Котэ. Подожди… Когда я был совсем маленьким, я ухватился за скатерть и понес с собой по комнате, стол был накрыт, и я все свалил на пол…
Нато. А что тут смешного?..
Тамрико. Это глупый поступок…
Котэ. Почему, я же не знал, что делаю!
Нато. Отшлепали бы, и тогда узнал бы…
Нико: А знаете, что со мной случилось, когда я был маленьким? Меня оставили дома одного и сказали, чтобы я никому не открывал дверь. И вдруг я слышу: кто-то стучится. Я так испугался, начал кричать: «Помогите, помогите!», а там стали стучать еще сильнее, а я кричу все сильнее: «Помогите!» Прибежали соседи и мне кричат: «Открой, не бойся, твоя сестра пришла из школы!..» Потом я много смеялся!
Я смеюсь, смеются и окружившие меня Дети: «Это правда смешно!»
Дато. Когда мне было два года, мама хотела отдать меня в детский сад, а я не хотел туда, и я побежал спрятаться и кувырком покатился по лестнице…
Георгий. Когда я был маленьким, папа повел меня в детский сад. Мы играли, и дети подрались друг с другом, а я спрятался в шкафу.
Гоча. Ты трус и потому спрятался.
Елена. А когда я была маленькой…
Ираклий. Когда я был маленьким…
Дети уже перебивают друг друга. А я только сейчас замечаю, что каждый из них начинает свой рассказ так: «Когда я был маленьким…», «Когда я была маленькой…». Значит, они уже не считают себя маленькими. И это потому, что пошли в подготовительный класс школы! Может быть, нужно, чтобы я закрепил в них эту уверенность, это чувство взросления?
Скоро звонок на урок. Надо посмотреть, чем занимаются те дети, которые не остались со мной в классе. Но что это? Родители, выполняющие сегодня роль добровольных дежурных, не дают детям рисовать на прикрепленном к стене листе бумаги, запрещают дотрагиваться до веселых картинок, кто-то отнимает у детей кегли! Семейный опыт усмирения детей вторгается в школьный коридор, нарушая все наши планы. Я вспоминаю слова, сказанные когда-то одной учительницей начальных классов: «Воспитание детей нужно начинать с воспитания родителей». И решаю сегодня же провести первое родительское собрание.
Общая длительность перемен за четыре года обучения равняется примерно 39 100 минутам. С этими минутами шутить нельзя, так как, если сложить их вместе, они составят около 160 обычных школьных дней.
Раздается звонок, мелодичный, электрический.
— Дети, заходите, пожалуйста, в класс! Мальчики, помните, что вы — мужчины!
«Кто же из нас прав?»
Все дети, наверное, умеют считать до десяти, может быть, и до двадцати и даже до ста. Это я уже по опыту знаю. Нет смысла проверять, как каждый из них станет говорить мне скороговорку, состоящую из «раз-два-три-четыре-пять» и т. д., произнесенную залпом, без запинки.
Нет смысла делать это сегодня, потому что дети пока никакого понятия не имеют о числе. Лучше начать с непривычных для них заданий, приводящих в движение уже накопленный ими опыт и придающих содержательный смысл этим скороговоркам «раз-два-три-четыре-пять…».
Но сначала надо выяснить, сколько фишек-слов было собрано в нашей коробке на уроке родного языка. Илико несет коробку, за ним идут Тенго и Майя.
— Их очень много! — говорит Майя.
— Больше ста! — поясняет Тенго.
Видите, сколько мы сегодня собрали слов! Завтра мы должны собрать еще больше! — говорю я, обращаясь к классу. — А вам большое спасибо, что помогли сосчитать фишки-слова!
— А зачем Вам нужно так много слов? — спрашивает Нато. Мне нужно?!
Я объясню это в следующий раз! — говорю я Нато. — А теперь приступим к уроку математики.
На первом уроке математики детям обычно разъясняют, что они начинают учиться считать, складывать и вычитать, делить и умножать. Предполагается, что это доступное для них объяснение предмета математики. Детям действительно понятно, когда им говорят: мы будем изучать, как отнять от пяти яблок три яблока, чтобы узнать, сколько останется; или же как прибавить к трем орешкам шесть орешков, как разделить десять груш на двоих и т. д. Но ведь не сложение и вычитание, не умножение и деление есть су!ъ предмета математики!
Пусть я допускаю методическую оплошность, но я поступлю вот так.
— Дети, вы знаете, что такое наука математика?
Тамрико. Это когда считаешь до ста… Елена. Надо считать до ста и еще уметь слагать… Я умею… К пяти прибавить пять будет десять…
Вахтанг. Я тоже умею складывать и вычитать… Папа учил…
Я подхожу к доске и приоткрываю занавеску. На ней цветными мелками написаны: формула Ньютона, формула производной функции, нарисована координатная система Декарта с функцией.
Саша. Что это такое? Какие удивительные буквы! У детей широко раскрыты глаза, многие приподнялись с мест, чтобы разглядеть формулы получше.
— Это — настоящая математика, наука о количественных соотношениях и пространственных формах!
— Как красиво! — восклицает Лела, не отрывая глаз от доски.
— Потому что сама математика красивая. Ученые говорят — она царица наук.
Недоступно будет детям такое истолкование математики? Разумеется, мои дети не поняли много из того, что было сказано и показано мною. Но зато как было внушительно!
— Нравится вам математика?
— Да! — раздается восхищенно и единогласно.
Эка. Вы научите нас этому? (Указывает на формулы.)
— Я подготовлю вас к тому, чтобы вы научились понимать такие формулы. Хотите?
Опять восхищение и единогласное: «Да!»
— Так займемся этим делом!.. Садитесь прямо!.. Вот так!.. Посмотрите на эти фигуры и запомните их последовательность.
Я кладу у доски квадратики, на которых нарисованы фигуры:
— Запомнили?.. Опустите головы!.. Закройте глаза… Поднимите головы… Скажите, что изменилось в последовательности фигур?
А последовательность теперь такая:
Гига бежит к доске и кричит:
— Вы там переставили… вот это было здесь (показывает на точку), а буква А была здесь! — и он возвращает их на прежнее место.
— Запомните еще раз последовательность расположения фигур… Опустите головы и закройте глаза!.. Будете шептать мне на ухо, какие фигуры я переставил… Поднимите головы и посмотрите!
Перешептываясь с детьми, я обхожу класс. Ни одного правильного ответа! Я ведь ничего не менял в порядке фигур! В чем же дело? Сложная задача? Не может быть. По всей вероятности, мои доверчивые дети пока не могут представить, что я могу так пошутить с ними. Они ищут перестановки, которых на самом деле нет, но о которых я сказал.
— Дети, неужели вы не заметили, что я не трогал здесь ничего, что все фигуры остались на своих местах?
Майя. Я заметила, что там все так же, но не поверила…
Дато. Вы так действовали у доски, что я решил, что правда там что-то переставляете…
— В следующий раз будьте более внимательны. А теперь я. дам вам другое задание: вы должны определить, чего больше!
Перед детьми две доски. На перемене на них я нарисовал следующего рода множества для заданий: сколько, чего больше, из чего, где больше (справа, слева, внизу, наверху). Все это — на первой доске. На другой же разбросаны фигуры по всей площади. Детям надо будет выяснить, «сколько чего». Приоткрываю одну треть первой доски.
— Скажите, пожалуйста: сколько здесь кружков?
— Пять! — говорят дети.
— Кто может сказать, какая из них цифра пять? — Я показываю карточки с цифрами от нуля до девяти.
— Вот эта, которая в середине! — отвечают многие.
— Вот эта? — беру цифру 3.
— Нет! Которая была рядом!
— Ага, значит, вот эта! — Я достаю цифру 4.
— Нет, — говорит Майя, — вы ошиблись, не ту цифру взяли… Можно, я вам покажу?
— Покажи, пожалуйста!
Майя выбегает, достает из колоды цифру 5.
— Какая это цифра, дети? — показываю всем.
— 5! — отвечают они.
— Спасибо, Майя!
Вместо цифры 4 я кладу на доску цифру 5. Теперь все в порядке.
— Сколько здесь треугольников? — я обвожу указкой группу треугольников.
— Четыре… Четыре! — отвечают они вразнобой.
— А какая из этих цифр — 4? Эта? — показываю им цифру 2.
— Нет… Это 2!
— Может быть, эта? — показываю цифру 6.
— Нет… Это 6!
— Так значит, вот эта?
— Нет… Это 7!
Дети развеселились. Им не терпится показать мне 4. Магда выбегает (разумеется, без разрешения), дотягивается до моей руки и показывает на карточку с цифрой 4.
— Вот это — цифра 4!
— Спасибо, Магда, что помогла найти цифру 4. А сколько здесь квадратиков?
— Шесть! — получаю ответ. Беру из колоды цифру 6 и ставлю в перевернутом виде рядом с предыдущими цифрами. Дети весело подсказывают:
— Так получается девять, надо перевернуть… тогда и будет шесть!
Я принимаю замечание.
— А там семь! — выкрикивает Котэ и показывает на группу прямых.
— Котэ говорит, что здесь семь прямых, а я думаю, что восемь! Кто же из нас прав?
— Вы! — кричат многие, не задумываясь.
— Он! — говорят очень немногие, указывая на Котэ.
А Майя сосредоточилась, внимательно смотрит на доску и шепчет. Вот она встает с места:
— Можно, я скажу?.. Там семь прямых линий, а не восемь, и потому прав этот мальчик, а не Вы!
— Согласны с Майей?
Моих сторонников стало меньше. Элла встает, быстро подходит к доске и считает про себя прямые.