11 тыс. больших калорий химической энергии. Вся эта энергия выделяется только в результате перестройки электронных оболочек атомов, участвующих в реакциях взрыва или горения.

Поскольку электронная оболочка содержит незначительное количество энергии по сравнению с энергией ядра, то и изменение массы при сжигании 1 кг каменного угля очень ничтожное, равно 1,68×10-10 кг. Взвешивание такой массы находится в настоящее время за пределами наших возможностей. Наименьший вес, который можно взвесить микровесами, равен около 10-7 кг. Таким образом, измерить разницу в массах, возникающую при реакции горения, невозможно. Сказанное справедливо для любой химической реакции, поскольку в этом случае выделяется количество энергии того же порядка, что и при горении каменного угля. Совершенно иное положение получается при ядерных реакциях.

Образование ядер из протонов и нейтронов сопровождается выделением энергии. Откуда же она появляется? Измерения масс ядер различных элементов показали, что они меньше суммы масс входящих в них частиц — протонов и нейтронов. Эта убыль массы, проявляющаяся при образовании ядер, называется дефектом массы и обозначается Δm. По закону взаимосвязи массы и энергии можно вычислить энергию, которая выделяется при этом. Она будет равна: Е = Δm×с2. Эта энергия была названа энергией связи ядра, потому что такое же количество энергии нужно затратить на то, чтобы разбить ядро на составляющие его частицы.

Для всех ядер атомов дефект массы определен специальными приборами — масс-спектрографами. Следовательно, для всех ядер определена и энергия связи. Подсчитаем для примера энергию связи ядра гелия. Масса ядра атома гелия, определенная масс-спектрографическим методом, равна 4,003 атомных единиц массы (аем = 1,66×10-24 г). Сумма же масс двух протонов и двух нейтронов, входящих в ядро атома гелия, равна 4,033 аем. Значит, при образовании ядра гелия дефект (убыль) массы равен 0,03 аем.

На основании закона взаимосвязи массы и энергии энергия связи ядра атома гелия равна:

Е = Δm×с2 = 0,03×1,66×10-24×(3×1010)2 = 45×10-6 эрг;

здесь Δm — масса в граммах; с — скорость света в см/сек.

В ядерной физике обычно энергию связи выражают в специальных единицах — миллионах электронвольт (Мэв = 1,6×10-6 эрг). Это значит, что энергия связи ядра атома гелия равна 28 Мэв. Таким же образом можно вычислить энергию связи и других ядер атомов. Например, для ядра урана-235 энергия связи равна 1783 Мэв.

Очень важна величина энергии связи, приходящаяся на одну ядерную частицу — нуклон, E/A, где A — массовое число.

Как видно, энергия связи на нуклон равна величине общей энергии связи ядра Е, деленной на общее число нуклонов в ядре (массовое число А). Для дейтерия E/A равна 1,09 Мэв, трития — 2,77 Мэв, гелия — 7 Мэв, железа — 8,7 Мэв, урана — 7,6 Мэв и т. д.


Рис. 1. Зависимость энергии связи, приходящейся на один нуклон

Для химических элементов энергия связи, приходящаяся на один нуклон, приведена на рис. 1. Здесь по горизонтальной оси отложено массовое число элементов А, по вертикальной — энергия связи ядра, приходящаяся на один нуклон E/A, в мегаэлектронвольтах (Мэв). Кривая имеет важное значение для ядерной физики. Она характеризует устойчивость (прочность) атомных ядер, то есть показывает, какую энергию нужно потратить для того, чтобы оторвать один нуклон от ядра.

С другой стороны, кривая показывает, какое количество энергии выделяется на один нуклон при образовании ядра. Легко увидеть, что наибольшей прочностью обладают ядра атомов химических элементов с массовыми числами А, лежащими в пределах от 40 до 100, другими словами, элементов средней части периодической системы Д. И. Менделеева. Ядра атомов химических элементов, расположенных в начале и конце периодической системы, имеют меньшую прочность.

Это-то обстоятельство и дало возможность открыть способы получения ядерной энергии, создать ядерное оружие. Ведь если осуществить ядерную реакцию, в которой будут образовываться ядра большей прочности, чем исходные, то реакция будет сопровождаться выделением энергии. Обратная реакция потребовала бы затраты энергии. Поэтому кривая графика указывает в принципе на два способа высвобождения ядерной энергии: первый — деление ядер тяжелых элементов, расположенных в конце периодической системы Д. И. Менделеева, на более легкие ядра; второй — соединение (синтез) ядер легких элементов (например, водорода) в более тяжелые ядра (например, гелия).

Рассчитаем, какое количество энергии выделится при делении ядер одного килограмма урана-235. При делении одного ядра урана-235 на два приблизительно равных ядра атомный вес каждого из них составит примерно 235/2 = 117, хотя наиболее вероятно получение одного тяжелого ядра с атомным весом 140, а другого легкого — с атомным весом 95.

Так как энергия связи на каждый нуклон этих легких ядер равна примерно 8,5 Мэв, то полная энергия связи одного легкого ядра будет 117×8,5 = 994 Мэв. Полная же энергия связи ядра урана-235, состоящего из 235 нуклонов, равна 235×7,6 = 1786 Мэв. Согласно сказанному выше при делении ядра урана на два легких ядра высвободится энергия, равная 994×2—1786 = 202 Мэв.

В 1 тыс. г урана содержится (6,02×1023×1000)/235 = 2,56×1024 атомов. При расщеплении всех их ядер высвободится энергия, равная 2,56×1024×202 = = 520×1024 Мэв = 2×1013 калорий = 2×1010 больших калорий (1 Мэв = 3,8×10-14 калорий).

Для наглядного представления подсчитаем, сколько, например, нужно взорвать тротила, чтобы получить такое же количество энергии. Как уже отмечалось, при взрыве 1 кг тротила выделяется около тысячи больших калорий. Следовательно, при делении ядер 1 кг урана-235 выделяется такое же количество энергии, как и при взрыве 20 тысяч тонн тротила. Вот почему мощность ядерного оружия выражают обычно в тротиловых эквивалентах.

Реакция деления тяжелых ядер урана-235 и плутония-239 используется в ядерном оружии и ядерных силовых установках.

Иное дело — высвобождение внутриядерной энергии при соединении ядер изотопов водорода в ядра гелия. Практическое применение в этом случае нашла реакция соединения ядер тяжелого водорода (дейтерия) и сверхтяжелого водорода (трития).

Подсчитаем количество энергии, которое выделяется при образовании 1 кг гелия из ядер этих изотопов водорода. Полная энергия связи ядра дейтерия, состоящего из двух нуклонов, равна 2×1,09 = 2,18 Мэв, а ядра трития, состоящего из трех нуклонов, равна 3×2,78 = 8,34 Мэв. Полная же энергия связи ядра гелия, как уже отмечалось, равна 28 Мэв. Следовательно, при образовании одного ядра гелия из ядер дейтерия и трития высвободится ядерная энергия, равная 28 — (2,18 + 8,34) = 17,48 Мэв. В 1 тыс. г гелия содержится (6,02×1023×1000)/4 = 1,5×1026 атомов. Поэтому при образовании 1 кг гелия из ядер дейтерия и трития выделится такое количество ядерной энергии: 1,5×1026×17,48 = 26,2×1026 Мэв = 1,0×1014 калорий = 1,0×1013 больших калорий. Такое же количество энергии выделяется при взрыве 100 тыс. т тротила.

Если сравнить результаты расчетов, показывающих выделение внутриядерной энергии при делении и синтезе ядер, то окажется, что при синтезе изотопов водорода в ядрах гелия энергии выделяется в 5 раз больше, чем при делении ядер урана-235 или плутония-239. На рис. 1 это условно отмечено размером радиоактивного облака.

Реакция соединения ядер изотопов водорода используется, как известно, в термоядерном оружии.

Следует заметить, что закон взаимосвязи массы и энергии сыграл решающую роль в открытии ядерной энергии и создании ядерного и термоядерного оружия. Он открывает возможности создания еще более мощного источника энергии на основе аннигиляции античастиц— превращения элементарных частиц в фотоны энергии. Аннигиляционное излучение было открыто при взаимодействии электрона с позитроном. Электрон, соударяясь с позитроном, превращается в два фотона (кванта) с энергией по 0,51 Мэв каждый.

Аннигиляционное излучение возможно и при соударении других частиц, например, протона и антипротона. При соударении протона и антипротона образуется два кванта с энергией по 940 Мэв каждый. Может быть также получено аннигиляционное излучение и при соударении нейтрона и антинейтрона.



Поделиться книгой:

На главную
Назад